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Abstract

Microcirculatory dysfunction is a critical element of the pathogenesis of severe sepsis and septic

shock. In this Bench-to-Bedside review, we present: (1) the central role of the microcirculation in

the pathophysiology of sepsis; (2) new translational research techniques of in vivo videomicroscopy

for assessment of microcirculatory flow in human subjects; (3) clinical investigations that reported

associations between microcirculatory dysfunction and outcome in septic patients; (4) the potential

role of novel agents to "rescue" the microcirculation in sepsis; (5) current challenges facing this

emerging field of clinical investigation; and (6) a framework for the design of future clinical trials

aimed to determine the impact of novel agents on microcirculatory flow and organ failure in patients

with sepsis. We specifically focus this review on the central role and vital importance of the nitric

oxide molecule in maintaining microcirculatory homeostasis and patency, especially when the

microcirculation sustains an insult (as with sepsis), and we present the scientific rationale for clinical

trials of exogenous nitric oxide administration to treat microcirculatory dysfunction and augment

microcirculatory blood flow in early sepsis therapy.
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INTRODUCTION

Sepsis is a common and devastating disease that is responsible for 215,000 deaths annually in

the United States and is the leading cause of death in critically ill patients.1, 2 This disease is
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now recognized to be a time-sensitive emergency, as patients stand the best chance for survival

when effective therapeutic interventions are delivered as early as possible.3, 4 Early protocol-

driven resuscitation (e.g. early goal-directed therapy)4 targeting optimization of global

hemodynamic parameters has been associated with the largest mortality benefit to date in sepsis

randomized controlled trials.4, 5 However, severe sepsis and septic shock still carry a high

mortality rate (21–28%), even after effective interventions to optimize global (i.e.

macrocirculatory) hemodynamics have been applied.6 The persistently high mortality rate

despite early aggressive resuscitation suggests a need for novel therapeutic interventions to

further improve survival.

After aggressive resuscitation of the septic patient, a normal or high cardiac output is typically

achieved, yet tissue perfusion can remain markedly impaired. Tissue hypoxia can persist

despite achievement of normal or supranormal global oxygen delivery. Clinically, this may

manifest with persistent acidosis, mottled skin, or progressive multi-organ failure. Therefore,

limiting goal-directed resuscitation solely to macrocirculatory perfusion indices alone (e.g.

cardiac filling pressure, mean arterial pressure, cardiac output, or mixed/central venous oxygen

saturation) may not be sufficient to optimize blood flow to tissues in many patients. The

microcirculation (blood vessels <100µm in diameter) is the principal site of oxygen exchange

between blood and underlying tissues, and there is abundant data indicating profound

disruption of the microcirculation in sepsis. Future clinical trials designed to go beyond global

hemodynamic optimization and test novel therapeutic strategies to augment microvessel blood

flow may contribute important new information to our understanding of optimal resuscitation

in patients with sepsis.

This paper is intended as a focused review of the role of microcirculatory perturbation in the

pathogenesis of sepsis, with special emphasis on the importance of nitric oxide (NO) in

maintaining microcirculatory homeostasis. We review the available techniques for monitoring

the microcirculation in human subjects, and important considerations for designing clinical

trials of therapeutic agents to rescue the microcirculation in patients with sepsis-induced tissue

hypoperfusion.

SEPSIS IS A DISORDER OF THE MICROCIRCULATION

The microcirculation is an integrated functional system that ensures tissue oxygen delivery

meets cellular oxygen demand throughout the body. When this system becomes unhinged,

maldistribution of blood flow and tissue hypoxia may result. Although microcirculatory

dysfunction may occur to some degree in most shock states (e.g. cardiogenic shock and

ischemia-reperfusion injury), microcirculatory failure appears to be a hallmark of the septic

state and central to sepsis pathophysiology.

