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Proceedings of Symposia in Pure Mathematics

Resurgence and Topological Strings

M. Vonk

Abstract. The mathematical idea of resurgence allows one to obtain non-
perturbative information from the large–order behavior of perturbative ex-
pansions. This idea can be very fruitful in physics applications, in particular if
one does not have access to such nonperturbative information from first prin-
ciples. An important example is topological string theory, which is a priori
only defined as an asymptotic perturbative expansion in the coupling constant
gs. We show how the idea of resurgence can be combined with the holomor-
phic anomaly equation to extend the perturbative definition of the topological

string and obtain, in a model–independent way, a large amount of information
about its nonperturbative structure.

1. Introduction

The vast majority of calculational problems in physics are impossible to solve
exactly. For this reason, it is important to have good approximation techniques
at one’s disposal. One such technique is the perturbative approach: one identifies
a (preferably small) parameter x in the problem, such that the problem can be
solved exactly in the special case where x = 0. Then, one tries to construct the full
solution f(x) to the problem order by order in a perturbative expansion:

(1.1) f(x) =

∞
∑

n=0

anx
n.

Of course, it will in general not be possible to find a closed form for all the co-
efficients an (that would essentially amount to finding an exact solution to the
problem), but often one can calculate the individual coefficients one by one, up to
arbitrarily high n. One may then calculate a partial sum of the form

(1.2) fN (x) =

N
∑

n=0

anx
n

and, for large N , view such a sum as an approximation to the true answer f(x).
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2 M. VONK

There are two well–known problems that may arise in this approach. The first
one is that the partial sums fN (x) may not converge when one takes the limit
N → ∞. The canonical example where this happens is the Taylor expansion

(1.3)
1

1− x
≈ 1 + x+ x2 + x3 + . . .

Here, the partial sums of the right hand side diverge when |x| > 1, even though
for any x 6= 1, the left hand side is well–defined. This example still has a finite
radius of convergence, but there are other examples where the perturbation series is
asymptotic: even though the partial sums become better and better approximations
as x→ 0, for any x 6= 0 they diverge when N → ∞. A famous example is Stirling’s
approximation to the logarithm of the Gamma function:

(1.4) log Γ(z)−
1

2
log(2π)−

(

z −
1

2

)

log z + z ≈
1

12z
−

1

360z3
+

1

1260z5
− . . .

where now z−1 is the small parameter, and we have moved all terms that do not
involve positive powers of this parameter to the left hand side. One can show that

the coefficients of z1−2n on the right hand side grow like (2n−2)!
(2π)2n . From this factorial

growth of the coefficients, one then easily shows that the partial sums diverge for
any nonzero value of z−1. This factorial growth of perturbative coefficients, and the
resulting asymptotic behavior, is ubiquitous in quantum mechanics and quantum
field theory.

A second problem that often arises when one uses perturbative methods is
that some nontrivial functions have a vanishing perturbative expansion. Here, the
canonical example is

(1.5) f(x) = e−
1

x2

which is a well–defined and smooth function on the real axis, but which has a
vanishing Taylor series around x = 0. More generically, instanton and soliton
effects in physics often cannot be “seen” in perturbation theory.

An important observation is that the above two problems are not at all inde-
pendent, as can be seen e.g. from Borel resummation. In section 2, we will review
how this comes about, and how this relation between asymptotic perturbative se-
ries and nonperturbative effects takes its full form in the theory of resurgence. The
idea of resurgence has great potential in physical applications, since it allows us to
obtain nonperturbative information from a purely perturbative expansion. In this
contribution, based on the work [1, 2] with R. Couso-Santamaŕıa, J. D. Edelstein
and R. Schiappa, we want to work out this idea for the example of topological
strings. This example is particularly interesting, as topological strings are a priori
only defined as an asymptotic perturbative expansion. Finding a generic way to
extend their partition sums into full, nonperturbative functions, is therefore a very
interesting open question. In section 3, we explain how the holomorphic anomaly
equation provides a window into this problem. In section 4, we then present some
explicit results for the example of B–model toplogical strings on local P2. We end
with a conclusion and outlook in section 5.

