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Abstract: Neurodegenerative diseases (NDs) are described as multifactorial and progressive syn-
dromes with compromised cognitive and behavioral functions. The multi-target-directed ligand
(MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities
to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV)
analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1–9 were tested
as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied
compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes
at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent
and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM)
with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM).
It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for
RSV). To evaluate the plausible binding mode of 1–9 within the two enzymes, molecular docking and
dynamics studies were performed, revealing specific and significant interactions in the active sites
of both targets. The new compounds are of pharmacological interest in view of their considerably
reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their
dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO
and CA inhibitors with therapeutic potential in neuroprotection.

Keywords: resveratrol analogs; phenols; monoamine oxidases; carbonic anhydrases; molecular
modeling; neurodegenerative diseases

1. Introduction

Neurodegenerative diseases (NDs) are chronic and multifactorial diseases and in-
volve physiological, biochemical, and chemical changes, mediated by different activation
pathways [1]. This leads to the progressive loss of neurons and neuronal connections in
the central nervous system (CNS), which normally leads to cognition and motor dysfunc-
tion [2,3]. The World Health Organization (WHO) and United Nations (UN) statistics report
that the population is aging, and this results in a significant loss of work productivity and
enormous economic costs to society in managing aging illnesses such as NDs [4]. Research
projects in this area are very different in approach and disease focus, ranging from genetic
and molecular biological studies to computational modeling. Recent discoveries have
identified a spectrum of distinct pathways that have been altered, and these pathways
serve as a basis for a better understanding and targeted research [5].
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Oxidative stress seems to be a major factor in ND pathogenesis and progression [6].
In this context, monoamine oxidases (MAOs) have been considered to be one of the most
important factors. In mammals, two distinctive MAO enzymes exist, namely MAO-A
and MAO-B, which are distinguished by their substrate and inhibitor selectivities [7]. The
MAOs bind tightly to the outer mitochondrial membrane of glial, neuronal, and other cells,
and regulate biogenic amines by oxidative deamination: MAO-A preferentially metabolizes
epinephrine, norepinephrine, and serotonin and is selectively inhibited by clorgyline;
MAO-B is selectively inhibited by selegiline or rasagiline and specifically deaminates β-
phenethylamine [8]. As a source of oxidative and inflammatory stress, the MAOs have
attracted much attention in recent years. In this respect, enzymatic turnover is associated
with the production of hydrogen peroxide and reactive aldehydes [9,10]. Selective MAO-A
inhibitors are widely applied in the therapy of depression [11], while selective MAO-B
inhibitors have been employed alone or in combination therapy to treat Alzheimer’s and
Parkinson’s diseases [12–15].

Concurrently, several studies shed light on carbonic anhydrases (CAs) as possible
new targets for Alzheimer’s disease (AD) treatment [16,17]. CAs are metalloenzymes
catalyzing the reversible hydration of carbon dioxide to bicarbonate and a proton; some of
these enzymes have been identified to play an antioxidant role in cells during oxidative
processes [18]. The CA isoforms are classified based on various properties, such as catalytic
activity, tissue distribution, expression levels, subcellular location, kinetic properties, and
inhibitor sensitivity. To date, at least 16 CA isoforms have been identified in mammals [19].
Oxidative-induced protein modifications may alter their functions, including their catalytic
activity [18,20]. Despite the localization and high expression of CAs in the brain, their func-
tions are still not fully understood. CAs play a pivotal role in physiological processes such
as brain pH control, neuronal excitability, and cognition, and they impact animal learning
in different spatial models [21] and aversive [22] and object recognition [23] memories [24].
Indeed, infusion of CA modulators in specific areas, such as the hippocampus and the
frontal cortex, affected fear memory extinction and social discrimination [25]. Among the
human isoforms, CA II has been identified to associate with numerous abundant plaque
proteins, suggesting that it may play a central role in plaque development or co-occur with
plaque formation [26]. The high CA II levels found in central and in peripheral systems
also suggest the possibility that CA II expression may represent a biomarker for cognitive
disorders [27]. Furthermore, promising preclinical evidence using CA inhibitors (CAIs)
or activators (CAAs) in experimental models has been reported, with a special focus on
CA VII [28–30]. In addition, the inhibition of mitochondrial CAs (CA VA and VB) could
be useful in protecting against oxidative stress, which may lead to a slowing down in the
progression of NDs [31,32].

A significant effort is being made to obtain drugs to manage the NDs in an efficacious
way [33,34]. Considering the complexity of NDs, drugs with multi-target activities might
be useful in the treatment of such diseases. Thus, a more appropriate therapeutic strategy
based on the multi-target-directed ligand (MTDL) paradigm could be applied to design
compounds against NDs [35,36]. In recent times, attention has shifted to improving lifestyle
habits with the help of preventive health care supplements. Several studies in the last few
years have focused on the therapeutic potential of natural compounds for NDs, especially
those derived from plant extracts [37,38]. Their limited side effects and their multiple
target mechanisms of action make the use of natural compounds particularly attractive
for the prevention or treatment of multifactorial diseases, such as those that produce
neurodegeneration [39].

Resveratrol (RSV, 3,4′,5-trihydroxystilbene, Figure 1) is a stilbene, a member of a
subclass of phenolic compounds found in several plants, including grapes, blueberries,
raspberries, and peanuts, and in red wine [40,41]. Its multiple biological activities range
from cardiovascular diseases [42] and antiaging [43,44] to antimicrobial [45–47] and radio-
protective effects [48] and benefits on bone health [49]. In particular, the neuroprotective
effects of RSV have been investigated in several in vitro and in vivo experimental mod-
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els [50–52]. Due to its antioxidant properties [53], RSV has received increasing attention
in preventing various pathologies associated with oxidative stress, such as aging and
neurodegenerative pathologies. Recent lines of evidence suggest that RSV can directly
target multiple signaling cascades involved in NDs, such as anti-inflammatory activity
and the inhibition of the aggregation of toxic Aβ amyloid protein [54,55]. Due to its ability
to simultaneously interact with several targets, RSV could be used as an MTDL [56–58],
which may be attributed to the stilbene core, a privileged scaffold that represents a good
starting point in the design of multifunctional drugs for NDs [59,60].
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Some studies have also shown that RSV derivatives act as MAO-B inhibitors [61,62].
MAO inhibitors have received increasing interest for their roles in monoamine neuro-
transmitter metabolism and oxidative stress, as well as neuroprotective effects against
NDs [63,64]. On the contrary, not many studies have been published concerning the in-
hibitory activity of RSV and its derivatives against CA. Unfortunately, in spite of the benefits
of RSV, this compound shows, in mammals, very low bioavailability because of rapid liver
metabolism and low water solubility [65,66]. To solve this problem, several studies have
been performed to obtain synthetic analogs with improved pharmacokinetic properties
while retaking desirable pharmacodynamic characteristics. This prompted numerous re-
search groups to investigate innovative synthetic derivatives and/or the development
of nanoformulations [67–70] with optimized properties [71–73]. Numerous studies have
also been conducted on hybrids and derivatives of RSV, and their activities have been
reviewed [55,74–76].

