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Abstract

Biodiversity is defined as the presence of a variety of living organisms on the Earth that is essential for human survival. 
However, anthropogenic activities are causing the sixth mass extinction, threatening even our own species. For many 
animals, dwindling numbers are becoming fragmented populations with low genetic diversity, threatening long-
term species viability. With extinction rates 1000–10,000 times greater than natural, ex situ and in situ conservation 
programmes need additional support to save species. The indefinite storage of cryopreserved (−196°C) viable cells 
and tissues (cryobanking), followed by assisted or advanced assisted reproductive technology (ART: utilisation of 
oocytes and spermatozoa to generate offspring; aART: utilisation of somatic cell genetic material to generate offspring), 
may be the only hope for species’ long-term survival. As such, cryobanking should be considered a necessity for all 
future conservation strategies. Following cryopreservation, ART/aART can be used to reinstate lost genetics back into 
a population, resurrecting biodiversity. However, for this to be successful, species-specific protocol optimisation and 
increased knowledge of basic biology for many taxa are required. Current ART/aART is primarily focused on mammalian 
taxa; however, this needs to be extended to all, including to some of the most endangered species: amphibians. Gamete, 
reproductive tissue and somatic cell cryobanking can fill the gap between losing genetic diversity today and future 
technological developments. This review explores species prioritisation for cryobanking and the successes and challenges 
of cryopreservation and multiple ARTs/aARTs. We here discuss the value of cryobanking before more species are lost and 
the potential of advanced reproductive technologies not only to halt but also to reverse biodiversity loss.

Lay summary

The world is undergoing its sixth mass extinction; however, unlike previous events, the latest is caused by human activities 
and is resulting in the largest loss of biodiversity (all living things on Earth) for 65 million years. With an extinction rate 
1000–10,000-fold greater than natural, this catastrophic decline in biodiversity is threatening our own survival. As the 
number of individuals within a species declines, genetic diversity reduces, threatening their long-term existence. In 
this review, the authors summarise approaches to indefinitely preserve living cells and tissues at low temperatures 
(cryobanking) and the technologies required to resurrect biodiversity. In the future when appropriate techniques 
become available, these living samples can be thawed and used to reinstate genetic diversity and produce live young 
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ones of endangered species, enabling their long-term survival. The successes and challenges of genome resource 
cryopreservation are discussed to enable a move towards a future of stable biodiversity.
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Introduction

Humans are causing the sixth mass extinction, the largest 
predicted loss of biodiversity for 65 million years, with 41% 
of amphibians, 26% of mammals and 14% of bird species 
assessed by the International Union for the Conservation of 
Nature (IUCN) being threatened with extinction (Ceballos 
et  al. 2015, Ceballos & Ehrlich 2018, IUCN 2021). The 
catastrophic decline in biodiversity is a global threat to our 
own existence, affecting our economies, societal equality 
and way of life, including the food we eat and our climate 
(WHO 2015). This current loss of species is estimated to be 
between 1000- and 10,000-fold higher than the natural 
extinction rate (Ceballos et al. 2015, Turvey & Crees 2019). 
Human activity is changing the environment too fast for 
organisms to evolve in response, resulting in extinction 
(Ceballos & Ehrlich 2018). Restoring habitats alone will 
not halt the decline in biodiversity as many species are 
now fragmented, resulting in unviable populations with 
low genetic diversity (Hoban et al. 2020).

Animal conservation aims to maintain populations 
large enough, and with enough genetic diversity, to 
be sustainable (Comizzoli et  al. 2019). Ex situ breeding 
programmes are a vital insurance policy for preserving 
endangered species and for enabling research, for example, 
into their behaviour and physiology. In zoos, pedigree-
based management typically aims to maintain 90% of 
genetic diversity over 100 years and minimise mean 
kinship and inbreeding in threatened populations to 
retain the evolutionary potential of the species of interest 
(Ballou et  al. 2010). Using captive breeding programmes 
to maintain genetic diversity is not always successful due 
to lack of reproduction, for example, due to unnatural 
social structures resulting in reduced breeding behaviour, 
lack of mate choice or limited number of founders 
potentially leading to inbreeding (Lees & Wilcken 2009). 
Furthermore, transporting large animals between different 
locations for breeding purposes comes with logistical and 
welfare challenges with the addition of potential disease 
transmission (Pukazhenthi & Wildt 2004). For some species 
with unsuccessful breeding programmes (Lees & Wilcken 
2009), cryopreserving (freezing cells with cryoprotectants 

enabling long-term viable cell and tissue storage), followed 
by cryobanking (indefinite storage of viable cells and 
tissue in liquid nitrogen at −196°C or ultra-low freezers) 
and assisted or advanced assisted reproductive technology 
(ART/aART) can save the genotypes that are being lost 
today (Mitchell & Williams 2022, for definitions please 
see Supplementary Table 1, see section on supplementary 
materials given at the end of this article). ART includes 
techniques that utilise oocytes and spermatozoa to 
generate offspring such as artificial insemination (AI), in 
vitro fertilisation (IVF) or intra cytoplasmic sperm injection 
(ICSI) (Brown et  al. 2004, Howard et  al. 2016, Briski & 
Salamone 2022). These techniques are used for a number 
of taxa, but species-specific protocols need honing for 
many endangered species. More recently, the use of aART, 
technologies that utilise genetic material from somatic 
cells to generate offspring, has been highlighted as a key 
technology to resurrect biodiversity such as somatic cell 
nuclear transfer (SCNT) or induced pluripotent stem cells 
(iPSC) (Gómez et al. 2004, Hikabe et al. 2016). Prior to ART 
or aART, a vital aspect of conservation is storing viable 
cells and tissues to enable the reintroduction of genes. As 
a result, genetic diversity can increase within a population, 
allowing species to recover. This is particularly important 
for aART, where technology needs further development. 
Storing viable samples in a biobank not only enables the 
technology to catch up but also prevents vital genetics 
from being lost.

A biobank is a repository of biological samples, that 
is, a searchable, organised collection of biological samples 
and associated data stored predominantly for research 
or management, for example, of captive populations 
(Agca 2012, Hewitt & Watson 2013). Biobanking is not 
new; conservationists have been collecting samples 
from wildlife for decades to save genetic diversity (Soulé 
et  al. 1985, Montfort 2014). These samples are vital to 
improve understanding of the fundamental biology of 
rare and endangered species (Comizzoli & Wildt 2017). 
Cryopreserving (freezing cells with cryoprotectants 
enabling long-term viable storage using liquid nitrogen 
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at −196°C or ultra-low freezers) then storing cells in a 
cryobank (biobank of viable, cryopreserved biological 
samples), to enable the maintenance or regeneration of a 
species for conservation purposes, is highly specialised in 
that it requires the application of several complex and novel 
ARTs working in harmony to be truly effective. Indeed, 
Comizzoli and Wildt (2017) quote that cryobanking is a 
‘crucial unfilled gap – offering a backup storage of the extant 
genomes of living species that are already under threat or are 
likely to be soon.’ As the biodiversity crisis continues, there 
is an increasing need for global conservation management 
of endangered species and to interconnect all populations 
throughout the ex situ–in situ continuum to maximise 
the available genetic diversity. Depending on the species’ 
specific needs, cryobanking could be deemed necessary in 
the conservation strategy for single or multiple species as 
part of the One Plan Approach (the One Plan Approach 
coined by the Conservation Planning Specialist Group of 
the IUCN; Lees & Wilcken 2011, Byers et al. 2013, Traylor-
Holzer et al. 2018).