The microcirculatory unit – comprised of the arteriole, capillary bed, and post-capillary venule

– is the landscape where most of the pivotal events of sepsis pathogenesis take place, including

loss of vasomotor reactivity, endothelial cell injury, activation of coagulation, and disordered

leukocyte trafficking (Figure 1). In rat models of cecal ligation and puncture, investigators

have used intravital videomicroscopy to demonstrate that sepsis is characterized by decreased

microcirculatory flow velocity, an abundance of stopped-flow microvessels, increased

heterogeneity of microcirculatory flow, and low density of perfused capillaries.7–10 As these

microcirculatory flow alterations can occur in the absence of global hemodynamic

derangements (e.g. absence of arterial hypotension),8, 10–12 microcirculatory dysfunction

largely reflects intrinsic events occurring in the microvessels. The ensuing microcirculatory

“failure” can cause marked impairment of tissue oxygen transport resulting in tissue hypoxia

(Figure 2).7
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Role of the Endothelium in Sepsis-Induced Microcirculatory Dysfunction

The endothelium is a single layer of cells lining all blood vessels, numbering ~1013 cells,

approximately 4,000–7,000 m2 in an average adult. The endothelium is a highly active organ

that dynamically regulates microvessel thrombosis, profibrinolysis, leukocyte adhesion/

migration, microvascular tone, permeability, and blood flow in both health and disease.13

During normal function, endothelial cells (ECs) in microcirculatory networks function as an

integrated system actively autoregulating vasomotor tone and upstream microvessel

recruitment via cell-cell signaling based on conditions downstream in the capillary bed,14 and

recruiting blood flow primarily via local release of vasodilators, most notably NO.15

Endotoxemia can disrupt these cell-cell signal transduction pathways resulting in

maldistribution of blood flow.14 The endothelium also protects vascular integrity in the

micrcocirculation by actively maintaining tight junctions between cells.

The endothelium contributes in fundamental ways to the hemostatic balance by expressing

multiple anticoagulant and procoagulant proteins. For example, ECs express thrombomodulin,

which converts protein C to its activated form. Once activated, protein C cleaves and inactivates

factors Va and VIIIa. In addition, the endothelium expresses tissue factor pathway inhibitor,

which blocks the extrinsic coagulation pathway; synthesizes heparan, a cofactor for

antithrombin III; and releases tissue-type plasminogen activator and plasminogen activator

inhibitor-1. These activities all work together to maintain the anticoagulant nature of the EC

surface in the healthy state.16

Endothelial cells are highly responsive to changes in their extracellular milieu, and sense a

myriad of biomechanical and biochemical forces. They integrate these signals and respond in

ways that are usually adaptive (endothelial activation), but are at times maladaptive and

harmful to the host (endothelial dysfunction). Endothelial activation also describes a

phenotypic response to an inflammatory stimulus that may be mediated by cytokines

[interleukin (IL)-1, IL-6, or tumor necrosis factor (TNF)-alfa] or exposure to oxidative stress,
17 either directly or indirectly via activation of nuclear factor-kappa B.18 The endothelial

activation phenotype is characterized by a pro-coagulant and pro-adhesive cell surface,

dysregulation of vasomotor tone, and compromised barrier function.

The endothelial contribution to the procoagulant state in the activation phenotype is primarily

related to the loss of its role in anticoagulation. There is an increase in EC tissue factor

expression, decreased EC surface expression of thrombomodulin, and decreased protein C

activation, the severity of which has been associated with poor outcome in sepsis.19 Moreover,

activated ECs amplify the local inflammatory response by releasing their own complement of

pro-inflammatory cytokines that can propogate focal and ongoing microvascular injury in a

perpetuating cycle. This injury cycle disrupts EC tight junctions, causing tissue edema that can

further impair oxygen delivery to tissues.20 Under hypoxic conditions, hypoxia inducible factor

(HIF)-1 gene can be upregulated, increasing vascular endothelial growth factor (VEGF)

expression, which has been associated with high severity, organ failure, and death in sepsis.
21, 22

Activated ECs mediate leukocyte trafficking through a highly regulated multi-step adhesion

cascade that involves selectin-mediated attachment and rolling (P-selectin on platelets and ECs

and E-selectin on endothelium), and cell adhesion molecule-dependent firm adhesion to the

endothelial surface mediated by intercellular cell adhesion molecule (ICAM)-1 and vascular

cell adhesion molecule (VCAM)-1. The pro-adhesive activated endothelial phenotype is

compounded by sepsis-induced changes in circulating cells, comprising not only leukocyte

activation, but changes in red blood cells (RBCs) including impaired deformability causing

increased viscosity,23, 24 aggregation, and adherence.25 The end result of EC activation/

dysfunction in sepsis is a multifaceted disruption of microcirculatory homeostasis. If
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uncorrected, this disruption may impair oxygen transport culminating in cellular hypoxia, acute

organ dysfunction, and death.26

The Centrality of Nitric Oxide in Regulating Microcirculatory Homeostasis

Nitric oxide plays a pivotal and multifaceted role in the complex pathophysiology of sepsis.