In continuation of our research for unraveling the potential of novel stilbene-based
compounds, we focused on the substitution of the 3,5-dihydroxybenzene ring and main-
taining the 4′-OH group due to its well-documented role in the antioxidant activity [77].
Previous results showed that the introduction of a substituent with different electronic
and lipophilic properties on the 4-position of aromatic ring A (R1) improved both the
anticancer [78,79] and antibacterial [80] activities. In a recent study, we reported a set
of diverse molecules (compounds 1–9, Figure 1) in which the resorcinol group of RSV
was replaced by a substituent on the 2- and/or 4-position (ring A, compounds 1–7) or
substituted by a naphthyl or a pyridyl moiety (compounds 8 and 9). All these compounds
were evaluated for their ability to modulate the vitality of the C2Cl2 cell line, and the most
active compounds were also tested for antioxidant activity. It should be noted that the
presence of the 4-trifluoromethyl group and the 3′-chlorine promoted the proliferative
capacity of the cells, probably due to the remarkable antioxidant activity and significant
reduction in superoxide anion levels, which are more pronounced than the corresponding
activities recorded for RSV [81]. Moreover, the presence of halogens induced an increase in
lipophilia by improving the logP value of all compounds to around or above 5.0, making
them likely orally active drugs in humans.
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Building on these preliminary results, in this work, we aimed to explore the multi-
target activities for the same RSV derivatives in an attempt to optimize their pharmacologi-
cal profiles. Here we report the dual inhibitory effect of RSV derivatives on hCAs and the
MAOs. This is the first study that investigates the dual activity of this scaffold on hCAs
and MAOs, while other RSV-based hybrids have been reported as dual inhibitors of MAOs
and cholinesterases to treat neurodegenerative diseases [56,74].

After in vitro experimentation, the possible mechanism of interaction of 1–9 with the
MAOs and CAs was also investigated by structure-based computational studies. The com-
pounds were subjected to molecular docking and dynamics simulations, which highlighted
the structural requirements useful for the design of dual inhibitors.

2. Results and Discussion
2.1. Chemistry

In order to evaluate the multiple effects of the presence of different substituents with
lipophilic or electronic properties on different targets involved in NDs, the previously
synthesized/home-made compounds 1–9 were prepared. They were obtained following
reported procedures [78,81]. After purification, they were characterized by 1H and 13C-
NMR spectroscopy; the geometry of the double bond was established by the J-value range
from 15 to 16 Hz of the trans-olefinic proton with respect to cis-stilbene olefinic protons
from 7.4 to 8.6 Hz for the double of doublet signal (dd) for double bond hydrogens reported
in the literature [82].

2.2. Biology
2.2.1. MAO Inhibition Study

To investigate the structure-activity relationships (SARs) of these RSV derivatives and
find optimal candidates for further development, we expanded the knowledge regarding
their ability to modulate enzymatic pathways involved in NDs, such as those pathways
catalyzed by the MAOs and CAs.

Starting from the evidence that RSV and some of its derivatives inhibit the MAOs [74,83–87],
our interest was to explore the activities of our RSV-based phenols 1–9 on the same target.
MAO inhibition activity has been confirmed in the tested compounds using the previously
reported procedure [88]. The IC50 values of the compounds against both A and B isoforms
are summarized in Table 1 and compared to harmine and isatin [89].

Table 1. The MAO inhibitory activities * of compounds 1–9 and RSV.

Compound
MAO-A

IC50 ± S.D.
(µM)

MAO-B
IC50 ± S.D.

(µM)

1 3.06 ± 0.100 0.156 ± 0.009

2 2.02 ± 0.175 1.44 ± 0.035

3 1.79 ± 0.095 1.52 ± 0.067

4 0.433 ± 0.127 0.011 ± 0.0065

5 9.77 ± 0.553 14.2 ± 1.82

6 2.01 ± 0.033 0.103 ± 0.003

7 2.71 ± 0.016 0.185 ± 0.009

8 2.20 ± 0.093 0.387 ± 0.022

9 21.3 ± 7.30 11.9 ± 1.51

RSV 13.5 ± 1.28 >100

Harmine 0.0041 ± 0.00007 -

Isatin 8.43 ± 0.245 3.90 ± 0.792
* Data are given as the mean ± S.D. of three independent experiments. RSV: resveratrol.
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Analysis of the results shows that all RSV derivatives inhibit the MAOs in the low mi-
cromolar range and are more potent than RSV, used as a reference. All the compounds exhib-
ited IC50 values in the range of 0.43 to 21.3 µM for MAO-A and 0.011 to 14.2 µM for MAO-B,
showing a very interesting selectivity toward the B isoform (except for compound 5) which
is comparable to or higher than that of isatin, a natural oxidized indole that is a marker of
stress. The compound substituted with the naphthalene ring (8) showed MAO-B-selective
inhibitory activity (IC50 value of 0.38 µM vs. IC50 of 2.20 µM for MAO-A, MAO-B se-
lectivity index of 5.8), while the compound substituted with pyridyl (9) showed slightly
poorer MAO inhibitory activities (IC50 values of 21.3 and 11.9 µM for MAO-A and MAO-B,
respectively) (Table 1). A similar activity trend was also observed for compounds 1–3
for which the number of chlorine atoms affected the activity, while the presence of this
halogen on ring B (at position 3′) was preferred. Moreover, lower IC50 values were obtained
for compound 4 (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.011 µM, MAO-B selectivity
index of 38). This compound is thus a more potent inhibitor than RSV (IC50 MAO-A
13.5 µM vs. IC50 MAO-B > 100 µM). In this case, the introduction of trifluoromethyl in
the 4-position and a chlorine atom in the 3′-position led to a significant increase in the
inhibition activity, while in other cases the presence of a 3′-chlorine (alone in compound 1
or with the 2,4-dichlorobenzene moiety in compound 2) does not significantly affect the
IC50 values. Comparing the potency of compounds 1 vs. 4 and 4 vs. 5, it is evident that
the addition of a Cl substituent on the 3′-position affects MAO-B activity much more than
the introduction of a CF3 group on the 4-position. The substitution of the OH group of
RSV with CN or OCH3 led to a slight improvement in inhibitory activity and B-selectivity.
The resveratrol analogs of this study do not contain functional groups that could result
in the irreversible inactivation of the MAO enzymes. It is thus reasonable to suggest that
the study compounds are reversible MAO inhibitors. Furthermore, resveratrol has been
reported to inhibit MAO with a competitive mechanism [90].