Successful maintenance and regeneration of a species are 
primarily dependent on genetic biodiversity (Choudhary 
et  al. 2016). Heterozygosity of a population undoubtedly 
contributes to stabilisation and robustness of the effective 
population size (Soulé 1987). Without adequate genetic 
diversity, any species will inevitably become extinct (Ryder 
& Onuma 2018). For some species, such as the northern 
white rhinoceros (Ceratotherium simum cottoni), there are 
already too few individuals remaining to maintain genetic 
diversity for the long-term sustainability of the population 
(Korody et al. 2021). For these species, aART may be their 
only hope of long-term survival. For both ART and aART 
to be successful, there needs to be a knowledge of basic 
biology, which is lacking for many species (Herrick 2019). 
Indeed, there is an understanding of the reproductive 
physiology of only approximately 250 species, with a bias 
towards mammals and birds, while amphibians are most 
at risk of extinction (Comizzoli et al. 2019, see Case Study: 
Box 1, Fig. 1). This results in ART and aART developed 
for specific domestic animals being used as a ‘model’ for 
taxonomically similar wild species. One example of ART 
successfully being applied to selected endangered species 
is AI. Approaching 100 species of wild mammals and 
birds have been propagated by AI including giant panda 
(Ailuropoda melanoleuca), cheetah (Acinonyx jubatus), black-
footed ferret (Mustela nigripe), Siberian crane (Leucogeranus 
leucogeranus) and Houbara bustard (Chlamydotis undulata) 
(Ballou 1984, Pukazhenthi & Wildt 2004, Andrabi & 
Maxwell 2007, Morrow et  al. 2009, Herrick 2019, Penfold 

et  al. 2021). In addition, it is important to highlight the 
successful utilisation of ART to coral species. To date, there 
are ~30 species of coral that have been cryobanked from 
coral reef populations around the world (Hagedorn et  al. 
2019). The frozen-thawed sperm has been used to fertilise 
eggs from the same spawn, successive spawns, and used 
for trans-regional IVF of corals (Hagedorn et al. 2012, 2017, 
2018) separated by hundreds of miles, thereby increasing 
the heterozygosity of species. The integration of these 
technologies has helped mitigate the loss of heterozygosity 
from coral species and continued to aid in global coral 
conservation efforts (Hagedorn et al. 2019).

However, difficulties arise from the huge diversity of 
both reproductive physiology and behaviour between 
species of the same taxa, for example, among canids, 
domestic dogs (Canis familiaris) show spontaneous 
ovulation, whereas the island fox (Urocyon littoralis) 
only ovulates in the presence of a male (Asa et  al. 2007). 
Furthermore, in the African wild dog (Lycaon pictus), 
dominant female behaviour regulates reproductive success 
to alpha females only (Van den Berghe et  al. 2012). The 
complications of using techniques developed in the 
domestic industry for endangered species have resulted 
in birth rates that are significantly lower than those seen 
in domestic animals (Mastromonaco & Songsasen 2020). 
However, there are successful case studies including the 
now stable endangered black-footed ferret (M. nigripe) 
population (Santymire 2016). The lack of widespread 
application of ART across all taxa after more than 30 year 
of efforts highlights the need for alternative approaches. 
This includes gamete and somatic cell cryopreservation 
for genome resource banking (Mastromonaco & 
Songsasen 2020), and the application of aART, even if the 
production of offspring is many years away. There is also 
an increasing importance of developing species-specific 
protocols for ART/aART for endangered species to improve 
reproductive success rates in the future (Herrick et al. 2019, 
Mastromonaco & Songsasen 2020).

Both ART and aART may raise ethical issues which are 
rarely explored. The use of aART can remove the invasive 
manipulation of living animals as these techniques mainly 
use tissue from neutered or deceased individuals at the 
point of collection. However, many techniques require 
invasive manipulation as an end point, for example, 
surrogacy, cross fostering or tissue implantation and 
subsequent harvesting of gametes. It is important to note 
that these procedures must always be performed under 
general anaesthesia with included analgesia by a highly 
trained professional, minimising risk to the individuals 
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involved. Nevertheless, ethical and welfare risk assessment 
should be mandatory prior to the use of them, especially 
as the welfare of an individual animal risks becoming a 
secondary consideration after the larger goal of saving 
a species (de Mori et  al. 2021). In addition, it could be 
thought that the time required for successful sample 
collection, cryopreservation, thawing and use to make 
viable offspring, with all the research and development 
involved for species-specific optimisation, could be 
better spent on more traditional conservation methods 
(de Mori et  al. 2021). But, with so many species being 
lost today, cryopreservation followed by viable cell and 
tissue cryobanking can fill the gap between permanently 
losing genetic diversity and the development of future 
technologies. This review will discuss the potential of 
cryobanking and the use of reproductive technologies to 
resurrect biodiversity.

Global prioritisation of species 
for cryopreservation

Only one aspect of biodiversity conservation, cryobanking, 
can make significant contributions to population 
management and species recovery, as seen in the black-
footed ferret (M. nigripes) and giant panda (A. melanoleuca) 
(Howard et  al. 2016, Santymire 2016, Comizzoli 2020). 
However, the immense resources required to sample, 
maintain and utilise biobanked samples, combined 
with the sheer number of threatened species requiring 
conservation intervention globally, mean that not every 
species can be sampled and conserved in this way (Hobbs 
et al. 2019). The current approach to the selection of species 
for cryobanking has been mainly opportunistic, with the 
collection of tissue samples on an ad hoc basis, resulting in 
the prioritisation of large charismatic species and missed 

Box 1 Case study preserving amphibians

Amphibians are arguably the class most at risk of extinction (Bishop et al. 2012, Ficetola et al. 2015) with populations declining 
faster than any other vertebrate class (Ceballos et al. 2015, IUCN SSC Amphibian Specialist Group 2017, Zimkus et al. 2018). Signifi-
cantly challenged by chytridiomycosis (Van Rooij et al. 2015), climate change, declining resources, pollution, etc., (Cheng et al. 
2011), many amphibians including the mountain chicken frog (Leptodactylus fallax) are on the brink of extinction (IUCN SSC 
Amphibian Specialist Group 2017, Fig. 1A). Amphibians also suffer from reduced research, investment and conservation advance-
ment, including ARTs and aARTs (Kouba et al. 2013, Strand et al. 2020).

Amphibian IVF has been available since the 1950s; however, this technology has predominantly been used for non-conserva-
tion-based research (Clulow et al. 2019a,b). As amphibians utilise external fertilisation, IVF is relatively straight forward compared 
to that of mammals (Silla et al. 2021). After primary publication of frog IVF by Wolf and Hedrick in 1971, little additional research 
has been conducted (Silla & Byrne 2019). Gamete release can be induced by activation of the hypothalamic–pituitary–gonadal axis 
(Peter et  al. 1988, Uteshev et  al. 2015, Silla & Byrne 2021), and Waggener and Carroll (1998) demonstrated the first example of 
induced gamete release in Paraguay horned frogs (Lepidobatrachus species) with resultant fertilisation in vitro, thus validating the 
application of IVF to amphibian conservation. Since then, amphibian IVF has been conducted in several threatened species includ-
ing Wyoming toad (Bufo baxteri) (Browne et al. 2006), corroboree frog (Pseudophryne corroboree) (Byrne & Silla 2010) and dusty 
gopher frog (Rana sevosa) (Kouba et al. 2012).

Amphibian semen can be refrigerated (4°C) for temporary holding or cryopreserved (−196°C) for long-term storage (Browne 
et al. 2002, 2019). For some species, semen has been held at 4°C for 30 days with retained viability (Browne et al. 2001), and refriger-
ated semen has been used in over 40 amphibian species, with outcomes including retrieval of motile sperm and fertilisation in vitro 
(Browne et al. 2001, Keogh et al. 2017, Gillis et al. 2021a). Refrigerated and cryopreserved semen are the two most successful ARTs for 
amphibians, with semen capable of storage in whole testes and sectioned testicular strips, as well as spermic urine (Poo & Hinkson 
2019).

For semen cryopreservation, amphibian spermatozoa appear to be highly tolerant of prolonged exposure to cryoprotectants 
that other species’ cells rarely are (Clulow et al. 2019a,b). However, while semen cryopreservation is generally successful, the theo-
retical understanding of why the methods work is lacking (Clulow & Clulow 2016). The ability to successfully cryopreserve amphib-
ian oocytes would be a ground-breaking development for conservation (Lawson et al. 2013); however, the success of oocyte freezing 
is low due to the high yolk content and large diameter (Guenther et al. 2006). An alternative would be the cryopreservation of 
embryos; more success may be expected here as early embryonic cells are typically smaller and contain less liquid (Lawson et al. 
2013).