2. Resurgence

In this section, we very briefly review some of the basic ideas of resurgence. The
reader is referred to [3] and references therein for a more thorough introduction.
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2.1. Borel transforms and asymptotic behavior of coefficients. If a
quantity f(x) has a divergent perturbation series whose coefficients grow as

(2.1) an ∼
n!

An

for some (generically complex) A, then there is a simple trick due to Borel that
often allows one to find a well–defined function for which the given series is an
asymptotic perturbative approximation. One defines the Borel transform B[f ] as
the formal power series

(2.2) B[f ](s) =
∞
∑

n=0

an

n!
sn.

This turns the asymptotic series for f into a new series which has a singularity at
s = A but is convergent when |s| < A. If we now assume that A is not a positive,
real number and that B[f ](s) can be analytically continued to the positive real axis,
then one easily checks that

(2.3) S0f(x) ≡

∫ ∞

s=0

B[f ](sx) e−sds

gives back a function S0f(x), called the Borel resummation of f(x), which has
the same asymptotic expansion as the original function. Thus, this Laplace–type
transform can be thought of as a formal inverse of the Borel transform.

Of course, when A is real and positive, the above procedure does not work,
since for positive x the integral in (2.3) runs into the singularity of B[f ]. One may
define two alternative Borel resummations, S±f(x), by using integration contours
in the complex plane which circumvent the singularity either above or below. Using
Cauchy’s theorem, one then sees that the difference between those two resumma-
tions is of the order

(2.4) (S− − S+)f(x) ≈ e−A/x.

This result is perhaps not too surprising: the difference between the two Borel
resummations — which each have the same asymptotic expansion as the origi-
nal function — is a function of the “instanton type”, which itself has a vanishing
perturbative expansion. This is the relation between asymptotic series and nonper-
turbative functions that we alluded to in the introduction.

Often, for example for reasons of reality (see e.g. [4]), one can show that neither
of the two Borel resummations gives back the original function f(x), but that the
true function f(x) lies “in the middle”, in the sense that

f(x) = S+f(x) +
1

2
e−A/x (. . .)

= S−f(x)−
1

2
e−A/x (. . .)(2.5)

where the dots indicate the resummation of a further expansion that we will make
more precise in the next subsection.

A crucial observation to make about this discussion is that the coefficient A
(usually called the “instanton action”) which can be read off from the asymptotic
growth of the perturbative coefficients in (2.1), also appears in the nonperturbative

contributions in (2.5). Somehow, the perturbative solution to our problem already
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knows something about its nonperturbative completion. As we will see, resurgence
makes this statement precise, and extends it immensely.

2.2. Transseries. As we have seen in the previous subsection, a perturbative
power series contains some information (like the instanton action A) about the
nonperturbative contributions to the function one wants to describe. At the same
time, this information is not encoded in a very straightforward way. To make the
nonperturbative content of a function more transparent, it turns out to be very
useful to describe it using a transseries. A simple example of a transseries is an
expression of the form

(2.6) f(x) ≈
∞
∑

k=0

∞
∑

n=0

a(k)n e−kA/xxn.

In this case, the transseries is a formal expansion in the variable x and in a “nonper-
turbative building block” e−A/x. More general transseries may have many more of
such building blocks: they can be expansions in several different instanton factors,
e−Ai/x, expansions in log(x) or other nonanalytic functions of x, etc. We will not
discuss the general theory of transseries here — the reader can find several good
references in [3]. For most of this paper, formal transseries of the above form will
be sufficient.

Transseries solutions to physics problems often arise in a very natural way. For
example, if the problem is described by a differential or finite difference equation,
one can often simply insert an ansatz of the form (2.6) into this equation and solve

it order by order to find the coeffients a
(k)
n and the instanton action A — in the

same way that one would construct a formal power series solution. In fact, this is
exactly what we will do in this paper.