2.2.2. CA Inhibition Study

CA isoenzymes play important roles in many biochemical and physiological pro-
cesses [17]. Specific inhibitors of hCA I and II isoenzymes have been used for the treatment
of several diseases in the clinic (e.g., as diuretic and anti-glaucoma agents) [19,30]. To the
best of our knowledge, only two studies have been conducted with RSV as an inhibitor of
CA using the stopped-flow technique or the esterase activity assay [91,92]. In this study,
we determined the effect of the new RSV derivatives on the inhibition of seven physio-
pathologically relevant CAs. As the reference inhibitor, acetazolamide (AAZ) was used.

The tested phenol compounds exhibited inhibition in the micromolar range. RSV was
a discrete pan-isoform inhibitor with a preference for hCA IX and XII. Only compounds 1,
2, and 4 inhibited a greater number of isoforms (Table 2). The following SARs were noted:
Only compounds with a chlorine atom on the 3′-position exhibited KI values in the low
micromolar/submicromolar range (<5 µM). Compounds 1 and 2 were the best inhibitors
toward the CA XII isoform (KI 2.7 µM and 4.5, respectively), while compound 4 resulted in
nanomolar inhibition and higher selectivity for the CA VII isoform (KI 0.7 µM). Compared
to the other compounds tested, compound 4 is noteworthy as the most potent inhibitor
with the best selectivity. Even if its CA inhibition ability is not higher than that of reference
compounds, its capability to block both the tested enzymes involved in NDs suggests that
4 could serve as a starting point for further studies. Among all tested compounds, it is the
only one able to block the two enzymes in a selective manner, suggesting the possibility of
a potential dual action. Since the effect of the kind of substituents could not be sufficient
to explain its influence on activity, to better understand the reasons for this selectivity, the
interactions at the molecular level have been studied.
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Table 2. The KI values for the inhibition of hCA I, II, V, VII, IX, and XII by derivatives 1–9, RSV, and
AAZ as reference inhibitor.

KI (µM) *

Compound hCA I hCA II hCA VA hCA VB hCA VII hCA IX hCA XII

1 89.5 35.8 9.0 84.5 >100 23.6 2.7

2 >100 >100 37.2 32.2 4.2 81.1 4.5

3 >100 >100 86.0 >100 7.5 >100 >100

4 86.8 15.6 70.9 36.2 0.7 17.4 6.9

5 >100 43.4 83.0 8.7 >100 94.6 >100

6 >100 75.3 >100 9.5 7.4 >100 >100

7 >100 >100 >100 9.7 9.4 81.8 >100

8 >100 77.5 98.2 21.1 >100 47.7 >100

9 78.4 11.8 >100 >100 >100 75.3 >100

RSV 2.2 2.8 4.7 4.6 4.3 0.8 0.9

AAZ 0.250 0.012 0.063 0.054 0.002 0.026 0.006

* Data are the mean of three independent experiments, conducted by a stopped-flow technique (errors were in the
range of ±5–10% of the reported values). RSV: resveratrol; AAZ: acetazolamide.

2.3. Computational Studies
2.3.1. Monoamine Oxidase and Compounds 1–9

A structure-based computational study was conducted on all the synthesized com-
pounds to understand how they fit within the MAO-A and MAO-B active sites. The robust-
ness of the docking protocol is demonstrated by the reproduced geometry of both crystallo-
graphic ligands (harmine in MAO-A) [93] and safinamide MAO-B [94] (see Supplementary
Material), with RMSD of 0.1364 Å and 0.3850 Å for MAO-A and MAO-B, respectively.

It is well known that the MAO-A and MAO-B binding sites are distinct because of
their different dimensions and shapes: while the MAO-A active site is slightly larger and
shorter, the MAO-B active site is more elongated [95], as reflected by the shape of their
selective inhibitors harmine and safinamide. To elicit the MAO-A and MAO-B binding site
differences, SiteMap analysis was carried out. This program maps the protein surface to
identify and characterize binding regions, evaluating their dimensions and properties. The
calculations performed on the two enzymes shows similar site scores (Table 3), although
MAO-B has a larger pocket. In particular, the two active sites are characterized by a high
hydrophobicity (3.12 and 3.474, respectively), which shows that they can bind small ligands
endowed with a hydrophobic character such as the stilbenol derivatives.

Table 3. SiteMap analysis of the E-stilbenol ligands.

Protein SiteScore Dscore Size Volume Phobic Philic Balance

MAO-A 1.17 1.191 130 240.958 3.474 0.882 3.939

MAO-B 1.209 1.231 163 270.37 3.12 0.913 3.418

SiteScore: drug-binding site >0.8; Dscore: druggability score; size: number of site points; volume: Å3; phobic:
the hydrophobic character of the site (>1); philic: the hydrophilic character of the site (>1); balance: ratio of
hydrophobic and hydrophilic (>1.6).

In MAO-B, the compounds’ stilbene moiety occupies the active site’s bipartite hy-
drophobic region. However, substitution of the hydroxyls in 3- and 5-position of RSV
with more hydrophobic functions produces a better fit of the lipophilic groups in the
hydrophobic area of MAO-B than MAO-A.

Focusing on the most active compound, we observed that compound 4 establishes
hydrophobic interactions between the stilbene scaffold and residues L164, L167, F168, Y326,
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and L328 and the FAD in the hydrophobic cage, while an H-bond is established between
the backbone carbonyl oxygen of P102 and the hydroxyl functional group of the ligand
(Figure 2A,B). Interestingly, the docking score of 4 is similar to that obtained for safinamide
(−10.336 vs. −10.375), which possesses an IC50 of 98 nM [96]. The Cl substituent on the 3′-
position of compound 4 is placed in the same region of the enzyme occupied by the fluorine
substituent of safinamide, suggesting a positive contact in that region for halogen atoms.
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All other ligands bind in the active site of MAO-B in a very conserved way, with the
stilbene scaffold aligned and establishing contacts in the hydrophobic portion of the active
site. Considering the docking pose with the best docking score, the OH of compounds
2–3 and 6–7 forms an H-bond contact with the P102 carbonyl oxygen similarly to 4, while
for compounds 1 and 9, the hydroxyl group is oriented toward the FAD. Noteworthily,
when considering the five best docked poses, due to the symmetry of the molecules, all
compounds exhibit docking orientations with the OH group facing FAD or interacting
with P102.