Cryopreservation of amphibian somatic tissue for use in aART provides additional and vital conservation resources (Strand 
et al. 2020). To date, there has been little research into developing tissue preservation procedures for amphibians (Stand 2021). 
However, the San Diego Zoo Institute for Conservation Research Frozen Zoo® already holds a large collection of cryopreserved 
amphibian tissue and cell lines (Chemnick et al. 2009), and the IUCN amphibian specialist group have biobank and ART working 
groups, so advances are being made in this area. One main challenge with amphibian skin cryopreservation and cell culture is con-
tamination from bacteria and fungi (Strauß et al. 2013). Strand et al. (2021) have shown that even with extensive washing, con-
tamination can still be problematic, especially as liquid nitrogen is known to not fully inhibit the replication of microorganisms 
(Bajerski et al. 2020). Though much work is yet to be done, amphibian cryobanking, ART and aART are undeniably exciting and 
hold great promise as conservation safety nets.
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conservation opportunities for others (Hobbs et al. 2019). If 
cryobanking is to be an effective and efficient biodiversity 
conservation tool, then it is important that the way in 
which we select and prioritise species for storage follows 
a clear, coordinated and transparent methodology (CPSG 
2016, Mooney 2021).

There are multiple ways to integrate cryobanking 
with wildlife conservation: to support captive breeding 
programmes and/or to support in situ breeding programmes. 
Each country is likely to have its own set of priorities, 
and while some might favour the support of threatened 
populations in situ, others will focus on the support of 
species in ex situ populations. Ex situ genome banking will 
likely involve the international transport of cells, tissues 
and gametes and cryopreservation in facilities outside the 
home ranges of species. This poses some practical problems, 
including the risks of disease transmission via the stored 
samples and via the liquid nitrogen. However, even though 
the risk of contamination of samples preserved in liquid 
nitrogen (and subsequent disease transmission) is highly 
unlikely when appropriate techniques and safe practices 
are implemented (Penfold et  al. 2021), it is not possible 
to move ungulate gametes or embryos in the United 
States due to the inherent disease transmission risk to the 
agricultural industry and associated economic threats 
(Joaquim et  al. 2017). It is therefore important to guard 
against this potential disease transmission. Cryobanks set 
up to serve local species do not run the same risks, although 
the avoidance of bacterial and viral contamination is still 

important (Penfold & O’Brien 2012). There are a number 
of ways to mitigate the risk of disease transmission when 
transporting genetic material including disease screening 
of donor animals, high levels of biosecurity and using 
fresh, previously unused liquid nitrogen (Penfold et  al. 
2021). In the United States, disease transmission risk 
to the agricultural industry is lower for carnivores, and 
therefore, transportation has been achieved, for example, 
embryo transportation of the Brazilian ocelot (Leopardus 
pardalis mitis) (Conforti et  al. 2009). In Europe, prior to 
transporation, samples from certain species may require 
CITES (Convention on International Trade in Endangered 
Species of Wild Fauna and Flora) permits. However, within 
the European Union (EU) generally there is no need for 
CITES export or import permits. Outside the EU, CITES 
export permits are required unless the receiving biobank is 
a registered scientific institution with a CITES exemption.

The utilisation of existing conservation assessment 
schemes, such as the International Union for the 
Conservation of Nature (IUCN) Red List, has been suggested 
as one way to prioritise species for cryobanking efforts, with 
more threatened species receiving greater priority (Ryder & 
Onuma 2018). Similarly, considering multiple assessment 
schemes simultaneously (such as the EDGE (Evolutionarily 
Distinct and Globally Endangered) of Existence and 
Alliance for Zero Extinction) can help to identify the most 
at-risk and uniquely vulnerable species and provide more 
nuanced species recommendations and prioritisations 
(Mooney 2021). Prioritising and sampling species on the 
brink of extinction are invaluable for scientific studies, last-
gasp conservation efforts and for any future de-extinction 
attempts, as seen in the Pyrenean ibex (Capra pyrenaica 
pyrenaica) (Folch et al. 2009). However, this also results in 
the selection of species which already lack genetic diversity 
within their populations and therefore have limited 
prospects for meaningful conservation intervention and 
recovery, ultimately resulting in a limited conservation 
value of cryobanking such species (Hobbs et  al. 2019). 
However, it is possible that gene editing techniques, such 
as CRISPR-Cas9 (Doudna & Charpentier 2014), may help 
overcome these problems in the future; but, many ethical 
considerations will need to be observed (Johnson et  al. 
2016, Segelbacher et al. 2021).

To improve the chances of success for conservation 
intervention and population management, sample 
collection should focus on species which still have sufficient 
extant population sizes and genetic diversity available to 
sample from (Hobbs et al. 2019, Ryder & Onuma 2018). This 
involves a better understanding of species population sizes 
and genetic diversity and the use of existing assessment 

Figure 1 Critically endangered mountain chicken frog (Leptodactylus 
fallax), photo © Chester Zoo, 2022; photo shared with permission. 
Chytridiomycosis, volcanic eruptions and habitat loss have resulted in a 
catastrophic decline in mountain chicken frog numbers, with less than 
150 mature individuals now surviving (IUCN SSC Amphibian Specialist 
Group 2017). Fortunately, somatic tissue samples have been 
cryopreserved in living biobanks, and with poor ex situ breeding success, 
aART may be an additional conservation tool to prevent this species from 
going extinct.
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schemes, for example, the IUCN Red List, to investigate 
which currently non-threatened species might become 
threatened in the future and then prioritise these species for 
cryobanking efforts before they suffer population declines 
and genetic diversity loss. Prioritising and sampling 
species while genetic diversity still exists, and before they 
become threatened, means that early intervention and 
genetic restoration are possible once their populations 
begin to decline, improving the probability of successful 
species recovery (Hobbs et  al. 2019). Although predicting 
which species will become threatened, and why, is difficult 
(Walker et  al. 2021), studies such as that by Foden et  al. 
(2013) have identified species which are most vulnerable to 
future climate change, even those not currently threatened 
with extinction, such as the griffon vulture (Gyps fulvus), 
and can provide potential new priorities for conservation 
and cryobanking efforts (Mooney 2021).

Similarly, opportunities for sample collection should 
be incorporated into the species prioritisation process, as 
many species are found in isolated or inaccessible locations, 
making sample acquisition and transport both difficult and 
expensive (Ryder & Onuma 2018, Houck 2019). However, 
the global zoo and aquarium community represent a 
unique resource for samples, either through existing 
collections such as, for example, the European Association 
of Zoos and Aquaria (EAZA) Biobank, or new sampling 
drives, and can provide easier access to populations of 
thousands of species which are currently threatened or 
likely to become threatened in the future (Mooney 2021). 
Additionally, many zoos and aquariums have active 
links and partnerships with in situ conservation projects, 
providing opportunities to collect additional genetic 
samples from already represented species and from species 
which are not currently maintained ex situ (AZA 2015). By 
capitalising on sampling opportunities and utilising ex situ 
collections and their partnerships, we can reduce sampling 
costs and increase the probability that biobanked samples 
can be employed to help conserve and manage both in situ 
and ex situ populations in the future (Benirschke 1984, 
Clarke 2009, Mooney 2021).

The process of prioritising ex situ managed species 
for cryobanking also needs to consider which individuals 
within the population are the most genetically valuable 
and suitable for future conservation efforts, maximising 
the conservation value of banked samples and limiting 
the loss of genetic diversity within a population (Clarke 
2009). Many of the species found in zoos and aquariums 
are being actively managed to maintain genetic 
diversity through regional or international population 
management programmes (Che-Castaldo et al. 2021), and 

the availability of such pedigree managed and potentially 
also genotyped populations can help to identify the most 
genetically valuable individuals to sample. Such strategic 
cryobanking efforts have helped to reintroduce once lost 
genetic variation into extant populations of black-footed 
ferrets (M. nigripes), using samples collected in 1988 from 
an individual which had no living descendants and was no 
longer genetically represented in the population (Imbler 
2021) and the endangered Przewalski’s horse (Equus 
przewalskii) which was cloned in 2020 using samples 
cryopreserved in 1980 at the San Diego Zoo Institute for 
Conservation Research Frozen Zoo®. Unfortunately, for 
the many species which have yet to be sampled, such 
opportunities are not available, limiting the options open 
to conservation practitioners and population managers. 
Cryobanking needs to be seen as an integral part of the 
conservation toolkit and when used appropriately can 
even reduce the costs required to achieve genetic diversity 
retention targets compared to traditional ex situ breeding 
strategies (Howell et  al. 2021). However, this will require 
the combining of both species and individual animal 
prioritisations to provide the most effective use of bio and 
cryobanking as conservation and population management 
tools.

