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ABSTRACT

Adrian, M., Rajaei, H., Jeandet, P., Veneau, J., and Bessis, R. 1998. Res-
veratrol oxidation in Botrytis cinerea conidia. Phytopathology 88:472-476.

Observations using light microscopy showed that approximately 30%
of Botrytis cinerea conidia treated with semi-lethal concentrations (i.e.,
60 µg/ml) of the grapevine phytoalexin resveratrol possessed intracellular
brown coloration. This coloration was never observed in the absence of
resveratrol or in conidia treated with resveratrol together with sulfur

dioxide (antioxidant compound) or sodium diethyldithiocarbamate (inhib-
itor of laccase action), suggesting that discoloration resulted from the
laccase-mediated oxidation of resveratrol. Further studies using transmis-
sion electron microscopy enabled the observation of particular intravacuolar
spherical vesicles and of granular material deposits along the tonoplast.
These observations are likely to be related to the oxidation of resveratrol
by an intracellular laccase-like stilbene oxidase of B. cinerea.

The production of phytoalexins is considered to be part of the
general defense mechanism of grapevines (6,13,17,27,28). In Vitis
spp., such a response includes the formation of a range of biosyn-
thetically related di- and oligomers of a simple stilbene, resvera-
trol (trans-3,5,4′-trihydroxystilbene) (6,17,21,24,26,31), together
with the formation of a dimethylated stilbene, pterostilbene (trans-
3,5-dimethoxy-4′-hydroxystilbene) (25). These compounds are ty-
pically accumulated in leaves and berries in response to stresses
that include fungal infection, UV irradiation, and induction by
chemicals (1,5,24,26,31).

Resveratrol is quantitatively the major component in grapevine
phytoalexin response. Its accumulation is correlated with resis-
tance to various fungal organisms (3,6,20,21,24,42) and, at physio-
logical concentrations, is fungitoxic against Botrytis cinerea, the
causal agent for gray mold (2). However, previous results have
shown that B. cinerea secretes a laccase-like stilbene oxidase ca-
pable of oxidizing resveratrol (16,22,40,41).

This work presents particular cytological and ultrastructural char-
acteristics of B. cinerea conidia after exposure to resveratrol modi-
fied by laccase activity. These characteristics, which have never
been described, are of particular relevance in the study of the B.
cinerea-grapevine interaction.

MATERIALS AND METHODS

Culture of B. cinerea and preparation of conidial suspen-
sions. The B. cinerea strain used for this work was collected at the
viticultural and enological experiment station of the University of
Bourgogne on mature grape berries of cultivar Pinot noir. Conidia
were suspended in water, inoculated on potato dextrose agar (Bio
Mérieux Corp., Lyon, France) and incubated at 21°C. The strain
was purified by several successive subcultures and the use of strep-
tomycin (200 mg/liter). The single-spore strain was then stored at
4°C in tubes containing potato dextrose agar slants.

For further experimentation, the strain was grown on potato dex-
trose agar in 86-mm petri dishes at 21°C with a 12-h light photo-

period. Conidia were aseptically harvested from 10-day-old cul-
tures by suction (39) and transferred into 250-ml Erlenmeyer flasks
containing 100 ml of a liquid nutrient-rich medium described by
Fournioux and Bessis (11) and similar to that of Hoos and Blaich
(16) or Ward and Stoessl (45). The conidial suspension was vi-
brated for 2 to 5 min with a vortex mixer and diluted to obtain a
final concentration of about 105 conidia per ml. The conidial sus-
pension was then added to sterile 35-mm petri dishes and imme-
diately incubated with resveratrol.

Incubation of resveratrol with the conidial suspension. Prior
to incubation, the purity of resveratrol was checked by high-pres-
sure liquid chromatography (HPLC) analysis using a photodiode
array detector (1,19) and by gas chromatography (GC) as previ-
ously described (18). Resveratrol (Sigma Chemical Co., St. Louis)
was added as an ethanolic solution to the nongerminated conidial
suspension at 60 µg/ml. The final concentration of ethanol in the
culture medium was 4% to ensure solubility of the stilbene (41).
Under these conditions, conidial germination and mycelial growth
of B. cinerea were not inhibited (data not shown). The control
contained just 4% absolute ethanol in the conidial suspension. So-
dium diethyldithiocarbamate, 10 mM (an inhibitor for laccase)
(23,29,30,36,46), or sulfur dioxide, 0.23 mM (an antioxidative com-
pound) (Prolabo, Paris) (7), was eventually added to the resveratrol
solution to prevent its oxidation by B. cinerea laccase (29). Liquid
cultures were protected from light (to avoid photochemical isomer-
ization of the trans form of stilbenes to the less active cis form)
(26), agitated with a reciprocal shaker (120 rpm), and kept at 21°C.
There were five replicates per treatment and experiments were
carried out 10 times.

Light microscopy. A drop of the conidial suspension was placed
on a glass slide for each treatment and examined with a Leitz
Laborlux D microscope (Leitz GmbH, Wetzlar, Germany). Stain-
ing with “neutral red” (Kuhlmann, Paris) was utilized to examine
the vacuolar system.