Of course, given a transseries, one may again ask how to obtain an actual
function from it. To this end, let us write the transseries expansion (2.6) as

(2.7) f(x) ≈
∞
∑

k=0

e−kA/xΦ(k)(x) with Φ(k)(x) =

∞
∑

n=0

a(k)n xn.

In general, all of the pertrubative series Φ(k)(x) may be asymptotic, divergent
series. However, as was the case for ordinary power series, one can turn a formal
transseries into an actual function by choosing an integration contour and Borel
resumming each sector. That is, one extends the definition of Borel resummation
in the natural way to be

(2.8) S+f(x) =

∞
∑

k=0

e−kA/x

∫ ∞

s=0+
B
[

Φ(k)
]

(sx) e−sds

where we have chosen the +–contour to be specific.
Note that expressions of the form (2.7) appear very naturally in physics. In

many problems, e.g. in quantum field theory, one expands a solution around a
trivial “vacuum” background. However, there are in general other, nonperturbative
backgrounds, such as instantons and solitons, that one wants to take into account
as well. Each of these backgrounds is suppressed by a nonperturbative factor, often
of the form e−A/x, and one can construct a new, perturbative solution around such
a background. One then wants to “add up” all of the different nonperturbative
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sectors into a single solution to the problem. The prescription (2.8) makes this
procedure mathematically precise.

2.3. Resurgence. Even though we can formally write down any transseries
we like, the transseries solutions that arise from physical or mathematical problems
usually have a lot of extra structure. We saw an example of this in equation (2.1)
and (2.5) where, essentially just from the requirement of analyticity, we derived
that the instanton action A could be read off from the large–order behavior of the

perturbative coefficients a
(k)
n . The theory of resurgence, first developed by J. Écalle

in [5], extends this example immensely, and makes the resulting structure very
precise.

In [5], a class of functions called resurgent functions is defined. The defining
property is that the Borel transform of a resurgent function only has a discrete set of
singularities and any analytic continuation along a path avoiding these singularities
can be defined. For our purposes, the precise definition is not very relevant; all
that matters is that most of the functions one encounters in (toy model) physical
examples belong to the class of resurgent functions.

One can show that for resurgent functions, not only the instanton action A can

be derived from the perturbative coefficients a
(0)
n , but in fact all coefficients a

(k)
n in

all other instanton sectors Φ(k) can be obtained from the perturbative sector. This is
the origin of the name “resurgence”: the instanton sectors can be “resurrected” from
the perturbative sector alone. Actually, the choice of the perturbative “vacuum”
sector is somewhat arbitrary: one could also reconstruct the vacuum sector (and
all other sectors) from an arbitrary given instanton sector.

The way to obtain this nonperturbative information from perturbative infor-
mation is essentially through a huge generalization of (2.1). The details of this
depend on the problem at hand (and the derivation requires several new mathe-
matical techniques that are explained in [5]), but in the end it turns out that one
can derive large–order relations which are schematically of the form

(2.9) a(0)n ∼
∞
∑

k=1

Sk
1

2πi

∞
∑

m=0

Γ(n−m)

(kA)n−m
a(k)m .

Here, S1 is an unknown problem–dependent constant known as the Stokes constant.
We stress that the above expression is just schematic: in actual computations (see
e.g. [3]), there may be many different instanton actions Ai, many different Stokes
constants, and arguments of the form n−m may be shifted by problem–dependent
constants. However, the general structure of these large–order relations and the
way they can be used is always the same. Note for example that taking the leading
(k = 1,m = 0) contribution in the above equation, we recover the fact that the

leading growth of the perturbative coefficients a
(0)
n is determined by A as in (2.1).

Taking higher m terms into account, we see that 1
m–corrections to this leading

growth determine the one–instanton coefficients a
(1)
n . Then from the k = 2 terms,

we see that nonperturbative corrections of order (2)−m to this growth determine

the two–instanton coefficients a
(2)
n , and so on.