In MAO-A, the E-stilbenol derivative 4 occupies the hydrophobic cage (F352, Y407,
Y444) and establishes π–π interactions between the phenyl rings and F208 and Y407 and
a halogen–π interaction between the chlorine of 4 and Y197; finally, the hydroxyl group
is oriented towards the FAD (Figure 3A,B). The presence of the 3′-chlorine and the 4-
trifluoromethyl increases the ligand’s hydrophobic area, which is better accommodated
in the elongated pocket of the MAO-B active site than in the shorter site of MAO-A. In
addition, the docking score of the best pose of compound 4 suggests a certain degree of
selectivity for isoform B (−8.244 in MAO-A; −10.336 in MAO-B).

All other ligands show the same π–π interactions of the stilbene moiety with F208 and
Y407 in the active site of MAO-A. The hydroxyl group of compounds 1, 2, 7, and 8 is oriented
in the same direction as for 4, while for compounds 3, 5, 6, and 9, it projects in the opposite
direction, away from the FAD. Moreover, compound 2 makes an additional H-bond contact
with the backbone of G443, while compound 8 interacts with T336. Considering the first
five docked poses in MAO-A, all compounds (except for 1 and 4) can dock in a reversed
geometry with the OH group placed in front of or opposite to FAD. This is similar to what
has been observed for MAO-B.
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Focusing our attention on compound 4, which was not only the most potent toward
MAO-B and MAO-A but also the most B-selective, it may be concluded that the MAO-
A/MAO-B selectivity can be predicted by the docking analysis, which revealed a better
fit in the MAO-B site, as shown by the docking scores for binding to the two enzymes.
However, docking calculations do not provide an explanation for the increased MAO-B
inhibition activity of this compound compared to its close analogs. To obtain more insight
into these data, we carried out a 100 ns MD simulation on the MAO-B complexes with
compounds 4 and 5. Compound 5, the homolog lacking the 3′-Cl substituent of 4, presents
a three orders of magnitude lower activity with respect to the lead, but scored similarly
with the docking calculations (−9.617 and −10.336, respectively) and exhibited a similar
docked geometry.

In the MD simulation of ligand 4 bound to the MAO-B binding site, the ligand is
subjected to minimal movement with a maximum displacement that does not reach 1 Å. In
addition, the protein is relatively stable, reaching a maximum RMSD of 2.25 Å (Figure 4A).
The analysis of the protein RMSF graph confirms that the ligand is stabilized by interacting
residues. Most ligand–protein contacts are hydrophobic, as predicted by docking studies.
The residues involved are L171, Y326, Y398, and Y435. Water-mediated contacts are
established between the ligand’s OH group and P102 and I199 (Figure 4C). The ligand is
almost completely embedded in the binding site with very limited solvent exposure.

In the MAO-B complex with compound 5, the movement of both ligand and protein
are more marked, with the ligand reaching an RMSD of 4 Å. The RMSF profile of the protein
presents with a more pronounced perturbation of the terminal residues, while the rest of
the protein maintains a low RMSF value (Figure 5B). In addition, contacts between ligand 5
and the protein are mainly hydrophobic and involve Y326, I199, L171, and Y398, while a
stable H-bond is formed with P102, which is in part water-mediated (Figure 5C,D).

The MD analysis suggests that the higher potency shown by compound 4 can be
attributed to its better fit in the binding site, and the stabilizing effect on the protein when
compared to ligand 5, as demonstrated by its low RMSD and the RMSF profile shown by
the protein.

To obtain more insight into the energies that drive the recognition process, the MD
trajectory was exploited to calculate the binding ∆G of the two complexes (Table 4) by
MM-GBSA. Even though calculated absolute values cannot be directly extrapolated to
experimental data, the obtained energies correlate with the measured IC50, with the most
active compound presenting a lower ∆G. The analysis of contributing factors to the overall
final value highlights the critical contributions of the van der Waals, lipophilic, and π–π
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stacking contacts, while ligand 4 pays more significant desolvation energy compared to
ligand 5.
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Table 4. MM-GBSA calculated binding energies for the frames extracted from the MD simulation of
the three complexes.

Complex MMGBSA
dG Bind a

MMGBSA
dG Bind

Coulomb b

MMGBSA
dG Bind

Covalent c

MMGBSA
dG Bind
Hbond d

MMGBSA
dG Bind

Lipo e

MMGBSA
dG Bind
Packing f

MMGBSA
dG Bind

Solv GB g

MMGBSA
dG Bind
vdW h

MAO-B:4 −24.09 −12.15 2.01 −0.64 −28.66 −5.49 69.83 −49.00
MAO-B:5 −21.00 −16.04 2.01 −0.61 −25.35 −3.51 64.79 −42.29
MAO-A:4 −23.89 −12.55 2.00 −0.61 −24.84 −4.24 59.68 −43.33

a Prime calculated binding DG; b Coulomb energy; c covalent binding energy; d hydrogen-bonding correc-
tion; e lipophilic energy; f π–π packing correction; g generalized Born electrostatic solvation energy; h van der
Waals energy.
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These results are in agreement with what has already been observed in the litera-
ture, where a correlation between lipophilicity and MAO-B inhibition has been identified,
particularly for MAO-B inhibition [97]. Moreover, estimated values present a good ac-
cordance with calculated ∆G values for selegiline and rasagiline binding MAO-B [98,99].
As compound 4 is the most potent against MAO-A, the MM-GBSA binding ∆G has also
been calculated for this system. Obtained results are in line with experimental IC50 values.
Moreover, the analysis of energy contributions to the global binding energy highlights the
lower effect of lipophilic and van der Waals energy in the binding of compound 4 within
MAO-A counterbalanced by the reduced desolvation energy paid by the ligand and protein
in the recognition process.