In the healthy state and under pathologic conditions, NO maintains microcirculatory

homeostasis by regulating microvascular tone, leukocyte adhesion, platelet aggregation,

microthrombi formation, and microvascular permeability.27–34 When the microvasculature

sustains an insult (e.g. sepsis) the NO molecule becomes vital to maintaining microcirculatory

patency, integrity and function.

Although the sepsis pro-inflammatory response triggers a sharp increase in systemic NO

production,35 the upregulation of inducible nitric oxide synthase (iNOS) is heterogeneously

expressed between and within organ systems 35, 36 and NO can be consumed by reactive oxygen

species, giving the potential for localized areas of relative NO deficiency in microvascular beds

despite a state of total body NO “excess”.36, 37 This can be a major factor in the heterogeneity

of tissue perfusion that characterizes both experimental and human sepsis,8, 10, 38 and may

also help explain pathologic microcirculatory shunting in sepsis – the diversion of blood flow

away from distressed microvascular units via opening of arteriovenous shunts within capillary

beds.39

Clinical Investigations of the Microcirculation in Sepsis

Although clinical investigations in sepsis cardiovascular support have traditionally focused on

macrocirculatory hemodynamics (i.e. heart and large arteries) that reflect the distribution of

blood flow globally throughout the body, a functional microcirculation is a critical component

of the cardiovascular system that is necessary for effective blood flow to tissues. This

conceptual framework in the context of shock and resuscitation is shown in Figure 3. With the

advent of new in vivo videomicroscopy techniques, it is now possible to visualize the

microcirculation in human subjects. Although a shift of research focus from global

hemodynamic parameters to indices of microvessel perfusion could potentially be viewed as

a major departure for the clinical research mission, the microcirculation may actually prove to

be a logical next frontier in understanding the full scope of circulatory failure in sepsis.

In septic patients, microcirculatory failure appears to be a major perturbation with prognostic

significance.11, 12, 38 Severe derangements of microcirculatory flow, including the severity of

initial derangements in the early resuscitation phase of therapy as well as the persistence of

microcirculatory derangements over time, have been associated with lower survival.11, 12, 38

Impairment of microcirculatory blood flow may be an early triggering event in the development

of sepsis-induced multi-organ failure,12, 40–42 which is known to be a critical (and early)

determinant of sepsis mortality.43, 44 A lack of improvement in microcirculatory flow indices

early in the ICU course has been associated with multi-organ failure, suggesting that the

capacity to impact outcome via restoration of microcirculatory flow may be time-sensitive.12

Table 1 summarizes recent published clinical investigations that used in vivo videomicroscopy

to study the association between microcirculatory flow impairment and outcome in patients

with sepsis.

TRANSLATIONAL VIDEOMICROSCOPY TECHNIQUES FOR ASSESSING THE

MICROCIRCULATION IN HUMAN SUBJECTS

Intravital videomicroscopy in animal models has historically required a tissue dissection;

however, new minimally-invasive videomicroscopy techniques permit direct visualization of

the microcirculatory network beneath thin mucosal surfaces using a hand-held instrument
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[Orthogonal Polarization Spectral (OPS) or Sidestream Dark Field (SDF) imaging], making

microcirculatory assessment possible in human subjects (Figure 4). These techniques have

been validated in experimental models and human subjects.45–49

The sublingual site has emerged as the preferred site for microcirculatory assessment in human

subjects with overt or impending shock. Beginning with the work of Weil and coworkers,

numerous investigators have demonstrated that impaired sublingual perfusion can track

impairment of splanchnic perfusion and can detect early systemic perfusion failure in shock

states.50–53 Monitoring sublingual blood flow can yield important information for use in

clinical studies of circulatory shock because (1) the sublingual mucosa shares the same

embryologic (and therefore anatomic) origin as the splanchnic mucosa, (2) derangements in

sublingual perfusion can reflect derangements in splanchnic blood flow,50, 51, 53–56 and (3)

the sublingual space is easily accessible. Tracking splanchnic hypoperfusion can be clinically

important because it is one of the earliest indicators of systemic hypoperfusion in circulatory

shock;57–59 therefore, impaired sublingual blood flow may herald the onset of systemic

hypoperfusion.52, 53 Although some discrepancy between sublingual and gut microvascular

perfusion has been reported,60 clinical data have found sublingual flow to be independently

prognostic.11, 12, 38

Details of our technique for sublingual image acquisition, processing, and analysis appear in

an ONLINE DATA SUPPLEMENT [E1]. Our methodology is consistent with the recently

published proceedings of a consensus conference on microcirculatory image analysis that was

intended to help standardize analysis techniques among different groups of investigators.61

