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We present state of the art resummation predictions for differential cross sections in top-quark pair

production at the LHC. They are derived from a formalism which allows the simultaneous resummation of

both soft and small-mass logarithms, which endanger the convergence of fixed-order perturbative series in

the boosted regime, where the partonic center-of-mass energy is much larger than the mass to the top quark.

We combine such a double resummation at next-to-next-to-leading logarithmic0 (NNLL0) accuracy with

standard soft-gluon resummation at next-to-next-to-leading logarithmic accuracy and with next-to-leading-

order calculations, so that our results are applicable throughout the whole phase space. We find that the

resummation effects on the differential distributions are significant, bringing theoretical predictions into

better agreement with experimental data compared to fixed-order calculations. Moreover, such effects are

not well described by the next-to-next-to-leading-order approximation of the resummation formula,

especially in the high-energy tails of the distributions, highlighting the importance of all-orders

resummation in dedicated studies of boosted top production.

DOI: 10.1103/PhysRevLett.116.202001

The 8 TeV run of the LHC delivered about 20 fb−1 of

integrated luminosity to both the ATLAS and CMS experi-

ments. Among the many important results coming from

these data, the properties of the top quark have been

measured with unprecedented precision. At the same time,

theoretical calculations of top-quark-related observables

have seen significant advancements in the past few years. In

particular, very recently, the next-to-next-to-leading-order

(NNLO) QCD corrections to differential cross sections in

top-quark pair (tt̄) production have been calculated [1]. In

Ref. [2], the CMS Collaboration performed a comprehen-

sive comparison between their measurements [3] of the

differential cross sections and various theoretical predic-

tions, including those from the NNLO calculation and those

from Monte Carlo event generators with next-to-leading-

order (NLO) accuracy matched to parton showers. The

overall agreement between the theory and data is truly

remarkable, which adds to the success of the standard

model (SM) as an effective description of nature.

However, a persistent issue in the 8 TeV results is that the

transverse momentum (pT) distribution of the top quark or

antiquark is softer in the data than in theoretical predictions;

i.e., the experimentally measured differential cross section

at high pT is lower than predictions from event generators

or from NLO fixed-order calculations [3,4]. While the

NNLO corrections bring the fixed-order predictions into

better agreement with the CMS data, as noted in Refs. [1,2],

there is still some discrepancy in the high-pT bins where

pT > 200 GeV. Given the importance of the tt̄ production

process as a standard candle for validating the SM and as an

essential background for new physics searches, it would be

disconcerting if this feature were to persist at higher pT

values and with more data. It is therefore important to

assess the effects of QCD corrections even beyond NNLO,

in order to see whether the gap between the theory and data

at high pT can be bridged.

For boosted top-quark pairs with high pT , there are two

classes of potentially large contributions. The first is the

Sudakov-type double logarithms arising from soft-gluon

emissions. The second comes from gluons emitted nearly

parallel to the top quarks, resulting in large logarithms of

the form lnnðmt=mTÞ, where mt is the top-quark mass and

mT ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ p2

T

p

is the transverse mass of the top quark or

antiquark. In Ref. [5], some of the authors of the current

work developed a formalism for the simultaneous resum-

mation of both type of logarithms to all orders in the strong

coupling constant αs. In this Letter, we report the first

phenomenological applications of that formalism, giving

predictions for the t=t̄ pT and the tt̄ invariant mass

distributions at the 8 TeV LHC and comparing with

experimental measurements as well as the NNLO calcu-

lations when possible. With an eye to the future, we also

present predictions for the 13 TeV LHC, where NNLO

results are not yet available.

Our main finding is that the higher-order effects con-

tained in our resummation formalism significantly alter the

high-energy tails of the pT and tt̄ invariant mass distribu-

tions, softening that of the pT distribution but enhancing

that of the tt̄ invariant mass distribution. These effects bring

our results into better agreement with the experimental data
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compared to pure NLO fixed-order calculations.

Interestingly, for the case of the pT distribution, this

softening of the spectrum is slightly stronger than the

similar effect displayed in recent NNLO results and leads to

a better modeling of the pT > 200 GeV portion of the

CMS data [3]. We comment further on this fact in the

conclusions.