Gamete and reproductive 
tissue cryopreservation

Spermatozoa cryopreservation is an example of just one ART 
that can facilitate a living cryobank capable of aiding in the 
genetic management of endangered species and has been 
achieved in many species (covered in-depth elsewhere, for 
example, amphibians: Browne et  al. 2019; fish: Asturiano 
et al. 2017, Xin et al. 2017; mammals: Swanson et al. 2007, 
Rickard et al. 2022; avians: Asano & Tajima 2017, Cardoso 
et  al. 2020). Storing genes in the form of spermatozoa is 
particularly beneficial as spermatozoa are continuously 
replenished haploid cells that can be collected from 
numerous genetically diverse representatives of a species. 
Furthermore, the cryopreservation of genes in the form of 
spermatozoa enables the application of ART to reintroduce 
genes back into populations. ART techniques such as AI, 
IVF, embryo transfer or intra cytoplasmic sperm injection 
(IVF, ET, ICSI) are currently the most efficient treatment 
modalities practised compared to alternative aART 
methods such as somatic nuclear transfer (Choudhary et al. 
2016, Gouveia et al. 2020), with AI currently remaining the 
most efficient and commonly used ART technique (Holt & 
Lloyd 2009).
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Semen can be collected from non-domestic species in 
many ways which include the use of an artificial vagina, 
transrectal massage (Schmitt & Hildebrandt 1998), 
electroejaculation (Roth et  al. 1998), testicular sperm 
aspiration (Damiani et  al. 2004), urethral catheterisation 
(Lueders et  al. 2012) or post-castration dissection (ante-
mortem or post-mortem) (Saragusty et al. 2010, Roth et al. 
2016). The process of collecting and freezing spermatozoa 
from testes post-mortem is commonly referred to as 
‘gamete rescue’ and is used by scientists to prevent the 
permanent loss of a male genetics from a population. 
Once spermatozoa are collected, they are diluted in a 
cryopreservation medium, which is formulated to mitigate 
damage inflicted by the cryopreservation process (Purdy 
2006, Comizzoli et al. 2012). In general, cryopreservation 
mediums contain (1) energy substrates for spermatozoa 
to metabolise; (2) antioxidants to prevent the build-up 
of reactive oxygen species; (3) buffers to prevent harmful 
shifts in pH; (4) osmolytes to create an isosmotic solution; 
(5) plant or animal source proteins and/or lipids to stabilise 
the membrane; (6) antibiotics to mitigate potential risks 
of bacterial disease transmission and (7) a cryoprotectant 
(such as glycerol, DMSO, ethylene glycol, etc.), which slow 
down the kinetics of ice crystal formation, preventing 
the formation of lethal intracellular ice (Holt 2000, Fuller 
2004). As each species’ physiology is inherently unique, 
cryopreservation mediums must be formulated to meet 
species-specific physiologic requirements and mitigate 
that species’ sensitivities to cryopreservation (Comizzoli 
et al. 2012).

Similar to cryopreservation media, methods to 
cryopreserve spermatozoa are highly diverse across taxa. As 
a sample is cooled and ice begins to form, the remaining 
solution becomes increasingly concentrated. The increased 
concentration of the solution results in the dehydration 
of the spermatozoa, preventing the formation of lethal 
intracellular ice. However, the increased concentration of 
the solution can also elicit toxic effects if the spermatozoa 
are exposed to the solution for too long. An optimal cooling 
rate varies between species and cell type, but in general, 
an optimal cooling rate is achieved when the rate is slow 
enough that spermatozoa can be dehydrated, preventing 
the formation of intracellular ice, but fast enough that the 
spermatozoa are not exposed to changes in the solution 
for too long. Once cryopreserved, viable spermatozoa 
can be stored almost indefinitely without decomposition 
or metabolism, typically beneath liquid nitrogen, in 
‘suspended animation’ until thawing.

Even though there are some positive examples, like 
the black-footed ferret (M. nigripes, Howard et  al. 2016) 

and certain coral species (Hagedorn et  al. 2012, 2017), 
successful production of live offspring using frozen-thawed 
spermatozoa can be extremely variable and challenging for 
different species (Leibo & Songsasen 2002, Comizzoli et al. 
2015). This can be observed most notably in marsupials 
(Taggart et al. 1996, Unwin & Pettit 2004). So far, it has not 
been possible to cryopreserve any marsupial spermatozoa 
successfully and the only successful artificial insemination 
in a marsupial was achieved in the koala (Phascolarctos 
cinereus) using chilled, but not frozen, spermatozoa 
(Johnston & Holt 2019). In this example, it is thought 
that dilution of koala semen for artificial insemination 
is complicated because koalas are induced ovulators, and 
it is thought that ovulating factors are present in the 
semen. Therefore, the extension of semen for preservation 
purposes, which involves significant dilution, might be 
anticipated to result in a failure to induce ovulation (Allen 
et al. 2008).

In other species where cryopreservation has been 
attempted but failed, it is likely that the failures are also 
due to complex underlying factors affecting viability or 
fertilising ability that are still poorly understood or, yet, 
unknown by researchers. These include factors relating to 
species that are relatively important from both commercial 
and conservation perspectives such as swine (Bailey et al. 
2000, 2008), avian (Blesbois et al. 2005) and elasmobranch 
(Gillis et al. 2021b).

Establishing banks of frozen and viable semen from 
such species using conventional freezing methods is 
therefore not possible at present. However, it has been 
proposed that, on balance, spermatozoa is still worth 
freezing in the hope that techniques that can take advantage 
of the genetic material contained in currently non-viable 
cryopreserved gametes will become available sometime in 
the future (Rodger et al. 2019). Being able to quickly develop 
an optimal spermatozoa cryopreservation protocol for 
the variety of species selected as suitable candidates for 
cryobanking, and standardisation of these protocols, is 
the main challenge for researchers, especially when faced 
with extremely limited biological material to effectively 
develop a working protocol when an opportunity for 
spermatozoa collection arises. Furthermore, there are two 
important phenomenon that should also be considered. 
First, inbreeding depression can lead to poor spermatozoa 
morphology, resulting in poor fertility (Huffmeyer et  al. 
2022). Secondly, wild species subject to lower levels of 
spermatozoa competition (for instance, those limited 
by population size) may also result in an increase in 
the variability of spermatozoa morphology (Carballo 
et  al. 2019). A morphologically homologous sperm 
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population is a prerequisite for developing an optimal 
cryopreservation protocol; therefore, factors that lead to 
variability in morphology will significantly impede the 
likelihood of developing a successful protocol. However, 
more research is needed to ascertain the degree to which 
inbreeding depression and spermatozoa competition leads 
to poor semen freezing ability, and the precise evolutionary 
mechanism is yet to be explored.

Spermatozoa is commonly cryopreserved from 
domestic species for commercial breeding programmes 
with high levels of success, including domestic species of 
cattle, water buffalo, cats, rodents, horse, goat, deer, sheep, 
dog, rabbit and selected fish species (Curry 2000, Woelders 
et al. 2012, Kochan et al. 2019, Thongphakdee et al. 2020). 
It is prudent to utilise spermatozoa cryopreservation 
protocols already established in well-developed specimens 
as a reliable model for poorly understood specimens, 
including for species from the same genera or closely 
related species (Comizzoli 2015). This has been successfully 
demonstrated with numerous critically endangered species 
already, including the use of equine semen protocols as 
a model for rhinoceros species (Reid et  al. 2009), bovine 
semen protocols as a model for gazelle species (Saragusty 
et al. 2006), domestic ferret as a model for black-footed ferret 
(M. nigripes) (Howard et al. 2016) and human spermatozoa 
cryopreservation protocols as a model for macaques (Si et al. 
2010). However, for some, closely related species to use as 
semen cryopreservation models, do not exist. Protocols 
have been successfully using already established methods 
with slight modifications to take the variability in semen 
characteristics into account. Examples where this can 
be observed include Asian elephants (Elephas maximus) 
(Saragusty et al. 2009), giant panda (A. melanoleuc) (Martin-
Wintle et al. 2019), bees (Comizzoli et al. 2019), killer whale 
(Orcinus orca) and bottlenose dolphin (Tursiops truncatus) 
(O’Brien & Robeck 2006, Robeck et  al. 2011). A thorough 
understanding of the phylogenetic relationship of species 
is therefore important when planning an effective strategy 
for cryopreserving sperm from novel species. Developing 
forums that actively encourage knowledge transfer between 
cryobiologists, adequate data capture and sharing of proven 
spermatozoa cryopreservation protocols are also mission 
critical to creating an effective living biobank. Further 
research is also required to better understand the root causes 
why some species produce more cryo-sensitive spermatozoa 
than others. Innovative work in this field includes the 
successful application of novel ART such as control-rate 
freezers, directional cryopreservation (Saragusty et al. 2007, 
Reid et al. 2009), vitrification (Hunt 2017) and freeze drying 
of spermatozoa (Sherman 1963, Kaneko et al. 2014).