Electron microscopy. After 48 h of incubation with an ethanolic
solution of resveratrol or ethanol (control), B. cinerea suspensions
were prepared for electron microscopy. Two samples were collected
and examined per treatment (resveratrol and control). The suspen-
sions of B. cinerea conidia were first passed through a Swinnex
13-mm filtration system (Poly Labo, Paul Block and Cie, Stras-
bourg, France) using a disk of Whatman paper (No. 1; Whatman
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International, Ltd., Maidstone, England) for filtration. Conidia were
then retained on the filter paper. The following protocol was used
to prepare conidial samples. The fungus was washed in 0.1 M of
phosphate buffer (pH 7.2) and added with fixing solution (2.5%
glutaraldehyde and 0.1 M NaH2PO4-Na2HPO4, pH 7.2). After 4 h
at 4°C, samples were washed six times and left overnight in 0.1 M
of phosphate buffer (0.1 M NaH2PO4-Na2HPO4, pH 7.2) and then
placed in citrate-phosphate buffer solutions of decreasing pH: 6.4,
6.0, 5.4, and 5.0. Half of the samples (a control and one treated
with resveratrol) were then dipped in a syringaldazine solution (3,5-
dimethoxy-4-hydroxy-benzaldehydazine; Sigma-Aldrich Chimie
S.A.R.L., L’Isle d’Abeau, France; cytochemical reaction for lac-
case activity) in citrate buffer for 150 min followed by buffer re-
placement and overnight soaking. The other half of the samples
were placed in the citrate buffer without syringaldazine. All sam-
ples were then placed in buffer solutions of increasing pH: 5.0,
5.4, 6.0, 6.4, and 7.2. The Swinnex filtration system was then dis-
mounted and samples were postfixed in phosphate buffer, pH 7.2,
containing 1% (wt/vol) OsO4 for 4 h at 4°C. After careful washing
in phosphate buffer and ultra-pure water (to avoid the precipitation

of dimethoxypropane [DMP] by phosphate salts), dehydration was
carried out in acidified DMP (38,43) for 10 min. DMP allows rapid
dehydration and prevents the dissolution of the reaction product
that occurs with acetone or absolute ethanol (15). The material was
then removed from the filter and transferred to propylene oxide and
embedded in Araldite-Epon resin mixture. Silver-gray sections were
cut on a Sorvall MT-2B ultramicrotome (Ivan Sorvall, Inc., New-
ton, CT), mounted on copper grids, and stained in 2.5% uranyl
acetate in 50% methanol for 30 min, followed by lead citrate for 5
min. The sections were viewed in an H-600 electron microscope
(Hitachi Ltd., Tokyo) at an accelerating voltage of 75 kV with a
30-µm objective aperture.

RESULTS AND DISCUSSION

Light microscopy observations of liquid cultures of B. cinerea
conidia incubated with a sublethal concentration of resveratrol (60
µg/ml) showed that approximately 30% of the conidia contained
an intracellular brown pigmentation after at least 48 h of incubation.
This discoloration was either well delimited or occurred throughout

Fig. 1. Light microscopy observations of Botrytis cinerea conidia treated with 60 µg/ml of resveratrol for 48 h. Note the occurrence of a brown coloration
(arrows) present either A, in the entire cytoplasm or A and B, is clearly delimited.
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the entire conidial cytoplasm (Fig. 1). In contrast, no discoloration
was evident in the controls. Brown coloration as described above
has been reported in liquid cultures of B. cinerea containing hy-
droxystilbenes (16), but has never been described in fungal cell struc-
tures. According to these authors, this discoloration corresponds to
an enzymatic oxidation of resveratrol by an extracellular polyphe-
nol oxidase of B. cinerea (laccase-like enzyme) secreted in liquid
cultures of this fungus. The discoloration observed within the coni-
dia in our system could be attributed to a similar oxidation process.
The fact that no discoloration was evident in the controls suggests
that resveratrol, like many other phenolics, could act as an inducer
of laccase production in B. cinerea conidia (32). In the model of
Hoos and Blaich (16), disappearance of resveratrol from liquid cul-
ture media inoculated with B. cinerea was indeed accompanied by a
brown pigmentation of the medium that could not be accelerated
by the addition of H2O2. In our experiments, no coloration was ob-
served in the culture medium containing conidia plus resveratrol,
showing that B. cinerea conidia do not secrete laccase at this stage.

It is well established that B. cinerea produces an extracellular
laccase-like polyphenol oxidase capable of oxidizing hydroxystil-

benes, namely resveratrol (16,22,40,41). Laccase (p-diphenol:oxygen
oxido-reductase, EC 1.10.3.2) (32,36), a glycoprotein produced
either by plants (23,29,35) or by fungi (30), is capable of oxidiz-
ing a wide range of phenolics including mono-, di-, and triphenols
(34,36). An extracellular laccase from B. cinerea has been purified
(8,37). The molecular weight of B. cinerea laccase is approximately
60,000 (37), containing at least one copper atom per molecule, and
shows unusual properties including a very low isoelectric point (pI
2.5) (9,37,46). In the literature, the heterogeneity of the laccases
from B. cinerea is clearly demonstrated; their properties mainly
depend on the nature of their inducers (32). Our observations con-
cerning the occurrence of a brown coloration in conidia (as a result
of laccase-mediated oxidation of resveratrol) are in agreement with
those of Mayer and Harel (36), describing the formation of highly
colored products, often condensed molecules of high molecular
weight, following the action of laccase on phenolic compounds.