Formalism.—Our predictions are based on the factori-

zation and resummation formula derived in Ref. [5]. The

technical details will be given in a forthcoming paper,

although the main elements have already been sketched out

in Ref. [6]. In the kinematic situation where the top quarks

are highly boosted and the events are dominated by soft-

gluon emissions, the resummed partonic differential cross

section in Mellin space can be written as

~cijðN;Mtt̄; mt; μfÞ

¼ Tr

�

~Uijðμf; μh; μsÞHijðMtt̄; μhÞ

× ~U
†
ijðμf; μh; μsÞ~sij

�

ln
M2

tt̄

N̄2
μ
2
s

; μs

��

× ~U2
Dðμf; μdh; μdsÞC2

Dðmt; μdhÞ~s2D
�

ln
mt

N̄μds

; μds

�

; ð1Þ

where, for simplicity, we have suppressed some variables in

the functional arguments which are unnecessary for

the explanations below. In the above formula, Mtt̄ is the

invariant mass of the tt̄ pair (which can be related to the pT

of the top quark or antiquark in the soft limit through a

change of variables), N is the Mellin moment variable dual

to 1 −M2

tt̄=ŝ with ŝ the partonic center-of-mass energy

squared, and N̄ ≡ NeγE with γE the Euler constant. The soft

limit corresponds to N → ∞ in Mellin space. The four

coefficient functions Hij, ~sij, CD, and ~sD encode contri-

butions from four widely separated energy scales Mtt̄,

Mtt̄=N̄, mt, and mt=N̄, respectively. The presence of the

four scales leads to the two types of large logarithms

discussed in the introduction. In correspondence with these

four physical scales, there are four unphysical renormal-

ization scales μh, μs, μdh, and μds, one for each coefficient

function. The philosophy of resummation is to choose the

four unphysical scales to be around their corresponding

physical scales, so that the four coefficient functions are

free of large logarithms and are well behaved in the fixed-

order perturbation theory. One can then use renormalization

group (RG) equations to evolve these functions to the

factorization scale μf in order to convolute with the parton

distribution functions (PDFs) and obtain the hadronic cross

sections. The effects of the RG running are encoded in the

two evolution factors ~Uij (for Hij and ~sij) and ~UD (for CD

and ~sD), which resum all the large logarithms to all orders

in αs in an exponential form.

At the moment, the four coefficient functions are known

to NNLO [5,7,8], while the two evolution factors are

known to next-to-next-to-leading logarithmic (NNLL)

accuracy [5]. Such a level of accuracy is usually referred

to as NNLL0 in the literature, and we adopt that nomen-

clature here. While the formula (1) is applicable only in the

boosted soft limit, we can extend its domain of validity by

combining it with information from NNLL soft-gluon

resummation derived in Ref. [9] (recast into Mellin space)

as well as the NLO fixed-order result calculated in Ref. [10]

and implemented in MCFM [11]. The precise matching

formula can be found in Ref. [6]. After such a matching

procedure, we denote the final accuracy of our predictions,

which are valid throughout phase space, as NLOþ NNLL0.
(Ideally, we should also match to a purely boosted formula

in order to resum small-mass logarithms due to hard-

collinear gluon emissions and thus subleading in the soft

limit. However, the numerical study in Ref. [5] indicated

that such logarithms are not very important for top-quark

production at the LHC, so we leave this issue aside in the

current study.)

It would be desirable to match with the recent NNLO

results in Ref. [1] to achieve NNLOþ NNLL0 accuracy.
However, at the moment, NNLO results are available only

for fixed (i.e., kinematics-independent) factorization and

renormalization scales μf ∼ μr ∼mt, whereas for the

study of differential distributions over large ranges of

phase space we consider it important to follow common

practice and use dynamical (i.e., kinematics-dependent)

scale choices. Therefore, such an improvement over our

result is not currently possible, and we leave it for the

future.