The consensus recommendations advocate the calculation of multiple microcirculatory indices

including a semi-quantitative flow velocity index, the proportion of perfused vessels, perfused

vessel density, and the heterogeneity of flow between different sublingual sites.61

POTENTIAL THERAPEUTIC STRATEGIES TO AUGMENT

MICROCIRCULATORY FLOW IN SEPSIS RESUSCITATION

Therapeutic approaches to counteract microcirculatory failure could represent a novel strategy

to help optimize tissue perfusion in sepsis resuscitation. An ideal agent to recruit the

microcirculation in sepsis would most likely be either: (a) an endothelium modulator, (b) a

vasodilator to “open” low-flow microcirculatory units, or (c) both. The concept of using

pharmacotherapy to augment microcirculatory flow in critically ill patients originated in the

1980s with clinical trials of agents with vasodilatory properties (prostacyclin) or combined

inotropic/vasodilatory properties (dobutamine).62, 63 These studies demonstrated increased

systemic oxygen consumption (VO2) with drug administration, suggesting that successful

microcirculatory recruitment had occurred. Recently, De Backer et al used OPS imaging in

two studies of the effects of dobutamine and recombinant human activated protein C (rhAPC)

on the microcirculation in septic patients.64, 65 Both agents were associated with increases in

capillary perfusion independent of systemic hemodynamic effects, presumably via microvessel

vasodilatory properties or rheologic effects in the case of dobutamine, and via modulation of

leukocyte-endothelial cell interactions for rhAPC.64–67 Additional agents that may hold

promise include anticoagulants (e.g. antithrombin III), other vasodilators (e.g. pentoxifylline),

and antioxidants that may attenuate oxidative stress-induced endothelial activation and/or

increase NO bioavailability by reducing NO consumption by reactive oxygen species (e.g.

parenteral ascorbate, N-Acetyl-L-cysteine).68–70

The history of investigating NO modulation in sepsis has been largely driven by the hypothesis

that NO is deleterious. The thought that NO is harmful in sepsis comes from its consequences

on the macrocirculation (arterial hypotension), disregarding its possible beneficial effects on

the microcirculation. Indeed, iNOS upregulation and the concomitant NO-induced relaxation
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of microvascular tone can produce arterial hypotension.71–74 However, although NOS

inhibition is clearly effective at raising arterial pressure in sepsis,75–79 it can simultaneously

worsen the impairment of microcirculatory perfusion and oxygen transport to tissues.28, 32,

80–88 Blocking NO production in sepsis worsens leukocyte adhesion,89, 90 platelet aggregation

and microthrombosis,28, 32 and microvascular permeability,34, 82 causing decreased

splanchnic28, 83–88 and myocardial81 blood flow and defects in tissue oxygenation that do not

recover with fluid resuscitation alone.80 Although iNOS-deficient septic animals have less

severe arteriolar hyporesponsiveness to adrenergic agents,73 they have increased endothelial

adhesion molecule expression and leukocyte-endothelial interactions.91–93 Due to the

dichotomy of macrocirculatory and microcirculatory effects, the concept of NOS inhibition in

sepsis has been considered a “double-edged sword”.94 In human subjects, a phase III

randomized controlled trial of nonspecific NOS inhibition was stopped early because of

increased mortality in the NOS inhibition group.95

As NO preserves microcirculatory patency and function, upregulation of NO may be adaptive

(rather than maladaptive) and in fact protective in sepsis. Taking a contrarian approach to

studying NO modulation in septic patients, administration of exogenous NO could potentially

improve tissue perfusion indices. Nitric oxide is especially attractive as a candidate therapy to

treat microcirculatory dysfunction in sepsis because it could in theory recruit microcirculatory

flow by two potential mechanisms of action – modulation of leukocyte-endothelial interactions

and microvessel vasodilation – simultaneously. In experimental models, administration of a