In addition, spermatozoa can be collected from the 
epididymis of testes following death or neutering of 
sexually mature individuals. However, if this technique 
fails, or the individual is immature, the testis remains a 
viable source of spermatozoa (Crabbé et al. 1997). Indeed, 
in domestic cats, a model for endangered wild felid 
species, spermatozoa has been successfully removed from 
cryopreserved testicular tissue by mincing thawed tissue. 
Via ICSI, embryos were then created, resulting in live 
kittens (Tharasanit et  al. 2012). Furthermore, testicular 
spermatozoa has the potential of retaining higher viability 
(Chatdarong 2011). The cryopreservation of testicular tissue 
also increases the potential of saving important genetics 
from valuable animals that died unexpectedly. There are 
multiple techniques for the preservation of testicular 
tissue. Following cryopreservation, testicular fragments 
can be cultured in vitro to obtain viable spermatozoa, and 
techniques including ultra-rapid freezing have resulted in 
promising results (Sato et  al. 2011). Effective preservation 
of testes is vital to maintain the functionality of retrieved 
spermatozoa (Pothana et al. 2017, da Silva et al. 2020). The 
cryopreservation of testicular tissue has been achieved for 
many wild mammalian species (Table 1), although this is 
more complex than cell cryopreservation due to increased 
requirements of permeation of cryoprotectant and 
increased heterogeneity of the tissue (Pothana et al. 2017).

Slow freezing methods for testicular tissue have shown 
promising results with tissue showing maintenance of 
spermiogenesis after cryopreservation for nonhuman 
primates including white-headed marmoset (Calllithrix 
geoffroyi), mandrill (Mandrillus sphinx) and chimpanzee 
(Pan troglodytes) (Pothana et  al. 2016). Following 
cryopreservation, conditions need to be met to enable the 
thawed tissue to resume spermatogenesis. One option is 
the autologous grafting of the thawed tissue (autografting: 
grafting tissue from original location to elsewhere in 
the same individual). This has been achieved for rhesus 
macaques (Macaca mulatta) where grafted testicular 
tissue produced spermatozoa, which was retrieved and 
used to fertilise oocytes by ICSI, resulting in embryos 
and a successful graft-derived baby (Fayomi et  al. 2019). 
While complete spermatogenesis after testicular tissue 
cryopreservation and xenografting (grafting tissue from 
a donor animal into a recipient of another species) has 
not been achieved for adults of wild or domestic species, 
it has been achieved for immature individuals of ovine 
and swine (Arregui et al. 2008, Silva et al. 2020). However, 
autografting and xenografting of testicular tissue have little 
application for endangered species (Silva et  al. 2020). An 
alternative method is in vitro culture of testicular tissue to 
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initiate spermatogenesis (Lee et al. 2013, Richer et al. 2020). 
The success of in vitro testicular tissue culture is reliant on 
specific methodologies which are still to be established 
for endangered species making it vital to cryopreserve 
and biobank this tissue (Lima et  al. 2020). Biobanking of 
tissue maintains genetic variability across time and space 
providing the opportunity to first develop and optimise 
the necessary technologies (Hildebrandt et al. 2021).

Mature oocytes can be harvested from ovarian 
follicles, and immature oocytes can be collected from 
ovarian tissues. Due to the low surface area-to-volume 
ratio of the oocyte, increased levels of intracellular ice 
formation during freezing makes cryopreservation more 
challenging; however, it has been attempted in a number 
of species (Table 2) (Borini & Bianchi 2012). This damage 
during the cryopreservation process is exacerbated 
by the low and variable membrane permeability to 
cryoprotectants (dependent on oocyte development 
state) (Leibo 1980, Arav 2014, García-Martínez et al. 2021), 
resulting in cellular disruption and death and leading 
to generally poor fertilisation rates from frozen-thawed 
oocytes (Tharasanit & Thuwanut 2021). Furthermore, 
with reference to cryopreserving oocytes from endangered 
animal species, the oocyte membrane permeability to 
cryoprotectant agents varies among species, again leading 
to theoretical models being used to predict likely optimal 
freezing protocols (Tharasanit & Thuwanut 2021). Oocyte 
cryopreservation is particularly challenging in fish due 
to the large cell volume, multiple compartments, the 

presence of a chorion, the low membrane permeability to 
cryoprotectants and a high chilling sensitivity (Asturiano 
et al. 2017, Diwan et al. 2020). Therefore, for those species, 
alternatives are intensively investigated and germ cell 
surrogacy via germ cell transplantation looks like one 
of the most promising methods (Rivers et  al. 2020). 
Technical difficulties confronted during fish oocyte 
cryopreservation were already ominous for amphibian 
oocyte handling. The same large diameters, volumes and 
high yolk content can be observed in both taxa and are 
barriers in efficiently applying cryopreservation methods 
(Clulow et al. 2019a,b) (also see case study Fig. 1). In some 
species, such as the domestic cat, oocytes contain high 
levels of lipid droplets that become disrupted during slow 
freezing procedures resulting in cellular injury (Okotrub 
et al. 2018). This may well apply to endangered felines too. 
As an alternative, vitrification, which avoids ice formation 
by using high concentrations of cryoprotectants and 
very rapid freezing, resulting in solidification without 
ice formation (Rall & Fahy 1985), has been successfully 
employed in oocyte cryopreservation, and, despite some 
problems (Prentice & Anzar 2010), the evidence suggests 
that this is the preferred method, at least for some species 
(Rienzi et  al. 2017, Whaley et  al. 2021). Cryopreservation 
of feline oocytes, domestic and non-domestic species, 
however, remains in an experimental phase (Jewgenow & 
Zahmel 2020). Post-thawing viability and developmental 
competence are seriously impaired and until now, none 
of the existing techniques could significantly improve 

Table 1 Species for which cryopreservation of testicular tissue has been achieved.

Species Reference

Primates Poels et al. (2012), Pothana et al. (2016), Fayomi et al. (2019)
 Rhesus monkey (Macaca mulatta)
 Mandril (Mandrillus sphinx)
 Chimpanzee (Pan troglodytes)
 White-headed marmoset (Callithrix geoffroyi)
Cervids Thuwanut et al. (2013), Pothana et al. (2015, 2017)
 Indian spotted mouse deer (Moschiola indica)
 Indian hog deer (Hyelaphus porcinus)
 Barking deer (Muntiacys muntjak)
 Sambar deer (Rusa univolor)
 Rusa deer (Rusa timorensis)
 Fea’s muntjac (Muntiacus feae)
Bovids Thuwanut et al. (2013)
 Sumatran serow (Caprivornis sunatraensis)
Felids Thuwanut et al. (2013)
 Jungle cat (Felis chaus)
 Lion (Panthera leo)
 Leopard (Panthera pardus)
Canids Andrae et al. (2021)
 Grey wolf (Canis lupus)
Suids da Silva et al. (2019)
 Collard peccary (Dicotyles tajacu)
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freezing (Jewgenow & Zahmel 2020). Since there is scarcity 
in wild feline samples, ART protocols are being developed 
in the domestic cat and seem to be working out well as a 
model for the wild species (Fernandez-Gonzalez et al. 2021) 
although more research is required to verify gamete rescue 
methods in exotic felids (Jewgenow & Zahmel 2020).