2.3.2. Carbonic Anhydrases and Compounds 1–9

With the objective of predicting binding modes and analyzing the ligand–protein
interactions of the RSV derivatives within the hCA isoforms, molecular modeling studies
including a robust docking procedure, followed by molecular dynamics (MD) simulations
in an explicit water environment, were carried out. This study may provide more insight
into the selectivity of the RSV derivatives for hCA VII compared to the other hCAs. Com-
pound 4, which showed the highest potency for the inhibition of hCA VII, as well as the
most potent inhibition of the MAOs, was the focus of this study as a representative ligand
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of the series. This compound was thus docked into hCA VII using the GOLD software, and
the predicted ligand–protein complex was subjected to 50 ns of MD simulation studies (see
Section 3 for details). Initially, our modeling studies focused on addressing a specific type
of binding mode for compound 4, in which the ligand formed water-mediated interactions
with the catalytic zinc(II) ion, in agreement with the binding mode experimentally observed
for small phenolic compounds [100]. However, such studies led to inconclusive results. In
fact, the ligand–protein complexes predicted based on this binding hypothesis were found
to be unstable and inconsistent with the SAR data. For this reason, we decided to explore a
more reliable binding hypothesis that could also provide insights into SAR data.

As shown in Figure 6, compound 4 is predicted to bind to the catalytic site in a
different orientation compared to the classic sulfonamide inhibitors [101]. In fact, the ligand
is bound to the protein with its CF3 group placed in proximity of the zinc-binding pocket,
but without directly interacting with the ion, while the chlorophenol moiety is positioned
in the solvent-exposed region of the binding site. Specifically, the ligand occupies a rather
narrow pocket defined on one side by Q94 and F133, with the latter possibly establishing a
T-shaped stacking with the chlorophenol ring of the ligand. The other side of the pocket is
defined by N64, Q69, and D71 and is supported by a network of H-bonds formed among
these residues, which thus represents a key element for the binding stability of the ligand.
Compound 4 is anchored to the pocket by forming H-bonds with N64 and T202 through
its trifluoromethyl moiety, while the phenol group of the ligand forms a charge-assisted
H-bond with K93. Based on the predicted orientation, the inhibitory activity of the ligand is
dependent on steric hindrance generated by its binding to this specific area of the catalytic
site, as observed for coumarin and thiocoumarin derivatives, which exert their inhibitory
activity without directly interacting with the catalytic zinc ion [102] (Figure 6).
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Figure 7 shows the predicted 4–hCA XII complex. The orientation of the ligand is
comparable to that observed in hCA VII, since the trifluoromethylphenyl group maintains
the same interactions established with N64 and T202 in hCA VII (N92 and T227 in hCA
XII, respectively). Within the water-exposed region of the binding site, residue K93 that
is present in hCA VII is replaced by T116, which still allows for the formation of an H-
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bond with the hydroxyl group of the ligand (although not charge-assisted as in hCA VII);
nevertheless, the lateral sides of the pocket exhibit some differences that could affect the
stability of the ligand interactions. In particular, the interaction network among N64, Q69,
and D71 observed in hCA VII is not conserved due to the replacement of Q69 with K97 and
of D71 with N99. The presence of the highly mobile K97 does not allow the formation of
stable H-bonds with the surrounding residues, which are necessary to maintain the narrow
shape of the binding pocket, a contributing factor to the stability of the ligand. Furthermore,
the replacement of A157 for F133 in hCA VII results is the absence of the T-shaped stacking
interaction that is established between the chlorophenol moiety of the ligand and F133 in
hCA VII. These considerations may explain the reduced inhibitory potency of 4 toward
hCA XII compared to hCA VII (Table 2).
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An analysis of the predicted ligand–protein interactions in the binding site of hCA II
(Figure 8) shows that the two H-bonds between the trifluoromethyl moiety and the side
chains of N62 and T199 (corresponding to N64 and T202 of hCA VII, respectively) are
maintained. On the other hand, the chlorophenol ring cannot establish any H-bonding due
to the presence of I91 that substitutes K93 of hCA VII and T116 of hCA XII. The shape of
the binding pocket appears to be similar, although the residues involved in the H-bond
network are different from those present in hCA VII. In particular, the network is formed
among N62, N67, and E69, the homologous residues to N64, Q69, and D71 of hCA VII,
respectively. However, the orientation of the ligand does not allow for the formation of
interactions with the conserved residue F130 (homologous to residue F133 in hCA VII),
which could further stabilize its binding mode, due to the presence of the bulky side chain
of I91 and the lack of H-bond interactions with the solvent-exposed region of the active site.
These considerations are in agreement with the inhibition potency of the ligand against
hCA II, which was found to be about 22-fold weaker than that against hCA VII.