NO-donor decreased endothelial adhesion molecule expression and leukocyte adhesion,96

augmented splanchnic microcirculatory blood flow,97, 98 and optimized tissue oxygen

transport.99, 100 In two clinical studies of sepsis patients utilizing OPS imaging, the sepsis-

induced impairment of sublingual microcirculatory blood flow was reversed with (1) topical

administration of acetylcholine (suggesting that the endothelium was still NO-responsive)11,

and (2) intravenous nitroglycerin (an NO donor).101 Because administration of intravenous

nitroglycerin could cause or exacerbate a drop in arterial pressure in septic patients,102 a clinical

trial of exogenous NO administration to human subjects with sepsis would require an agent

that would not be expected to induce or exacerbate arterial hypotension – e.g. inhaled nitric

oxide (INO).103, 104

Although the classical view of NO metabolism assumed that the bioavailability of INO was

limited to the lung due to rapid binding to heme iron, it is now recognized that the inhaled route

can deliver NO to the systemic circulation and exert extrapulmonary effects via two

mechanism: formation of nitrite and/or S-nitrosothiol (SNO).105 Under hypoxic conditions,

RBCs can convert circulating nitrite to NO and release SNO bioavailability. As such, RBCs

are capable of dilating microvessels and regulating of blood flow.106, 107 In human subjects,

administration of INO effectively delivered SNO to extrapulmonary vascular beds and dilated

the peripheral microvasculature.108–111 In studies of microcirculatory impairment induced by

NOS inhibition, INO attenuated mesenteric vasoconstriction and leukocyte adhesion in

experimental models and reversed distal extremity vasoconstriction in human subjects,112–

115 indicating that INO administration can generate circulating molecules with NO-carrying

capacity, exert distant (i.e. extrapulmonary) effects, and help maintain microvascular

homeostasis. These data support the concept that INO could be a novel treatment for a disease

characterized by systemic endothelial dysfunction. In previous studies (Table 2) INO improved

microcirculatory homeostasis by multiple separate and distinct effects.

It is notable that, although three randomized controlled trials of INO failed to improve outcome

in patients with acute respiratory distress syndrome (ARDS),104, 131 132 only 4% of 742 total

subjects had sepsis-associated ARDS. Therefore, the efficacy of INO in treating patients with

sepsis has not yet been adequately tested.
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CHALLENGES

There are important challenges (and limitations) to studying the microcirculation in critically

ill patients. The main challenges to overcome in development of analysis techniques are the

need for a fully quantitative (rather than semi-quantitative) measurement of microcirculatory

blood flow velocity, and automated image analysis that can provide real-time readout at the

bedside. Ideally, one software-based image analysis solution would satisfy both of these needs,

and this represents a bioengineering opportunity. As OPS/SDF microcirculatory imaging

requires focused training to become proficient in the technique, a broader challenge is that it

remains unclear whether the technique can effectively translate to widespread use in critically

ill patients, outside the confines of dedicated laboratories, or if its use will be limited to use

only by experienced operators and investigators. If efficacy of microcirculation-directed

therapies is demonstrated by dedicated labs in clinical trials, this question will be of paramount

importance in subsequent trials testing effectiveness of these therapies when applied broadly.

The most important limitation of studying microcirculatory dysfunction in general may be that

circulatory failure only represents one of multiple complex mechanisms leading to cellular

dysfunction in shock. Mechanisms at a cellular level such as mitochondrial failure (i.e.

“cytopathic hypoxia”) and apoptosis are pivotal factors in the development of sepsis-associated

cell death and organ failure.133–137 Although evaluation of the microcirculation might provide

information on oxygen delivery to tissues that is not available from macrocirculatory

parameters, imaging alone does not provide information on oxygen utilization by the cells.

However, some authors have suggested that abnormalities at a cellular level are a late adaptive

response that may be preceded (or perhaps triggered) by circulatory failure.138

FUTURE DIRECTIONS: IMPORTANT CONSIDERATIONS FOR CLINICAL

TRIAL DESIGN

Going forward, it will be imperative to ascertain whether or not (or to what extent) the effects

of microcirculation-directed therapies are clinically meaningful. This will be best addressed in

a randomized controlled trial (RCT) design employing both microcirculatory and patient-

oriented outcome measures. Choosing the optimal patient-oriented outcome measure in this

context is vital.139 Although 28-day mortality is the typical outcome measure selected for sepsis

randomized controlled trials, it captures no information on the biologic or physiologic activity

of an intervention, or its capacity to modulate disease processes,139 and potentially could be

confounded by a number of factors that are non-physiologic, not least of which, for example,

may be family preferences for limitations of support later in the hospital course.