The use of large–order relations in physical applications is twofold. First of
all, there are problems where the perturbative sector can be calculated, but where
the nonperturbative contributions are unknown — either due to computational
difficulties, or for more fundamental reasons. In fact, the example of topological
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strings that we will discuss is a case where the theory is only defined perturba-
tively, and there is no generally defined nonperturbative completion. In such cases,
one may use large–order relations to calculate nonperturbative contributions from
consistency conditions alone.

Of course, in doing so, one assumes that the function one is investigating be-
longs to the class of resurgent functions. This can in general not be proven, but
here, the large–order relation is again useful. If one can obtain conjectured non-
perturbative contributions by other means — for example by plugging a transseries
ansatz into a differential or finite difference equation — one can then use the large–
order relation to test whether the function indeed has resurgent behavior. One may
perform these tests for several nonperturbative contributions to gain confidence in
the resurgent properties, and then use the large–order relation to calculate further
nonperturbative terms. In what follows, we will illustrate this approach using the
example of the topological string.

3. The holomorphic anomaly

There are several equivalent ways to define topological string theories and their
partition functions. Physically, a topological string theory be obtained by twisting
a two–dimensional N = 2 supersymmetric field theory and coupling the result-
ing theory to two–dimensional gravity. Mathematically, topological string theory
partition functions can be defined as generating functions of Gromov–Witten in-
variants, or they can be obtained from studying the complex structure deformations
of Calabi–Yau manifolds. It would go too far to review any of these definitions here;
we refer the interested reader to the many available reviews of the topic, such as
the extensive book [6].

For our purposes, all that matters is that all of these definitions depend on a
parameter gs, called the topological string coupling constant, and that they all lead
to a partition function which is a perturbative expansion in gs. More precisely, the
free energy (which is the logarithm of the partition function) is an expansion of the
form

(3.1) F (t; gs) ≈
∞
∑

g=0

Fg(t) g
2g−2
s .

Here, we denoted any additional parameters that the problem may have by t; these
can for example take the form of couplings in the two–dimensional field theory, or
of moduli of the Calabi–Yau manifold.

Calculating the coefficients Fg(t) from one of the definitions of the topological
string theory is often very complicated, especially if one wants to go beyond the
first few values of g. Fortunately, in the incarnation where the topological string
is defined from the complex structure deformations of Calabi–Yau manifolds (the
so–called B–model), a shortcut was found in [7, 8]. It turns out that the Fg(t) are
almost holomorphic in the parameters ti, where the “almost” means that there is
a recursion relation, called the holomorphic anomaly equation, of the form

(3.2) ∂ıFg =
1

2
Cı

jk

(

DjDkFg−1 +

g−1
∑

h=1

DjFg−hDkFh

)

.

The definition of the coefficients Cı
jk

and of the covariant derivatives Di can be
found e.g. in [6]. The crucial point is that the derivative with respect to the
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anti–holomorphic variable t
ı
depends only on the Fh with h < g. This allows

one to determine the Fg recursively, up to an integration constant which is purely
holomorphic in the ti. It turns out that this integration constant can often be
determined exactly from the behavior of F (t) at special points in the moduli space;
see e.g. [9]. This so–called “direct integration” method is very efficient, and can be
used to compute the Fg up to high values of g.

The direct integration technique allows one to construct a formal, perturbative
expression for the topological string theory free energy, but the power series one
constructs in this way are asymptotic and diverge. This is a serious problem, even
more so because, as we have mentioned, the usual definitions of the topological
string theory are only perturbative in nature. To obtain an actual function F (t),
we need to somehow identify the nonperturbative contributions and construct a
nonperturbative completion of the asymptotic series. While this has been done in
specific instances (usually through the use of dualities), a generic procedure does
not exist. Clearly, the theory of resurgence can be a major asset to fill this gap.

Thus, one would first of all like to extend the power series solution (3.1) to
a transseries solution. An immediate problem presents itself, as the holomorphic
anomaly equation (3.2) is an equation for the individual coefficients Fg(t), not for
the full F (t). Thus, we cannot simply insert a transseries ansatz into this equation.
Fortunately, as was already pointed out in [8], it is not too hard to find an equation
that the full partition function Z = eF (t) satisfies. Roughly, Z satisfies a heat kernel
equation of the form

(3.3)

(

∂ı −
1

2
g2sCı

jk
DjDk

)

Z = 0.