Figure 9 shows the binding mode of the ligand in hCA IX, which is comparable to that
observed in hCA II. The hydrophobic residue L223 replaces K93 of hCA VII, and thus the
H-bond interaction with the hydroxyl group of the ligand (as observed in hCA II) is absent.
This replacement also results in a slight enlargement of the pocket. Moreover, F133 present
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in hCA VII is replaced by V262, which cannot form the T-shaped stacking interaction with
the ligand. Finally, the replacement of D71 in hCA VII for T205 in hCA IX may decrease
the rigidity of the pocket due to its weak interaction with Q203. Nevertheless, the ligand
adopts a binding mode similar to that observed in hCA II, which is consistent with its
comparable potencies against hCA IX and II, and with its reduced activity against these
two isoforms with respect to hCA VII, as reported in Table 2.
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The results of the docking studies performed for compound 4 into hCA I, VA, and VB
highlighted that the ligand is not able to interact with these three hCA isoforms adopting
a binding mode similar to that predicted into hCA VII; this is consistent with the weak
inhibitory activities experimentally observed for compound 4 against hCA I, VA, and
VB, which were found to be up to 120-fold lower than that observed against hCA VII
(Table 2). By inspecting the catalytic site of hCA I, it is evident how the presence of non-
conserved residues with respect to hCA VII is not compatible with the ligand orientation
observed in this latter isoform. In fact, the presence of H201 and V63 replacing T202
and N64 in hCA VII, respectively, determines the lack of the two H-bond interactions
anchoring the trifluoromethyl group of the ligand to the inner portion of the binding site
(Figure S5, Supplementary Materials). In addition, there is high variability in the whole
pocket occupied by the ligand, where the pattern formed by N64, Q69, and D71 in hCA
VII is replaced by V63, H68, and N70, respectively; these residues cannot form the H-bond
network observed in hCA VII, thus determining a lower rigidity of the binding pocket.
Moreover, the presence of H68 determines a drastic remodeling of the binding pocket
shape, filling part of the excluded volume that should be occupied by the ligand. These
considerations are consistent with the low inhibitory potency of the ligand against hCA
I observed through experimental assays. A similar situation can be observed in hCA
VA and VB. In hCA VA, the presence of W36 in place of T62 of hCA VII generates a
steric hindrance impeding the proper orientation of the ligand; in fact, W36 pushes the
adjacent residues toward the binding pocket, thus filling part of the volume that should be
occupied by the ligand (Figure S6, Supplementary Materials). Furthermore, T38 replacing
N64 present in hCA VII prevents the ligand from establishing an H-bond interaction
with its CF3 group. Moreover, residue E45, due to its longer side chain with respect to
the homolog D71 in hCA VII, protrudes toward and interacts with K93; both residues
thus occupy the free space where the chlorine atom of the phenolic ring of the ligand
should be positioned, thereby further decreasing the excluded volume available to the
ligand. Finally, the analysis of the catalytic site of hCA VB shows that, as observed for
hCA VA, the shape of the binding site is extensively remodeled and does not present
enough space for allowing an orientation of the ligand comparable to that observed in
hCA VII. This is due to the presence of the bulky W36 and L43 in place of T62 and Q69
of hCA VII, respectively, which leads to the occlusion of the central portion of the pocket,
and the presence of E45 in place of D71, which is oriented toward K93 and occupies the
solvent-exposed region of the pocket (Figure S7, Supplementary Materials). The results
obtained for hCA VII, hCA XII, hCA IX, and hCA II were then analyzed in terms of ligand–
protein interaction energy, attempting to correlate the selectivity of compound 4 to the
binding energies associated with the predicted ligand-protein complexes. For this purpose,
the linear interaction energy (LIE) approach was employed. LIE evaluations allow the
calculation of the non-bonded interactions between the ligand and the surrounding protein
residues from the trajectories generated through MD simulations. Electrostatic and van
der Waals energetic contributions are computed for each MD snapshot, and the obtained
values are then used to retrieve the average total ligand–protein interaction energy (aLIE).
The MD trajectories extracted from the last 40 ns of MD simulations were used for the
calculations, for a total of 400 snapshots (with a time interval of 100 ps). As shown in
Table S1 (Supplementary Materials), the highest binding energy (aLIE = −33.0 kcal/mol)
was predicted for the hCA VII–4 complex, consistently with the experimental results in
which compound 4 showed the highest potency for hCA VII, with a submicromolar KI.
Moreover, in agreement with the low micromolar activity of the ligand for hCA XII, the
binding energy predicted for the hCA XII–4 complex (aLIE = −30.1 kcal/mol) was the
second highest among those estimated for the four different ligand–protein complexes.
Finally, the binding energies calculated for compound 4 in complex with hCA IX and
II (aLIE = −27.3 and −25.1 kcal/mol, respectively) were found to be at least 5.7 kcal/mol
lower than those associated with the hCA VII–4 complex. Notably, the lower binding energy
of these two complexes appears to be primarily due to a lower electrostatic contribution,
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which is consistent with the binding mode predicted for the ligand into hCA IX and II, in
which no H-bond is formed by the phenolic ring of the ligand, as instead observed in the
hCA VII–4 and hCA XII–4 complexes. These results further contribute to rationalizing the
SAR data obtained for compound 4 from a quantitative point of view.

In conclusion, the results of our modeling studies enabled a rationalization of the SAR
data that emerged from the experimental results, suggesting a reliable binding mode of
compound 4 within hCA VII, as well as within hCA II, IX, and XII, in agreement with the
different potencies of the ligand against the four isoforms, and potentially justifying the
low activity of the compound against hCA I, VA, and VB.

2.3.3. Physicochemical and Pharmacokinetic Property Calculations

The lipophilicity of compounds 1–7 was previously evaluated in [73]. In the present
work, a series of parameters affecting the drug-likeness and bioavailability of the studied
E-stilbenol derivatives 1–9 was calculated using QikProp to complete their physicochemical
profiles and to evaluate if there is an improvement in the pharmacokinetic properties of
synthesized compounds compared to RSV (Table 5) [103]. Based on their calculated physic-
ochemical and pharmacokinetic properties, all compounds showed a drug-like profile.
Only compound 4 presents a slightly elevated lipophilicity value of 5.053 (logPoct/water > 5).
All compounds (except for 6) possess a high value for predicted apparent MDCK cell
permeability that is a good mimic for the blood–brain barrier permeability, but the values
of predicted brain–blood partition coefficient are too high (−3.0 < QPlogBB < −1.2). All
compounds present excellent oral absorption (human oral absorption and percent of human
oral absorption) and remarkable cell permeability (QPPCaco). Overall, the pharmacoki-
netic properties of these synthetic derivatives are improved compared to those of RSV,
particularly their abilities to reach the CNS.
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Table 5. Physicochemical and pharmacokinetic properties of the E-stilbenol ligands.

ID mol MW accptHB donorHB CIQPlogS Human Oral
Absorption

Percent Human
Oral Absorption QPPCaco QPlogHERG QPPMDCK QPlogBB CNS QPlogKhsa # metab

1 230.693 0.75 1 −4.217 3 100 3434.609 −5.475 4398.946 0.049 1 0.395 1

2 299.583 0.75 1 −5.662 3 100 3434.792 −5.324 10,000 0.357 1 0.634 1

3 265.138 0.75 1 −4.938 3 100 3014.508 −5.372 8693.74 0.146 1 0.513 1

4 298.692 0.75 1 −5.643 3 100 3434.791 −5.506 10,000 0.314 1 0.673 1

5 264.247 0.75 1 −4.920 3 100 3014.399 −5.557 7150.372 0.102 1 0.552 1

6 221.258 2.25 1 −4.491 3 94.309 625.083 −5.691 297.703 −0.916 −1 0.149 1

7 226.274 1.5 1 −3.858 3 100 3014.378 −5.471 1630.445 −0.236 0 0.314 2

8 246.308 0.75 1 −4.783 3 100 3014.399 −6.226 1630.457 −0.187 0 0.667 1

9 197.236 2.25 1 −3.011 3 100 1629.035 −5.308 838.343 −0.407 0 −0.015 3

RSV 228.247 2.25 3 −3.396 3 82.354 280.757 −5.277 125.332 −1.28 −2 −0.172 3

CIQPlogS: conformation-independent predicted aqueous solubility, log S; S in mol dm−3 is the concentration of the solute in a saturated solution (−6.5/+0.5). HumanOralAbsorption:
predicted qualitative human oral absorption, 1 for low, 2 for medium, 3 for high. PercentHumanOralAbsorption: predicted human oral absorption on a 0 to 100% scale. QPPCaco:
predicted apparent Caco-2 cell permeability in nm/s; Caco-2 cells are a model for the gut–blood barrier (<25 poor, >500 great). QPlog-HERG: predicted IC50 value for the blockage of
HERG K+ channels (concern below −5). QPPMDCK: predicted apparent MDCK cell permeability in nm/s; MDCK cells are considered to be a good mimic for the blood–brain barrier
(<25 poor, >500 excellent). QPlogBB: predicted brain–blood partition coefficient (−3.0/+1.2). CNS: predicted central nervous system activity on a −2 (inactive) to +2 (active) scale.
QPlogKhsa: prediction of binding to human serum albumin (−1.5/+1.5). #metab: number of likely metabolic reactions.
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3. Materials and Methods
3.1. Chemistry