Alternatively, indices of acute organ system dysfunction (e.g. Sequential Organ Failure

Assessment [SOFA] scores140, 141) are measures of morbidity that provide important serial

assessments of physiology and response to treatment. Acute multi-organ dysfunction is a

critical event in sepsis pathogenesis that is closely linked with survival.1, 44, 142 Early evidence

of organ failure and early changes in organ function are especially strong mortality predictors,
43, 44, 140, 141 whereas later changes in organ function have little predictive value.43 Serial

SOFA scores, therefore, can be a dynamic index of disease progression and response to a novel

therapy.139, 143

Table 3 is a framework that could be employed in designing clinical trials of new interventions

to augment microcirculatory flow and reduce organ failure in sepsis. Using this framework,

all of the possible study outcomes could yield important new information about the

pathogenesis and treatment of sepsis.
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Overcoming heterogeneity among subjects in sepsis clinical trials

Historically, a plethora of clinical trials of novel agents for sepsis failed to demonstrate a

benefit; this may be due (in part) to enrollment of highly heterogeneous populations of patients

with nonspecific sepsis syndromes.144 As sepsis is characterized by activation of a multitude

of different pathophysiologic pathways that are heterogeneously expressed, the capacity to

respond to a novel agent may be a function of the degree of abnormal expression of a specific

pathophysiologic mechanism at which the novel therapy is aimed (or some other subclinical

phenotype that is a determinant of response to therapy). Failing to screen for expression of

these factors prior to the decision to randomize may accrue a large volume of subjects in the

sample with little or no capacity to respond to the new therapy, causing the clinical trial to be

underpowered to show a treatment effect. For example, for a randomized clinical trial of a

novel microcirculation-directed therapy in sepsis, having even a small percentage of subjects

in the sample with no (or minimal) microcirculatory flow impairment could cause the trial to

be underpowered. Therefore, screening sepsis subjects at the bedside for the presence or

absence of microcirculatory dysfunction and limiting randomization only to those who

manifest significant microcirculatory impairment despite aggressive conventional

resuscitation should yield a more homogeneous sample and maximize the number of potential

“responders” in the trial (Figure 5). This type of tailored clinical trial design could be considered

analogous to a “personalized medicine” approach (i.e. driven by the phenotype of an individual

patient). Another important consideration for clinical trials is the potential for genetic

heterogeneity in response to microcirculation-directed agents.

Defining the control group interventions

Subjects in both control and treatment arms of RCTs of microcirculation-directed therapies

should receive early protocol-directed hemodynamic optimization with standard interventions

(i.e. intravenous fluids, vasopressors, etc.) targeting pre-defined quantitative resuscitation

goals, in order to help ensure homogeneity in the adequacy of conventional resuscitation and

normalization of global hemodynamic parameters. This homogeneity in macrocirculatory

indices would be necessary in order for investigators to isolate (and better test hypotheses

about) the impact of novel therapies on the microcirculation and determine the

microcirculation-specific treatment effects (Figure 5).

Timing of microcirculation-directed therapies

The concept of using the resuscitation phase of therapy to investigate microcirculation-directed

therapies in sepsis is based on the understanding that timing of interventions for circulatory

optimization is a critical determinant of the capacity to impact outcome. On the continuum of

sepsis treatment, early phase and late phase sepsis appear to be physiologically different

because earlier interventions to optimize hemodynamics have been shown to be beneficial,4,

5, 145–147 whereas later interventions have not.146, 148, 149 Furthermore, organ failure in early

sepsis is thought to be perfusion-mediated to a greater extent than the organ failure associated

with late-phase sepsis, which may relate more closely to mitochondrial failure.134, 135, 138

Therefore, for future clinical trials of microcirculation-directed interventions, the resuscitation

phase of therapy appears to be the greatest window of opportunity for demonstrating a treatment

effect.