An alternative approach to freezing oocytes is the 
cryopreservation of immature-oocyte-containing ovarian 
tissue, which has been conducted in a number of species 
(Table 3) (Martinez 2017). Since the first mouse was born 
in 1996 following in vitro growth of primordial follicles 
(Eppig & O’Brien 1996), there have been many published 
studies on this technique in a number of species including 
white-tailed deer (Odocoileus virginianu) (Gastal et al. 2018), 
domestic cat (Felis catus) (Mouttham & Comizzoli 2016), 
collared peccary (Pecari tajacu) (Lima et  al. 2019), yellow-
toothed cavies (Galea musteloides) (Praxedes et  al. 2017), 
brown trout (Salmo trutta) (Lujić et al. 2017), donkey (Equus 
asinus) (Lopes et al. 2018) and domestic cattle (Figueiredo 
et al. 1993, 1994a,b, Hulshof et al. 1995, Vasconcelos et al. 
2013). Following death, euthanasia or neutering, a portion 
of the ovary can be cryopreserved; the immature follicle-
containing cortex is dissected and cut into small strips 
under sterile conditions before slow freezing (Benesova & 
Trefil 2016, Hinkle et al. 2021). As the ovary contains many 
follicles, there is a potential to produce large numbers of 

oocytes from the tissue within a laboratory. Harvested 
oocytes can be matured in vitro and used in IVF. Teams, 
including the Rhino Fertility Project, are developing the 
in vitro tissue culture technique to safeguard critically 
endangered species, including the northern white 
rhino (C. simum cottoni), of which there are only two 
individuals left, again highlighting the critical importance 
of viable cell cryobanking for resurrecting biodiversity. 
Several initiatives such as the Hemmersbach Rhino Force 
Cryovault (South Africa), Rhino Repro (South Africa), the 
Frozen Zoo (San Diego Zoo Wildlife Alliance, USA) and 
BioRescue (Germany) are storing rhinoceros tissue and 
genetic material that can be utilised once methods to 
produce rhinoceros calves in vitro will be established.

Somatic cell cryopreservation and advanced 
assisted reproductive technology

Reproductive cloning involves the transfer of genetic 
material from a somatic cell into an enucleated oocyte, 
SCNT, ultimately resulting in an animal that has a genome 
sequence within the nucleus identical to that of the donor 
of the somatic cell used. The ability of differentiated adult 
cells to produce viable offspring following SCNT was 
first demonstrated in the African clawed frog (Xenopus 

Table 2 Examples of mammalian species for which oocyte cryopreservation has been conducted.

Species Method Reference

Bovine Vitrification Fuku et al. (1992), Hamano et al. (1992), Hurtt et al. (2000), Chian et al. 
(2004), Vieira et al. (2008), Nakayama et al. (2020)

Equine Slow freezing Otoi et al. (1995), Suzuki et al. (1996)
Vitrification Hurtt et al. (2000), Maclellan et al. (2002), Ortiz-Escribano et al. (2018), 

Clérico et al. (2021)
Ovine/caprine Slow freezing Bhat et al. (2014)

Vitrification Purohit et al. (2012), Moawad et al. (2013), Bhat et al. (2014), Quan et al. 
(2016)

Porcine Slow freezing Yang et al. (2012)
Vitrification Vallorani et al. (2012), Appeltant et al. (2017), Jia et al. (2019), López et al. 

(2021) 
Canine
 Domestic Vitrification Abe et al. (2010), Turathum et al. (2010)
 Mexican grey wolf  

(Canis lupus baileyi)
Vitrification Boutelle et al. (2011)

 Blue fox (Alopex lagopus) 
farmed

Vitrification Zhou et al. (2009)

Feline 
 Domestic Slow freezing Luvoni and Pellizzari (2000)

Vitrification Fernandez-Gonzalez and Jewgenow (2017), Nowak et al. (2020), Sowińska 
et al. (2020), Fernandez-Gonzalez et al. (2021)

Non-human primate
 Lowland gorilla (Gorilla  

gorilla gorilla)
Slow freezing Lanzendorf et al. (1992)

 Macaque (Macaca mulatta) Slow and rapid 
freezing

Vandevoort et al. (2008)
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laevis) by Gurdon et  al. (1975) who showed that nuclei 
from keratinised skin cells transplanted into enucleated 
oocytes could develop into viable tadpoles, establishing 
the principle that cell nuclei do not undergo irreversible 
changes as the cell specialises to form adult tissues. 
The importance of this fundamental finding has been 
recognised by the award of the Nobel Prize for Physiology 
or Medicine jointly to Gurdon in 2012. The successful 
application of nuclear transfer using adult somatic cells to a 
mammalian species, the sheep (Ovis aries), was reported by 
Wilmut et al. (1997) resulting in the first cloned mammal.

SCNT can be performed either by removing the 
nucleus from the somatic cell and introducing it into the 
enucleated oocyte by microinjection (Wakayama et  al. 

1999), or, alternatively, the entire somatic cell can be 
fused with the enucleated oocyte using electrical fusion 
(Liu et  al. 2015), of which, the latter appears to be the 
preferable approach (Qu et  al. 2020). Oocyte maturation 
is required prior to fusion, with the optimum conditions 
varying between species (Borges & Pereira 2019). Following 
artificial activation, for example, with ionomycin and 
6-dimethylaminopurine, which has been successful in 
many different species including bovines (Bhak et al. 2006), 
camelids (Wani et  al. 2017), porcines (Borges et  al. 2020) 
and primates (Liu et al. 2018), the egg develops to an early 
embryo in vitro and is then implanted into the uterus of 
suitable recipient female. Identification and optimisation of 
the three critical procedures with the greatest impact on the 

Table 3 Examples of ovarian tissue cryopreservation: domestic/laboratory and wild animal species.

Species
Freezing 
methodology Cryoprotectants Outcome Reference

Domestic/laboratory
 Murine Vitrification Ethylene glycol and 

DMSO
Melatonin improved 

outcome post-thaw
Wu et al. (2019)

 Porcine Vitrification Ethylene glycol Jia et al. (2020)
 Canine Slow freezing DMSO and 

propanediol
DMSO more effective 

as a cryoprotectant
Lopes et al. (2016)

 Feline Vitrification DMSO and ethylene 
glycol

Use of metal 
(titanium) freezing 
tubes proved 
advantageous

Fernandez-Gonzalez 
et al. (2021)

 Caprine Slow freezing DMSO and 
propanediol

Rodrigues et al. (2004)

 Ovine Slow freezing DMSO and sucrose No significant 
differences between 
techniques

Locatelli et al. (2019)
Vitrification DMSO, ethylene glycol 

and sucrose
 Bovine Vitrification DMSO and ethylene 

glycol
Leucosporidium 

ice-binding protein 
reduced post-thaw 
damage

Kong et al. (2021)

Wild 
 Agouti (Dasyprocta) Slow freezing DMSO, ethylene 

glycol and 
propanediol

Wanderleya et al. (2012)

 African lion (Panthera leo) Slow freezing Ethylene glycol and 
sucrose

Wiedemann et al. (2012)

 Zebu (Bos indicus) Slow freezing Glycerol, DMSO, 
ethylene glycol and 
propanediol

DMSO and 
propanediol were 
the most effective 
cryoprotectants

Lucci et al. (2004)

 Amur leopard (Panthera pardus 
orientalis), black-footed cat (Felis 
nigripes), Geoffroy’s cat (Leopardus 
geoffroyi), northern Chinese 
leopard (Panthera pardus 
japonensis), oncilla (Leopardus 
tigrinus), serval (Lupus cervarius), 
sumatran tiger (Panthera tigris 
sondaica)

Slow freezing Ethylene glycol and 
sucrose

Wiedemann et al. (2013)

 Mexican grey wolf (Canis lupus 
baileyi)

Vitrification Boutelle et al. (2011)

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International 
License.

https://doi.org/10.1530/RAF-22-0005
https://raf.bioscientifica.com� © 2022 The authors
� Published by Bioscientifica Ltd

Downloaded from Bioscientifica.com at 10/01/2023 12:31:39AM
via free access

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/RAF-22-0005
https://raf.bioscientifica.com


R L Bolton et al. R1323:3

development of oocytes and early embryos, namely oocyte 
micromanipulation, electrofusion, and the in vitro culture of 
early embryos, have recently been reviewed (Ma et al. 2021).