Phenomenology.—In the following, we present

NLOþ NNLL0 predictions for theMtt̄ and pT distributions

at the LHC. In all our numerics, we choosemt ¼ 173.2GeV

and use MSTW2008 NNLO PDFs [12]. For pT distribu-

tions, the default values for the factorization scale and the

four renormalization scales are chosen as μf ¼ mT ,

μh ¼ Mtt̄, μs ¼ Mtt̄=N̄, μdh ¼ mt, and μds ¼ mt=N̄. For

Mtt̄ distributions, the only difference is μf ¼ Mtt̄. We

estimate scale uncertainties by varying the five scales

around their default values by factors of 2 and combining

the resulting variations of differential cross sections in

quadrature; we do not consider uncertainties from

PDFs and αs in this Letter. The hadronic differential cross

sections are first evaluated in Mellin space at a given

point in phase space, and we then perform the inverse

Mellin transform numerically using the minimal

prescription [13]. This procedure relies on an efficient

construction of Mellin-transformed parton luminosities, for

which we use methods outlined in Refs. [14,15].

The differential cross sections considered below span

several orders of magnitude when going from low to high

values of pT or Mtt̄. In order to better display the relative

sizes of various results, we show in the lower panel of each
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plot the differential cross sections normalized to our default

prediction, i.e., the ratio defined by

ratio≡
dσ

dσNLOþNNLL0ðμi ¼ μ
default
i Þ

: ð2Þ

Figure 1 compares our NLOþ NNLL0 resummed pre-

diction for the normalized pT distribution to the CMS

measurement [3] in the leptonþ jet channel at the LHC

with a center-of-mass energy
ffiffiffi

s
p ¼ 8 TeV. Also shown is

the NNLO result from Ref. [1], which adopted by default

the renormalization and factorization scales μr ¼ μf ¼ mt

and also used a slightly different top-quark mass,

mt ¼ 173.3GeV. At low pT, it is clear that both the

NLOþ NNLL0 and the NNLO results describe the data

fairly well. With the increase of pT , it appears that the

NNLO prediction systematically overestimates the data,

although there is still agreement within errors. On the other

hand, with the simultaneous resummation of the soft-gluon

logarithms and the mass logarithms and also with the

dynamical scale choices, our NLOþ NNLL0 resummed

formula produces a softer spectrum which agrees well with

the data.

In Ref. [4], the ATLAS Collaboration carried out a

measurement of the pT spectrum in the highly boosted

region using fat-jet techniques. Although the experimental

uncertainty is rather large due to limited statistics, it is

interesting to compare it with the theoretical predictions

here, since it is expected that the soft and small-mass

logarithms become more relevant at higher energies. In

Fig. 2, we show such a comparison. The NNLO result for

such high pT values is not yet available, so we compare

instead with the NLO result computed using MCFM with

MSTW2008 NLO PDFs and dynamical renormalization

and factorization scales, whose default values are

μr ¼ μf ¼ mT . Scale uncertainties of the NLO results

are estimated through variations of μr ¼ μf by a factor

of 2 around the default value. From the plot, one can see

that the NLO result calculated in this way does a good job

in estimating the residual uncertainty from higher-order

corrections, as the resummed band lies almost inside

the NLO one up to pT ¼ 1.2 TeV. On the other

hand, the inclusion of the higher-order logarithms in the

NLOþ NNLL0 result significantly reduces the theoretical

uncertainty, which is crucial for future high-precision

experiments at the LHC.

Our formalism is flexible and can be applied to other

differential distributions as well. To demonstrate this fact,

in Fig. 3, we show the NLOþ NNLL0 resummed predic-

tion for the top-quark pair invariant mass distribution along

with a measurement from the ATLAS Collaboration [16] at

the 8 TeV LHC. Since the NNLO result in Ref. [1] for this

distribution has an incompatible binning, it is currently not

possible to include it in the plot, so we show instead the

NLO result computed with the same input as in Fig. 2, but

this time with the default scale choice μr ¼ μf ¼ Mtt̄. One

can see from the plot that the NLO result with this scale

choice is consistently lower than the experimental data. The

resummation effects significantly enhance the differential

cross sections, especially at high Mtt̄. As a result, the

NLOþ NNLL0 prediction agrees with the data quite well.

We have found that choosing the default renormalization

and factorization scales to be half the invariant mass

increases the fixed-order cross section and therefore mimics

to some extent the resummation effects. In fact, this
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procedure has been extensively employed in the literature

for processes such as Higgs production [17], where higher-

order corrections are also large. Consequently, it may be

advisable to employ a renormalization and factorization

scale of the order of Mtt̄=2 in fixed-order calculations

(and Monte Carlo event generators), and we shall use this

choice when studying the Mtt̄ distribution at the 13 TeV

LHC below.