SUMMARY

Microcirculatory dysfunction is a pivotal event in the development of sepsis, and a critical

component of sepsis-induced circulatory failure. Although there are still important challenges

to overcome for translation of microcirculation imaging techniques to practice, obtaining

microcirculatory perfusion indices may yield physiologic information that macrocirculatory

indices cannot. Novel agents to “rescue” the microcirculation may prove to be a cutting-edge
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strategy to optimize tissue perfusion in sepsis resuscitation. As the NO molecule is vital to

microcirculatory homeostasis, it appears to protect microcirculatory patency when the

microcirculation sustains the septic insult. Exogenous NO administration may improve

microcirculatory perfusion in sepsis, and we submit that there is sufficient scientific rationale

and safety data for a clinical trial of exogenous INO administration in sepsis. In designing

clinical trials to find novel microcirculation-directed therapies, the resuscitation phase of

therapy appears to be the best window of opportunity for impact. Ultimately, the aim for this

line of clinical investigation would be to give clinicians a novel intervention in their

armamentarium to optimize tissue perfusion in the acute-phase management of sepsis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Sepsis is a disorder of the microcirculation. Much of the pathophysiology of sepsis can be

explained within the microcirculatory unit – the terminal arteriole, capillary bed, and the post-

capillary venule. The arteriole is where the characteristic vasodilation and vasopressor

hyporesponsiveness of sepsis occurs. The capillary bed is where the effects of endothelial cell

activation/dysfunction are most pronounced and microvascular thromboses are formed. The

post-capillary venule is where leukocyte trafficking is most disordered – leukocytes adhere to

the vessel wall, aggregate, and further impair flow through the microcirculation.
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Figure 2A and 2B.

A conceptual model of oxygen diffusion from capillaries. These figures illustrate how sepsis-

induced microcirculatory dysfunction can play a key role in the impairment of tissue oxygen

transport and contribute to tissue hypoxia. (2A)Healthy state: A cylinder represents the area

of tissue that is supplied with oxygen by an individual capillary. The diffusion distance for

oxygen in the tissues is shown (small arrow). (2B)Sepsis: Intrinsic microcirculatory

dysfunction results in non-perfused capillaries (dotted line vessels). This decreases the density

of perfused vessels, increasing the diffusion distance for oxygen in the tissues (large arrow).
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Figure 3.

Conceptual framework of the importance of the microcirculation in septic shock and

resuscitation. Conventional resuscitation targets optimization of “upstream” (i.e.

macrocirculatory) hemodynamic parameters (e.g. mean arterial pressure, cardiac output), with

monitoring of “downstream” markers of tissue perfusion (e.g. acidosis, organ function) to

determine the effectiveness of resuscitation efforts. The microcirculation represents a critical

intermediary. Although the macrocirculation circulates blood throughout the body, an intact

and functional microcirculation is necessary for effective blood flow to tissues. Therefore,

intrinsic microcirculatory failure may contribute to sepsis-associated tissue hypoperfusion.

Sublingual microcirculatory blood flow can now be visualized directly in sepsis clinical

research using a hand-held videomicroscope (shown on left). In this paper, we present a

scientific rationale for a clinical trial of a novel agent (e.g. exogenous nitric oxide

administration, shown on right) to reduce microcirculatory dysfunction and augment
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microcirculatory blood flow in sepsis resuscitation. [CVP = central venous pressure; PCWP =

pulmonary capillary wedge pressure; SV = stroke volume; MAP = mean arterial pressure; SVR

= systemic vascular resistance; HGB = hemoglobin; VO2 = oxygen consumption; SvO2 =

mixed venous oxygen saturation] Adapted from: Trzeciak S, Dellinger RP, Parrillo JE, Septic

Shock, In: Parrillo JE and Dellinger RP (3rd Edition) Critical Care Medicine: Principles of

Diagnosis and Management in the Adult. (2008) Philadelphia, PA: Mosby Elsevier.

Trzeciak et al. Page 22

Acad Emerg Med. Author manuscript; available in PMC 2009 August 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4.

A still image of the human sublingual microcirculation as visualized with Orthogonal

Polarization Spectral (OPS) videomicroscopy. The videomicroscope uses a 5X objective

(167X magnification) giving a 940 × 1259 µm field of view. Real-time video of healthy and

dysfunctional microcirculation is available for viewing or download at:

http://www.cooperhealth.org/content/gme_fellowship_shock.htm
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Figure 5.