The possibility of using reproductive cloning in the 
conservation of endangered animal species has been 
widely discussed (e.g., Holt et al. 2004, Shapiro 2017, Borges 
& Pereira 2019). For any endangered species, it is unlikely 
that sufficient oocytes will be available for SCNT. Thus, 
cells of a separate but related species will need to be used: 
interspecific SCNT (iSCNT, Fig. 2). If successful, the result 
is the birth of an animal with the nuclear genome of the 
endangered individual but with the mitochondrial DNA 
derived from the donated oocyte. As both nuclear and 
mitochondrial genes regulate mitochondrial development 
and function (Mrowiec et al. 2021), the more closely related 
the species of the donor nucleus and recipient enucleated 
oocyte, the less likely there will be nuclear-mitochondrial 
incompatibility (Lagutina et  al. 2013). Species or 
individuals created by means of interspecific cloning are 
considered by IUCN as ‘proxies’ which are the functional 
equivalents of an extinct species able to restore ecological 
functions or processes that might have been lost because 
of the extinction of the original species (IUCN 2016). 
However, because of, for example, microbiome differences 
and inheritance of the mtDNA of the donor oocyte, proxies 
result in a species that differs from the extinct one (IUCN 
2016). Besides technical and biological hurdles, legal and 
ethical considerations need to be taken into account 
when approaching de-extinction efforts based on proxies 
(Seddon & King 2019).

Low success rates have been reported for reproductive 
cloning resulting in only 5–10% of reprogrammed 

embryos yielding viable offspring, with many factors 
affecting this success rate (Long et  al. 2014). These 
factors include DNA damage, which can be improved by 
upregulating modulators of the DNA damage response 
(Lee et  al. 2021), the cell type used for nuclear donation 
(Inoue et al. 2005, Liu et al. 2015, Lee et al. 2019) and the 
mismatch of mitochondrial DNA between donor cell 
and recipient oocyte (Takeda 2019, Mrowiec et  al. 2021). 
Epigenetic processes may also affect DNA replication 
and transcription (Gouveia et  al. 2020). Many of these 
problems occur early on in embryonic development and 
result from incomplete reprogramming of the donor cell 
nuclei and the subsequent developmental failure of the 
cloned embryos (Zuo et al. 2014). Choice of oocyte donor 
species to ensure compatibility with the somatic cell donor 
is also likely to be an important factor (Jeon et al. 2016).

It is particularly important to take the low success rates 
of reproductive cloning into consideration in the context 
of endangered species, where the production of viable 
offspring is the top priority. Although iSCNT has been 
applied to many species resulting in the birth of offspring, 
by no means all of these were viable in the long term for 
several reasons including morphological abnormalities, 
premature delivery, lung immaturity, stillbirths, placental 
separation and septicaemia (Table 4). Furthermore, cloning 
results in offspring genetically identical to the somatic cell 
donor and needs careful consideration where the gene 
pool of an endangered species is limited. In the future, 
it may be possible to use genome editing with CRISPR/
Cas9 to address this issue (Sheets et al. 2016), albeit it also 
raises ethical concerns. Cryopreservation of somatic cells 
taken from as many different tissues as possible from each 

Figure 2 Outline of the interspecific somatic cell 
nuclear transfer (iSCNT) procedure. The nucleus 
from an endangered species’ somatic cell (species 
Y) is fused with the enucleated oocyte from a 
closely related, domestic species (species X). 
Following electrical or chemical activation, an 
early embryo of species Y developed in vitro. The 
early embryo is transferred into a surrogate 
mother of domestic species X, resulting in a clone 
containing the nuclear genome of endangered 
species Y.
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endangered animal should be conducted and stored until 
significant advances have been made in our understanding 
of the reproductive biology of individual species. This will 
maximise the potential of reproductive cloning in the 
conservation of endangered animal species, for example, 
the black-footed ferret (M. nigripes) and Przewalski’s horse 
(E. przewalskii). If we fail to collect and store these tissues 
now, they are gone forever.

In addition, the cryopreservation of tissues from 
endangered species, capable of differentiation to germ 
cells, could provide another way of improving genetic 
diversity, particularly where only small numbers of 
individuals remain. Embryonic stem cells can differentiate 
into all cell types of the body including oocytes (Hübner 
et  al. 2003) and spermatozoa (Toyooka et  al. 2003). As 
these cells are derived from the early embryo that is 
destroyed in the process, their use for endangered species is 
inappropriate. Induced pluripotent stem (iPSCs are derived 
from adult somatic cells by genetic reprogramming to an 
embryonic stem cell-like state (Takahashi & Yamanaka 
2006) and have been used in attempts to regenerate 
endangered species (Fig. 3). However, some iPS cell clones 
differ from embryonic stem cells in several ways including 

gene expression, DNA methylation and cell differentiation 
(reviewed by Yamanaka 2012) resulting in a number of 
potential problems including increased immunogenicity 
(Okita et  al. 2011). Such factors need to be taken into 
account when considering the use of iPS cell technology.

For the cryopreservation and storage of samples from 
endangered animals, the choice of tissue is an important 
consideration. The tissue chosen should yield viable cells 
following freezing and thawing and should be readily 
reprogrammable to generate iPS cells. The viability of 
fibroblasts obtained from a wide range of taxa including 
domestic (e.g. pig (Liu et  al. 2014), sheep (Na et  al. 2010) 
and cow (Li et  al. 2009) and endangered species (e.g. 
Bengal tiger (Panthera tigris tigris) (Guan et al. 2010), brown 
brocket deer (Mazama pandora) (Magalhães et  al. 2017) 
and jaguar (Panthera onca) (Mestre-Citrinovitz et al. 2016) 
has been demonstrated post freeze/thaw. Along with 
this demonstrable viability, the ability to successfully 
reprogramme fibroblasts to iPS cells render this cell 
type an obvious choice. Indeed, a number of biobanks, 
including the San Diego Zoo Institute for Conservation 
Research Frozen Zoo® and The Leibniz Institute for Zoo 
and Wildlife Research, maintain a collection of frozen 

Table 4 Examples of interspecific somatic cell nuclear transfer (iSCNT) of mammalian species including oocyte and nuclear 
donor. The International Union for the Conservation of Nature (IUCN) red list status of the nucleus donor species is also included. 
Many of the resulting offspring did not show long-term survival, and outcome is noted where available.

Oocyte donor Nucleus donor 
IUCN red list status of 
nucleus donor Outcome Reference

Domestic cat  
(Felis catus)

African wild cat (Felis silvestris 
lybica)

Least concern 
(subspecies unclear)

17 kittens, 2 survived long 
term

Gómez et al. 
(2004)

Domestic cat  
(F. catus)

Sand cat (Felis margarita) Least concern 1 of 14 kittens born survived 
2 months

Gómez et al. 
(2008)

Domestic cat  
(F. catus)

Cheetah (Acinonyx jubatus) Vulnerable Incomplete nuclear 
reprogramming 

Moro et al. (2015)

Domestic cat  
(F. catus)

Kodkod (Leopardus guigna) Vulnerable Embryos only developed to 
the morula stage

Veraguas et al. 
(2020)

Domestic cow  
(Bos taurus)

Banteng (Bos javanicus) Endangered 2 calves, 1 survived long term Janssen et al. 
(2004)

Domestic sheep  
(Ovis aries)

Mouflon (Ovis orientalis 
musimon)

Near threatened 1 lamb, ‘apparently normal’ Loi et al. (2001)

Domestic sheep  
(O. aries)

Esfahan mouflon (Ovis 
orientalis isphahanica)

Vulnerable 2 lambs, both died shortly 
after birth

Hajian et al. 
(2011)

Spanish Ibex  
(Capra pyrenaica)

Pyrenian ibex, Bucardo  
(Capra pyrenaica pyrenaica)

Least concern 
(subspecies extinct)

1 kid, died shortly after birth Folch et al. (2009)

Dromedary (Camelus 
dromadarius)

Bactrian camel (Camelus 
bactrianus)

Critically endangered 1 calf, died on day 7 post-
partum

Wani et al. (2017)

Domestic dog  
(Canis familiaris)