By “roughly”, we mean that some additional terms must be included in the equation
to correct the resulting anomaly equations at low–lying g. The details of this, and
the precise equation that replaces (3.3), can be found in our paper [1]. In what
follows, we will simply refer to the above equation, but the reader should keep in
mind that it is only a schematic representation of the true holomorphic anomaly
equation for Z(t).

Now, the plan of attack is clear: one can make a transseries ansatz for F (t),
plug Z = eF into the above equation, and recursively solve for all nonperturbative
coefficients. As was the case for the ordinary power series solution, this requires
the fixing of holomorphic integration constants at every order, which can be done
using boundary behavior of F (t) at special points in moduli space. Thus, we can
describe this procedure as “nonperturbative direct integration”.

Following this procedure, we find a conjectural form of the nonperturbative
topological string free energy expressed as a transseries. One can then compare
these results to existing conjectures for nonperturbative topological strings, and
test, as described in the previous section, whether the F (t) one finds is indeed a
resurgent function. We have carried this out for general models in [1], and for
the specific example of B–model topological strings on local P2 in [2]. In the next
section, we report some of the most interesting results from these papers.

4. Resurgence and the holomorphic anomaly

We will present the results of the procedure outlined above in a mostly graphical
manner. For the analytical derivations and numerics behind the images, and a much
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Figure 1. The instanton action is
independent of the anti-holomorphic
modulus.

Figure 2. Local P2 has three dif-
ferent conifold instanton actions.

more detailed description, we refer the reader to [1, 2]. The figures in this section
are originally in full–color; the reader can find the colored version of the images in
the online version of this paper.

The most basic prediction of resurgence is that the instanton actions A, calcu-
lated using a transseries ansatz for the equation (3.3), can also be obtained from
the large–order behavior of the perturbative Fg(t) using the analogue of (2.1). We
have found that for topological strings, this is indeed the case. Perhaps more inter-
estingly, using resurgence one can show on general ground that the t–dependence
disappears in the large g limit, and that the instanton actions are all purely holo-

morphic in t. This can also be shown numerically in explicit examples. In figure 1,
for example, we see in the local P2 example that an instanton action (of which for
technical reasons we plot the imaginary part of the square) is independent of the
value of an anti–holomorphic modulus ψ = x + iy. This result is consistent with
a conjecture made in [10], which states that the instanton actions of topological
string theories quite generally are given by periods of holomorphic three–forms —
which naturally depend in a holomorphic manner on the moduli.

Of course, for a generic topological string theory, we expect to find more than
one instanton action. In fact, in the case of local P2, one easily finds three different
conifold periods which can all appear as instanton actions. (There is in fact a fourth
period associated to the large–volume limit of local P2 which we will ignore in this
paper.) In figure 2, we plot the absolute value of those three periods as functions of
the modulus ψ of the model. At each point in moduli space, one can check that the
large–order behavior of the Fg is indeed determined by the period Ai with smallest
absolute value.

Next, one can use a transseries ansatz and (3.3) to calculate nonperturbative

coefficients F
(k)
g in several instanton sectors. One can then check whether these

coefficients match the large–order behavior of the perturbative Fg. In figure 3,
we show these tests for three different values of the modulus (from left to right)

for the first four leading coefficients F
(1)
g (from top to bottom). The dependence

on the anti–holomorphic modulus ψ is plotted in the figures. The lines show the
predictions (real and imaginary part) from the transseries ansatz; the dots show the
results from the large–order behavior of Fg. We see that the dots match the lines
perfectly, meaning that all of this nonperturbative information is indeed captured
by the perturbative Fg. As an interesting side remark: we see that for holomorphic

moduli (0 on the horizontal axis in the plots) all F
(1)
g≥1 vanish. This is consistent
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Figure 3. Comparison between transseries results and large–
order results for several nonperturbative coefficients.

with the fact that in this limit, from the direct integration procedure one expects
to find back the exact conifold results. In [11], these coefficients were indeed shown
to vanish.