The synthesis of compounds 1–9 was carried out following reported procedures [78,81].
The appropriate 4-hydroxybenzaldehyde and aryl acetic acid were mixed in the presence
of piperidine at 130 ◦C. After aqueous work-up and purification on silica gel column
chromatography, the desired phenols were obtained in high purity, as confirmed by spec-
troscopical experiments.

3.2. Biology
3.2.1. In Vitro MAO Inhibition Assay

Activity measurements for MAO-A and MAO-B were carried out as reported in the
literature [104,105]. Recombinant human MAO-A and MAO-B were obtained commer-
cially (Sigma-Aldrich, Saint Louis, MO, USA) and were used as enzyme sources. Kynu-
ramine is a non-specific substrate and served as the substrate for both MAO isoforms. The
MAOs metabolize kynuramine to produce 4-hydroxyquinoline, which was measured at
the endpoint of the enzyme reactions by fluorescence spectrophotometry. By evaluating
the fluorescence of 4-hydroxyquinoline (~3–6 µM) in the absence and presence of the
test inhibitors (1 and 10 µM), it was established that, under the experimental conditions,
resveratrol and the analogs evaluated here did not fluoresce or quench the fluorescence of
4-hydroxyquinoline.

3.2.2. In Vitro CA Inhibition Assay

The CA-catalyzed CO2 hydration activity was determined on an Applied Photo-
physics stopped-flow instrument (SX.18MV-R, Headquarters Applied Photophysics Lim-
ited, 21 Mole Business Park, Leatherhead, Surray, KT22 7BA, United Kingdom) [106] using
phenol red at a concentration of 0.2 mM as a pH indicator with 20 mM HEPES (pH 7.5)
as the buffer and 20 mM Na2SO4 (for maintaining constant the ionic strength), following
the initial rates of the CA-catalyzed CO2 hydration reaction for a period of 10–100 s and
working at the maximum absorbance of 557 nm. The CO2 concentrations ranged from
1.7 to 17 mM for the determination of the kinetic parameters and inhibition constants.
For each inhibitor, six traces of the initial 5–10% of the reaction were used in order to
determine the initial velocity. The uncatalyzed reaction rates were determined in the same
manner and subtracted from the total observed rates. Stock solutions of inhibitor (0.1 mM)
were prepared in distilled water, and dilutions up to 0.01 nM were prepared. Solutions
containing inhibitor and enzyme were preincubated for 15 min at room temperature prior
to assay in order to allow the formation of the E−I complex. The inhibition constants were
obtained as nonlinear least-squares protocols using PRISM 3 and are the mean from at
least three different measurements. All CAs are recombinant and were obtained in-house,
following the procedure briefly described as reported earlier [107,108].

Escherichia coli BL21 (DE3) cells transformed with the appropriate plasmid resulted in
the production of the recombinant hCAs as a fusion protein containing a His-tag tail at its
N-terminus. After sonication and centrifugation, most of the CA activity was recovered in
the soluble fraction of the E. coli cell extract. Using an affinity column (His-select HF (High
Flow) nickel affinity gel), the appropriate hCA was purified to obtain the enzyme at least
95% purity.

3.3. Computational Studies
3.3.1. In Silico Studies on Monoamine Oxidases
Molecular Docking

Molecular modeling experiments were performed on Schrödinger Life-Sciences Suite
2021–4. Maestro (v13) [84]. The three-dimensional X-ray structures of MAO-A and MAO-B
were obtained from RCSB Protein Data Bank (PDB ID: 2Z5X and 2V5Z, respectively). Pro-
tein Preparation Wizard in Maestro was used to fix, optimize, and minimize the crystal struc-
tures [109]. Binding sites were analyzed using the SiteMap module of Maestro [110,111].
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SiteScore, Dscore, size, and volume of the sites were calculated using the default parameter.
All the ligands were drawn as 2D structures from Maestro and prepared using LigPrep
to find all possible tautomers and protonation states at pH 7.0 ± 0.4 with Epik [112,113].
Water molecules more than 3 Å away from the FAD and forming fewer than 2 H-bonds
were removed. The Glide Grids were created by using the center of mass of crystallographic
ligands. Rotatable OH/SH groups were defined for Cys323, Tyr407, and Tyr444 in MAO-A
and Cys172, Tyr398, and Tyr435 in MAO-B. Molecular docking analyses were performed
using Glide software [114,115]. The SP docking protocol was used by setting 5000 poses
per ligand for the initial phase and 400 poses per ligand for energy minimization with the
OPLS4 forcefield. The reliability of the docking protocol was tested by the docking analysis
of the crystallographic ligands.

Molecular Dynamics and MM-GBSA Calculation

MD simulation was carried out using Desmond, available in the Schrödinger Suite
2021–4 [84]. The complexes of MAO-B with the docked poses of compounds 4 and 5 and of
MAO-A with the docked pose of compound 4 were embedded in an orthorhombic box of
TIP4P water molecules resulting in systems of 61,986, 61,680, and 86,342 atoms, respectively.
In order to balance the system charge, four Na ions were added to both MAO_B complexes,
and two Na ions were added to MAO-A:4 system. Six relaxation stages were applied to
the systems as a default protocol before the simulation. The systems were treated with the
OPLS4 force field, a normal pressure–temperature (NPT) ensemble with a Nose–Hoover
thermostat set to 300 K and a Martyna–Tobias–Klein barostat set to 1.01325 bar pressure.
The simulation’s production phase lasted 100 ns, recording frames every 100 ps. The
smooth particle mesh Ewald method was used to examine the electrostatic interactions. For
the MM-GBSA calculation, the trj_parch.py python tool was exploited to reduce the number
of water molecules in each complex extracted from the trajectory, sample 20 representative
frames along the simulation, and align the resulting structures. Sampled frames were
exploited to calculate the MM-GBSA energy using the thermal_mmgbsa.py command.