The LHC has started the 13 TeV run in 2015. So far,

there are only two CMS measurements [18,19] of differ-

ential cross sections for tt̄ production, based on just

42 pb−1 of data. The resulting experimental uncertainties

are therefore quite large, and it is not yet possible to probe

higher pT or Mtt̄ values. Nevertheless, in the near future

there will be a large amount of high-energy data, which will

enable high-precision measurements of tt̄ kinematic dis-

tributions, also in the boosted regime. In Fig. 4, we show

our predictions for the pT and Mtt̄ spectrum up to pT ¼
2 TeV and Mtt̄ ¼ 4.34 TeV, contrasted with the NLO

results. Note that, for theMtt̄ distribution, we have changed

the default μf to a lower value Mtt̄=2 for the reasons

explained above. The plots exhibit similar patterns as

observed at 8 TeV, namely, that the higher-order resum-

mation effects serve to soften the tail of the pT distribution

but enhance that of the Mtt̄ distribution compared to a pure

NLO calculation.

As mentioned before, we would like to match our

calculations with the NNLO results when they become

available in the future. We end this section by discussing

the expected effects of such a matching, by estimating the

size of resummation corrections beyond NNLO. We do this

in Fig. 5, where the relative sizes of the beyond-NNLO

corrections generated through the resummation formula are

displayed as a function of Mtt̄ or pT with the default scale

choices. The exact NNLO results for these scale choices

are not yet available, so we show in comparison the

relative sizes of the approximate NNLO (aNNLO)

corrections obtained by expanding and truncating our

NLOþ NNLL0 formula to that order. More precisely, the

blue and black curves in Fig. 5 correspond to

aNNLO correction≡
dσaNNLO − dσNLO

dσNLO
;

beyond NNLO≡
dσNLOþNNLL0

− dσaNNLO

dσNLO
; ð3Þ

where dσaNNLO refers to the approximate NNLO result. The

figure clearly shows that corrections beyond NNLO are

significant in the tails of the distributions, especially in the

case of the Mtt̄ distribution.
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Conclusions and outlook.—In this Letter, we have

presented new resummation predictions for differential

cross sections in tt̄ production at the LHC. The predictions

include the simultaneous resummation to NNLL0 accuracy
of both soft and small-mass logarithms, which endanger

the convergence of the fixed-order perturbative series in

the boosted regime where the partonic center-of-mass

energy is much larger than the mass of the top quark.

This resummation is matched with both standard soft-gluon

resummation at NNLL accuracy and fixed-order NLO

calculations, so that our results are applicable in the whole

phase space. Such predictions for tt̄ differential distribu-
tions at the LHC are not only the first to be calculated in

Mellin space but also represent the highest resummation

accuracy achieved to date, namely, NLOþ NNLL0. The
results in this Letter build upon previous works [5,9], going

beyond them by providing a unified framework and

numerical predictions valid for all kinematic configurations

of interest. Our results are thus a major step forward in the

modeling of distributions, particularly their high-energy

tails, which are of great importance for new physics

searches.

The agreement of NLOþ NNLL0 predictions with the

data indicates the value of including resummation effects

and using dynamical scale settings correlated with pT or

Mtt̄ when studying differential distributions. Interestingly,

in the case of normalized pT distribution measured by the

CMS Collaboration [3], the NLOþ NNLL0 calculation

produces a slightly softer spectrum than recent NNLO

predictions (which use a fixed scale setting where μf ¼
μr ¼ mt by default), thus achieving a better agreement with

the data. However, we emphasize that the optimal use of

resummation is to supplement NNLO calculations, not to

replace them. With this in mind, we have studied the size of

corrections beyond NNLO encoded in our resummation

formula and found that their effects are significant in the

high-energy tails of distributions, especially for the tt̄
invariant mass distribution where they enhance the differ-

ential cross section. It will therefore be an essential and

informative exercise to produce NNLOþ NNLL0 predic-
tions once NNLO calculations are available with dynamical

scale settings.
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