As can already be seen from figure 2, at different points in moduli space, dif-
ferent instanton actions have the smallest absolute value, meaning that different
instanton actions determine the dominant large–order behavior of the perturba-
tive coefficients. One can now try to Borel resum the contributions coming from a
given instanton sector, and measure the contributions in the large–order relations
subleading to all of those. In fact, two things can happen: those subdominant
instanton contributions can come from a different instanton, or they can come
from two–instanton effects of the same type as the resummed one–instanton sector.
Which of these is the case depends on the absolute values of the relevant instanton
actions. This is plotted for a specific slice in moduli space in figure 4. For example,
for values of ψ in the left of the figure, we see that the instanton action A3 dom-
inates, whereas the instanton action A1 determines the subdominant large–order
behavior of Fg. For values of ψ near the middle of the plot, the A1–sector dom-
inates, and the subdominance comes from two–instanton effects corresponding to
the same instanton.

We have checked all of these predictions against large–order behavior, and
found perfect agreement. For example, in figure 5 we zoom in to a region in moduli
space where the subdominant behavior is caused by two different one–instanton sec-
tors. After resumming the leading large–order behavior, we see that what remains
(the dots in the figure) indeed perfectly matches the predictions from the analytic
transseries solution. In particular, a jump in the large–order data occurs exactly
where one would expect to see it. A similar plot in figure 6 shows a region where
first a one–instanton sector is subdominant, then a two–instanton sector takes over,
and finally a different one–instanton sector determines the subdominant behavior.
Once again, the dots coming from the large–order perturbative data perfectly match
the predictions from the resurgent transseries ansatz.
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Finally, one may wonder what happens at points in moduli space where two
instanton actions have exactly the same absolute value, so that each of the corre-
sponding sectors gives an equal size contribution to the large–order behavior. It is
not too hard to show that at those points, resurgence predicts that the large–order
behavior of the Fg obtains an oscillatory component. In figure 7, we isolate the
expected oscillatory behavior from the transseries prediction (the continuous line)
and see that for large g (plotted horizontally), the data again nicely matches the
prediction.

5. Conclusion and outlook

All of the results in the previous section (and many more reported in [1, 2])
seem to indicate that the nonperturbative topological string free energy is indeed
a resurgent function, and that therefore, resurgent transseries techniques based on
the holomorphic anomaly equation can be used to give a proper nonperturbative
completion of the topological string. While these results are very encouraging, a
number of open questions remain, of which we mention the two most pressing ones:

• Even though one can now calculate nonperturbative contributions to the
topological string free energy, it would be nice to have a more physical
interpretation of the effects that these contributions describe. In certain
examples, through dualities, these effects turn out to match D–brane or
tunneling effects, but a generic description from a purely topological string
point of view is still missing.

• A crucial technical observation is that the holomorphic anomaly equation
(3.3) is a differential equation in t, and not in the transseries variable
gs. As a result (due to the lack of a so–called “bridge equation”, as ex-
plained in [1]), one cannot fully derive the large–order relations and the
transseries structure from first principles, but one has to resort to infor-
mation obtained from either dual desciptions or large–order analysis. At
the level discussed in this paper, this is not an issue, but on a more funda-
mental level it is. For example, one cannot a priori determine the number
of different instanton actions, and once one goes to higher than leading
subdominant contributions, it is no longer fully clear which transseries co-
efficients determine the large–order behavior. In fact, we cannot say with
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certainty whether the topological free energy is a so–called “simple resur-
gent function” (meaning that its Borel transform only has simple poles
and logarithmic branch cuts) or whether it is of some more complicated
type. It would be good to have a better mathematical handle on these
issues.

Apart from these fundamental open questions, it would be good to study more
examples — for example, models with more moduli, or models with different (non–
conifold) types of special points in moduli space — in order to develop further the
technical tools presented here. Undoubtedly, this will shed a lot of new light on the
so far mysterious issue of the nonperturbative definition of the topological string.
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