3.3.2. In Silico Studies on Carbonic Anhydrases
Molecular Docking

The crystal structures of hCA I (PDB code 1AZM) [116], hCA II (PDB code 4E3H) [100],
hCA VII (PDB code 3MDZ), hCA IX (PDB code 5FL4) [117], and hCA XII (PDB code
1JCZ) [118] were taken from the Protein Data Bank [119], while for hCA VA and hCA VB,
previously developed homology models were used [120,121]. Automated docking was
carried out for compound 4 by means of the GOLD 5.1 program [122,123], using the PLP
scoring function. The region of interest for the docking studies contained all residues within
15 Å from the largest bound ligand among all reference X-ray structures. The “allow early
termination” command was deactivated, while the possibility for the ligand to flip ring
corners was activated. The remaining GOLD default parameters were used, and the ligand
was submitted to 100 genetic algorithm runs. The docking solutions were clustered using
an RMS threshold of 2.0 Å, and the best docked conformation was taken into account.

Molecular Dynamics Simulations

All molecular dynamics (MD) simulations were performed with AMBER, version
20 [124]. Each complex was subjected to an MD procedure based on an already successfully
applied protocol, using the ff14SB force field at 300 K [125]. Prior to MD simulations,
each complex was placed in a rectangular parallelepiped water box and solvated with
a 15 Å water cap using the TIP3P explicit solvent model for water. Sodium or chlorine
ions were then added as counterions for the neutralization of the solvated system. Each
system was subjected to two stages of energy minimization, each composed of 5000 steps of
steepest descent followed by conjugate gradient until a convergence of 0.05 kcal/(mol·Å2)
was reached. In the first stage, the whole protein was blocked with a position restraint of
500 kcal/(mol·Å2) to uniquely minimize the position of the water molecules, while in the
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second stage, the entire system was energy-minimized by applying a harmonic potential of
10 kcal/(mol·Å2) only to the protein α carbons. The minimized complexes were then used as
the starting point for a total of 50 ns of MD simulation. A 0.5 ns constant-volume simulation,
in which the temperature of the system was raised from 0 to 300 K, was initially performed.
In the second step, the system was equilibrated through a 3 ns constant-pressure simulation,
maintaining the temperature at the constant value of 300 K with the use of a Langevin
thermostat. An additional 46.5 ns of constant-pressure MD was then performed, for a total
of 50 ns of simulation. In all three MD steps, a harmonic potential of 10 kcal/(mol·Å2)
was applied to the protein α carbons. All simulations were performed using particle mesh
Ewald (PME) electrostatics with a cutoff of 10 Å for non-bonded interactions and periodic
boundary conditions. A simulation step of 2.0 fs was employed, as all bonds involving
hydrogen atoms were kept rigid using the SHAKE algorithm. General Amber force field
(GAFF) parameters were used for the ligand, whose partial charges were calculated with
the AM1-BCC method as implemented in the Antechamber suite of AMBER 20.

Binding Energy Evaluation

The linear interaction energy (LIE) was calculated between the ligand and the sur-
rounding protein residues lying within a 12 Å radius from it, as previously performed [126].
The ccptraj module of AMBER 20 was used for the calculations, employing the trajecto-
ries extracted from the last 40 ns of MD simulations, for a total of 400 snapshots (with a
time interval of 100 ps). The average LIE values (aLIE) were obtained as the sum of the
average electrostatic (EELE) and van der Waals (EVDW) energy contributions expressed
as kcal/mol.

3.3.3. Physicochemical and Pharmacokinetic Property Calculations

Synthesized ligands 1–9 and RSV structures were submitted to QuikProp calculation
applying default settings in Maestro [84].

4. Conclusions

The pathogenesis of NDs consists of a complex series of aspects including aging,
lifestyle, and genetic factors. Multi-target designed ligands (MTDLs) are a modern ap-
proach that may provide effective pharmacological responses by acting at diverse receptors
or enzymatic systems involved in the etiopathogenesis. We aimed to study dual RSV-based
inhibitors of the MAOs and hCAs, with both enzymes being involved in different neu-
rological disorders. All RSV derivatives inhibit the MAOs in the low micromolar range
(0.43–21.3 µM for MAO-A and 0.011 to 14.2 µM for MAO-B), showing higher potency than
RSV, while MAO-B is selectively inhibited. Docking studies suggested that the introduction
of trifluoromethyl in the 4-position and a chlorine atom in the 3′-position leads to a signifi-
cant increase in the inhibition activity (compound 4). Regarding the inhibitory activity on
hCAs, the preliminary structure–activity relationships revealed that only compounds with
a chlorine atom in the 3′-position possess low KI values in the low micromolar range. More-
over, among them, compound 4 has demonstrated effective inhibition abilities which is due
to the presence of 4-CF3 in aromatic ring A. This group is the cause of the establishment of
effective bonding interactions with the catalytic site in a different orientation compared to
the classic sulfonamide inhibitors, opening interesting opportunities for future optimiza-
tion. In fact, even if its inhibition is lower with respect to references, this compound is
distinguished by its ability to bind both studied receptors through favorable structural
characteristics. Lastly, the ADME prediction results indicated that all compounds showed
promising drug-like properties with a view to biological action at the CNS level.

In conclusion, the exploration of new RSV-based molecules gives important insights
into the design of novel dual compounds that would be retained for further research.
Compound 4 emerged as a promising advanced compound that addressed multiple factors
associated with NDs. After the screening, compound 4 with the highest inhibition ability
was selected as a candidate for further studies.



Molecules 2022, 27, 7816 20 of 25

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27227816/s1, Figure S1. The catalytic site of MAO-B in
complex with safinamide. Figure S2. The catalytic site of MAO-B in complex with RSV. Figure S3.
The catalytic site of MAO-A in complex with harmine. Figure S4. The catalytic site of MAO-A in
complex with RSV. Figure S5. Minimized average structure of hCA VII (PBD code: 3MDZ) in complex
with compound 4 superimposed to hCA I X-ray structure (PDB code: 1AZM). Figure S6. Minimized
average structure of hCA VII (PBD code: 3MDZ) in complex with compound 4 superimposed to
hCA VA homology model. Figure S7. Minimized average structure of hCA VII (PBD code: 3MDZ) in
complex with compound 4 superimposed to hCA VB homology model. Table S1. Linear interaction
energy results for the four analyzed ligand–protein complexes of compound 4.
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