We attempted to find out whether the discoloration observed in
B. cinerea conidia could be attributable to laccase-mediated oxi-
dation of resveratrol by incubating conidia plus resveratrol to-
gether with the antioxidative compound sulfur dioxide (7) or with

Fig. 2. Transmission electron microscopy of transverse section of Botrytis cinerea conidia treated with 60 µg/ml of resveratrol for 48 h. Note the occurrence A,
of vesicles (arrows) in the vacuoles and B, of coarsely granular deposits (arrows) along the tonoplast.

Fig. 3. Cytochemical localization of laccase using syringaldazine as the substrate. Note A, the cytoplasmic and B, parietal localization of the enzyme, as in-
dicated by electron-dense deposits. Note that laccase is not detected in vacuoles. m= mitochondria, pm = plasma membrane, v = vacuole, and w = wall.
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the specific laccase inhibitor sodium diethyldithiocarbamate (23,
29,30,36,46). In both cases, no discoloration was observed in coni-
dia. These data thus suggest that an enzymatic process of resvera-
trol oxidation, specifically linked to a laccase-like polyphenol-
oxidase, takes place in the conidia of B. cinerea.

This oxidation process (or the accumulation of resveratrol oxi-
dation products) could be located in vacuoles, because the area of
the sporeling where the brown coloration was observed is also
colored by neutral red, a staining specific for the vacuolar system.

An electron microscopy study showed that the ultrastructure of
B. cinerea conidia treated with ethanol (control) was the same as
that previously described by other authors (4,12,39). However, some
of the conidia treated with 60 µg of resveratrol per ml presented dif-
ferent cytological abnormalities that have, to our knowledge, never
been described. The tonoplast was often lined with electron-dense
material, mainly along the vacuole (Fig. 2B). The brown discolora-
tion observed in light microscopy could thus correspond to this
coarse material present along the tonoplast. Spherical vesicles were
also observed in the vacuole or along the vacuolar side of the tono-
plast. They were either well delimited (by an electron-dense ring
different from a membrane or a wall), fully or partly filled with
coarsely granular material (in some cases), or even empty (Fig. 2A).

Vesicle size was also not uniform, varying from 0.1 to 0.4 µm.
Different vesicular forms could be observed in the same vacuole.
Their occurrence was restricted to conidia treated with resveratrol.
They differ from the storage bodies described by Buckley et al. (4)
and Gull and Trinci (12). The nature and function of these struc-
tures still remain unknown. Are they related to the oxidation proc-
ess of resveratrol by fungal laccase, as they were not observed in the
controls? If so, detoxification of resveratrol via the transport of oxi-
dation metabolites into the vacuole is likely. The vacuole is often
important in higher plants for detoxification of secondary meta-
bolites. In plants, detoxification processes involve, at first, oxida-
tion, reduction, or hydrolysis of the toxic product, followed by its
conjugation to malonyl or glycosyl moieties by transferases and,
finally, storage in the vacuole (33). Detoxification processes have
also been described for fungi (44). The accumulation of resvera-
trol oxidation products in the vacuolar compartment of B. cinerea
conidia could thus correspond to a detoxification process of this
compound. Marbach et al. (32) strongly suggest that laccase is
produced by B. cinerea conidia in order to deactivate plant defense
mechanisms. The ability of B. cinerea conidia to metabolize resvera-
trol could thus contribute to creating a means of survival for conidia.

Since we observed the accumulation of resveratrol metabolites
in the vacuole of B. cinerea conidia in relation to laccase activity,
we wished to verify the localization of this enzyme in the fungal
cell. Therefore, a cytochemical reaction using syringaldazine as a
substrate for laccase (10,14) was done. Syringaldazine produces
unique electron-opaque deposits after oxidation that are visible by
transmission electron microscopy (15). We observed the same elec-
tron-opaque deposits when syringaldazine was used as the sub-
strate for laccase (Fig. 3). Past experiments indicate that laccase
was located predominantly in the cytoplasm (15) and also in the
cell wall and surrounding mucilages (which is expected, because
laccase is an extracellular enzyme) (36). Neither laccase nor sy-
ringaldazine deposits were detected at the vacuolar level. Our ex-
periments show that laccase activity is present within the conidial
cell and its cytoplasm (not in vacuoles) (Fig. 3), and this is in agree-
ment with the findings of other investigators. Thus, the laccase-
mediated oxidation of stilbenes takes place in the cytoplasm, and
the resulting products later enter the vacuole where they accumu-
late, resulting in visible discoloration within the vacuole.
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