A template for designing a randomized clinical trial of a novel agent to augment

microcirculatory flow and improve outcome in sepsis resuscitation. Microcirculatory flow

would be assessed with in vivo videomicroscopy at the bedside. Although clinically speaking,

an agent that improves microcirculatory flow might optimally be initiated immediately at the

time of severe sepsis identification, a requisite for this type of clinical trial would be early

achievement of homogeneity in macrocirculatory hemodynamic optimization (e.g. early goal-

directed therapy as per Rivers et al 4 or a similar resuscitation algorithm) in both the control

and treatment subjects, in order to permit precise determination of the treatment effect of

microcirculatory optimization on outcome. Because enrolling patients who do not manifest the

microcirculatory dysfunction phenotype could cause the clinical trial to be underpowered to
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show a treatment effect, we advocate a “personalized” trial design employing a real-time

assessment of microcirculatory flow prior to the decision to randomize (as shown). [CVP =

central venous pressure; MAP = mean arterial pressure; ScvO2 = central venous oxygen

saturation; RCT = randomized controlled trial]
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Table 2

Mechanisms by which inhaled nitric oxide (INO) could potentially attenuate microcirculatory dysfunction and improve

microcirculatory homeostasis in shock states.

MECHANISMS SUPPORTING EVIDENCE

Modulation of microvascular tone In experimental models of ischemia/reperfusion injury, INO restored flow to ischemic myocardium116,117 and raised

renal blood flow and glomerular filtration.118

Preservation of microvascular
integrity

In sepsis and endotoxemia models, INO attenuated neutrophil transmigration across the local (pulmonary) endothelial

barrier119,120 as well as the influx of inflammatory cells into systemic (extrapulmonary) organs.121 In ischemia/
reperfusion models, INO decreased microvascular injury and neutrophil transmigration, decreasing the tissue inflammatory

reaction.112,122,123

Endothelial-dependent effects In models of endotoxemia, ischemia/reperfusion, and oxidative endothelial activation, INO demonstrated an anti-adhesive
effect on distant (mesenteric) inflamed microvasculature by attenuating endothelial dysfunction and leukocyte adhesion

with an increase in microcirculatory flow.112–114,121124 In patients with acute respiratory distress syndrome, INO

decreased endothelial adhesion molecule expression, platelet aggregation, and fibrinogen binding.125

Leukocyte-dependent effects INO may exert an indirect effect on the microcirculation by “pacifying” leukocytes in transit through the pulmonary

circulation.126 In experimental models, INO attenuated the oxidative burst from activated neutrophils,119,120 prevented

neutrophil-mediated, oxygen-radical dependent endothelial damage,127 and reduced neutrophil adhesion and sequestration

into tissues by inhibiting integrin-mediated firm adhesion to the endothelium.126,128

Direct anti-inflammatory effect INO can decrease the amount of NF-kappa B available for binding to the regulatory region of genes that produce pro-

inflammatory cytokines.129 130
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Table 3

A framework of possible outcomes for randomized controlled trials of novel interventions to augment microcirculatory

flow and attenuate organ failure in sepsis. Using this framework for trial design would not only test the ability of a new

intervention to (A) augment microcirculatory flow and (B) reduce sepsis-associated organ failure, but also could help

test the hypothesis that microcirculatory perfusion is a key determinant of organ failure in patients with sepsis. Because

it is also necessary to ascertain whether or not short-term administration of a therapy has sustainable benefit over the

long-term, serial organ failure assessments well beyond 24 hours should also be incorporated.

HYPOTHESIS A:
Intervention X improves

microcirculatory blood flow
in sepsis resuscitation

HYPOTHESIS B:
Intervention X during sepsis
resuscitation reduces organ

failure at 24 hours.

RESULTS INTERPRETATION

YES YES Intervention X during sepsis resuscitation improves microcirculatory perfusion and reduces
organ failure. This supports the concept that organ failure in sepsis can be a perfusion-
mediated phenomenon.

YES NO Intervention X improves microcirculatory perfusion in sepsis resuscitation; however, organ
failure in early sepsis may not be a perfusion-mediated phenomenon.

NO YES Intervention X improves organ failure is sepsis but not through a perfusion-mediated
mechanism. Possible explanations for the beneficial effects of intervention X on organ failure
could be modulation of mitochondrial respiration or cellular apoptosis.

NO NO Intervention X does not improve microcirculatory perfusion and is not beneficial in sepsis.
Other methods of resuscitating the microcirculation should be investigated.
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