Grey wolf (Canis lupus) Least concern 4 pups, 3 survived long term Oh et al. (2008)

Domestic dog  
(C. familiaris)

Coyote (Canis latrans) Least concern 8 pups, all viable Hwang et al. 
(2012)

Domestic ferret 
(Mustela furo)

Black-footed ferret  
(Mustela nigripes)

Endangered 1 pup, survived long term Sandler et al. 
(2021)

Macaque monkey 
(Macaca mulatta)

Crab-eating macaque  
(Macaca fascicularis)

Vulnerable 2 young, healthy Liu et al. (2018)
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fibroblasts from multiple endangered species. In the 
context of cryobanking, iPS cells were first developed from 
frozen fibroblasts from the endangered primate the drill 
(Mandrillus leucophaeus) and the critically endangered 
northern white rhinoceros (C. simum cottoni) using viral 
vectors carrying the human sequences of reprogramming 
factors Oct4, Sox2, cMyc and KLF4 (Ben-Nun et  al. 
2011). Perhaps somewhat surprisingly, the rhinoceros 
responded to the human reprogramming factor sequences, 
suggesting that the reprogramming mechanism is highly 
conserved between different species, which bodes well 
for the potential application of this approach to a range 
of species. One caveat is that reprogrammed iPS-like cells 
from certain species, for example bovines, do not appear 
to yield sustainable cell lines (Pillai et al. 2019). The in vitro 
development of gametes from iPS cells, and the subsequent 
generation of viable embryos, is key to the application of 
this technology to the successful prevention of extinction 
of endangered species. The reconstitution of gametes from 
pluripotent stem cells, both oocytes (Hikabe et  al. 2016, 
Hamazaki et  al. 2021) and spermatozoa (Li et  al. 2013, 
Ishikura et al. 2021), has been achieved in the mouse, and 
primordial germ cells have been developed from iPS cells in 
the northern white rhinoceros (C. simum cottoni) (Korody 
et al. 2021). iPS cells have now been derived from a variety 
of species (Table 5).

Before iPS cells or even SCNT techniques being used 
to produce viable offspring, a much greater knowledge 
of the reproductive biology of both the embryo and the 
surrogate dam will be vital. Pregnancy is a major challenge 

for the mammalian maternal immune system with specific 
mechanisms including the induction by the decidua of 
regulatory M2 macrophages and Treg cells to elicit immune 
tolerance at the foetal–maternal interface to prevent 
rejection of the semi-allogeneic (sharing only half the genes 
of the mother) foetus (Lindau et  al. 2021). The increased 
rate of spontaneous abortion seen in cattle pregnancies 
produced following SCNT has been attributed to the 
upregulation of inflammatory cytokines resulting from 
abnormal expression of major histocompatibility complex 
class 1 proteins on the trophoblast of these conceptuses 
(Rutigliano et al. 2022). Rejection is likely to be considerably 
more problematic with a xenogeneic (from a different 
species) foetus. Furthermore, this may be a particular 
problem for those species with a haemochorial placental 
structure, including primates and some rodents, where 
maternal blood comes into direct contact with the foetal 
chorion. It has been proposed that separating the inner 
cell mass (ICM) from an endangered species’ early embryo 
and injecting this into a trophoblast vesicle derived from 
the putative surrogate dam may overcome such problems 
of incompatibility (Saragusty et  al. 2020). However, 
interactions between the trophoblast and ICM may pose 
challenges if these are derived from different species 
(Girgin et al. 2021). Furthermore, other potential issues of 
developing viable offspring cross-species include the role 
of exosomes (endosomal-derived membrane nanovesicles 
involved in intercellular communication (Zhang et  al. 
2019)) in implantation and early embryo development (Shi 
et  al. 2021) and the acquisition of a suitable microbiome 

Figure 3 Species preservation using induced 
pluripotent stem (iPS) cells, which can be 
differentiated into oocytes or spermatozoa using 
the rhinoceros as an example. After a biopsy of a 
recently deceased animal, cells can be 
cryopreserved until the moment they are needed 
to produce oocytes or spermatozoa. Those 
differentiated cells will first need to be 
reprogrammed to obtain pluripotency. 
Afterwards, growth factors can re-differentiate 
the cells into the desired cell population (oocytes 
or spermatozoa). In vitro fertilisation will result in 
an embryo, which can be transplanted into a 
surrogate mother leading to offspring.
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for the development of immune function of the neonate 
(Macpherson et al. 2017). These and many other problems 
will need to be overcome in the future, and the fundamental 
importance of long-term cryobanking of live cells from 
endangered species needs to be underlined.

Conclusion

ART and aART have a huge potential for wildlife conservation, 
and therefore, many advances have been made in the last 
few decades. However, for these techniques to be applicable 
and therefore useful, prompt global cooperation and 
action are imperative. Knowledge sharing, data and sample 
inventory sharing and creating international networks of 
biobanks are paramount. Indeed, it is vital that protocols 
for all techniques are standardised, and for this, global 
collaboration is required. This is particularly important 
when research groups/biobanks only have access to very 
limited biological material to develop protocols on an ad 
hoc basis. Furthermore, viable tissue cryobanking should 
be considered in all future conservation strategies as a 
source of genetically diverse material that may be required 
in the future to combat the extinction crisis (Comizzoli & 
Holt 2019). Great progress is already being made to save 
endangered species by using ART and aART, as demonstrated 
by the successful captive propagation and reintroduction 
using ART of endangered Mississippi gopher frogs in the 
United States (Watt et  al. 2021), efforts to breed cheetahs 

and other endangered felids via ART and aART (Wildt & 
Roth 1997) and the northern white rhino project to name 
just a few. However, despite the above example, the current 
focus is still primarily on mammalian taxa, and there is 
an urgent need for allowing these technologies to catch 
up across all others. These technologies open the way for 
more innovative conservation strategies and integration 
of traditional conservation methods with biologically 
based safety nets for species in danger. Focus needs to be 
placed on less charismatic taxa and the development of 
cryopreservation and storage protocols for tissues from 
avian, amphibian, reptilian, piscine and even invertebrate 
species in addition to the development of ART and aART 
for these taxa. This field of science is fast moving and vital 
to future biodiversity conservation efforts and will be a ‘hot 
topic’ as the ethical debate surrounding these technologies 
comes to the fore with the advent of new techniques and 
possibilities. We need to start banking samples before we 
lose more species, populations and genetic diversity; we do 
not know what will be needed in the future.
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Table 5 Examples of mammalian species from which induced pluripotent stem (iPS) cells have been generated and their 
International Union for the Conservation of Nature (IUCN) red list status.

Species IUCN red list status Reference

Snow leopard (Panthera uncia) Vulnerable Verma et al. (2012)
Tiger (Panthera tigris) Endangered Verma et al. (2013)
Jaguar (Panthera onca) Near threatened Verma et al. (2013)
Serval (Leptailurus serval) Least concern Verma et al. (2013)
Somali wild ass (Equus africanus somaliensis) Critically endangered Ben-Nun et al. (2015)
Northern white rhinoceros (Ceratotherium simum cottoni) Critically endangered Ben-Nun et al. (2011)
Banteng (Bos javanicus javanicus) Endangered Ben-Nun et al. (2015)
Sumatran orangutan (Pongo abelii) Critically endangered Ramaswamy et al. (2015)
Drill (Mandrillus leucophaeus) Endangered Ben-Nun et al. (2011)
Chimpanzee (Pan troglodytes) Endangered Marchetto et al. (2013)
Bonobo (Pan paniscus) Endangered Marchetto et al. (2013)
Western gorilla (Gorilla gorilla gorilla) Critically endangered Wunderlich et al. (2014)
Prairie vole (Microtus ochrogaster) Least concern Manoli et al. (2012)
Naked mole-rat (Heterocephalus glaber) Least concern Lee et al. (2017)
Tasmanian devil (Sarcophilus harrisii) Endangered Weeratunga et al. (2018)
Little brown bat (Myotis lucifugus) Endangered Mo et al. (2014)
Platypus (Ornithorhynchus anatinus) Near threatened Whitworth et al. (2019)
Quail (Coturnix) Least concern Lu et al. (2015)
Zebra fish (Danio rerio) Least concern Peng et al. (2019)
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