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The main purpose of this paper wants to investigate the optimal retailer’s lot-sizing policy

with two warehouses under partially permissible delay in payments within the economic

order quantity (EOQ) framework. In this paper, we want to extend that fully permissi-

ble delay in payments to the supplier would offer the retailer partially permissible delay

in payments. That is, the retailer must make a partial payment to the supplier when the

order is received. Then the retailer must pay off the remaining balance at the end of the

permissible delay period. In addition, we want to add the assumption that the retailer’s

storage space is limited. That is, the retailer will rent the warehouse to store these ex-

ceeding items when the order quantity is larger than retailer’s storage space. Under these

conditions, we model the retailer’s inventory system as a cost minimization problem to

determine the retailer’s optimal cycle time and optimal order quantity. Three theorems

are developed to efficiently determine the optimal replenishment policy for the retailer.

Finally, numerical examples are given to illustrate these theorems and obtained a lot of

managerial insights.

Copyright © 2007 Yung-Fu Huang et al. This is an open access article distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The traditional economic order quantity (EOQ) model focuses on the buyer’s view and

makes several assumptions, for example, no stockouts, fixed demand rate, unlimited store

space, zero lead time and must be paid for the items as soon as the items were received.

But we know these assumptions are rarely met in real-life situation. For instance, in most

business transactions, the supplier would allow a specified credit period (say, 30 days) to

the retailer for payment without penalty to stimulate the demand ofhis/her products. This
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credit term in financial management is denoted as “net 30.” Before the end of the trade

credit period, the retailer can sell the goods and accumulate revenue and earn interest.

A higher interest is charged if the payment is not settled by the end of the trade credit

period. Therefore, it makes economic sense for the retailer to delay the settlement of the

replenishment account up to the last moment of the permissible period allowed by the

supplier. So the assumption that the retailer must be paid for the items as soon as the

items were received is debatable. The effect of supplier’s trade credit policy on inventory

problem has received the attention of many researchers.

Goyal [1] established a single-item inventory model for determining the economic or-

dering quantity in the case that the supplier offers the retailer the opportunity to delay

his payment within a fixed time period. Chung [2] simplified the search of the opti-

mal solution for the problem explored by Goyal [1]. Aggarwal and Jaggi [3] considered

the inventory model with an exponential deterioration rate under the condition of trade

credit. Chang et al. [4] extended this line of research to the varying rate of deterioration.

Liao et al. [5] and Sarker et al. [6] investigated this topic with inflation. Jamal et al. [7]

and Chang and Dye [8] extended this line of research with allowable shortage. Chang

et al. [9] extended this line of research with linear demand. Chen and Chuang [10] in-

vestigated buyer’s inventory policy under trade credit by the concept of discounted cash

flow. Hwang and Shinn [11] developed the model for determining the retailer’s opti-

mal price and lot-size simultaneously when the supplier permits delay in payments for

an order of a product whose demand rate is a function of constant price elasticity. Ja-

mal et al. [12] and Sarker et al. [13] formulated a model where the retailer can pay the

wholesaler either at the end of the credit period or later, incurring interest charges on

the unpaid balances for the overdue period. They developed a retailer’s policy for the op-

timal cycle and payment times for a retailer in a deteriorating-item inventory scenario,

in which a wholesaler allows a specified credit period for payment without penalty. Teng

[14] extended Goyal’s [1] implicit assumption that the difference between unit selling

price and unit purchasing price is equal to operations cost. That is, Goyal [1] implicitly

assumed that unit selling price is equal to unit purchasing price. The important finding

from Teng’s study [14] is that it makes economic sense for a well-established retailer to

order small lot sizes and so take more frequently the benefits of the permissible delay

in payments. Chung et al. [15] discussed this issue under the assumptions that the sell-

ing price is not equal to the purchasing price and different payment rules are allowed.

Shinn and Hwang [16] determined the retailer’s optimal price and order size simulta-

neously under the condition of order-size-dependent delay in payments. They assumed

that the length of the credit period is a function of the retailer’s order size, and also the

demand rate is a function of the selling price. Chung and Huang [17] extended Goyal [1]

to consider the case that the units are replenished at a finite rate under permissible de-

lay in payments and developed an efficient solution-finding procedure to determine the

retailer’s optimal ordering policy. Huang and Chung [18] extended Goyal’s model [1] to

discuss the replenishment and payment policies to minimize the annual total average cost

under cash discount and payment delay from the retailer’s point of view. They assumed

that the supplier could adopt a cash discount policy to attract retailer to pay the full pay-

ment of the amount ofpurchasing at an earlier time as a means to shorten the collection
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period. Salameh et al. [19] extended this issue to inventory decision under continuous

review. Huang [20] extended one-level trade credit into two-level trade credit to develop

the retailer’s replenishment model from the viewpoint of the supply chain. He assumed

that not only the supplier offers the retailer trade credit but also the retailer offers the

trade credit to his/her customer. This viewpoint reflected more real-life situations in the

supply chain model. Chang et al. [21] and Chung and Liao [24] dealt with the problem

of determining the economic order quantity for exponentially deteriorating items under

permissible delay in payments depending on the ordering quantity and developed an ef-

ficient solution-finding procedure to determine the retailer’s optimal ordering policy. In

this regard, Chang [23] extended Chung and Liao [24] by taking into account inflation

and finite time horizon. Huang [25] considered the case in which the unit selling price

and the unit purchasing price are not necessarily equal within the EPQ framework under

supplier’s trade credit policy.

In this paper, we want to extend that fully permissible delay in payments to the supplier

would offer the retailer partially permissible delay in payments. That is, the retailer must

make a partial payment to the supplier when the order is received. Then, the retailer

must pay off the remaining balance at the end of the permissible delay period. From the

viewpoint of supplier’s marketing policy, the supplier can use the fraction of permissible

delay in payments to agilely control the effects of stimulating the retailer’s demand. So

this topic is a realistic and new issue in this research field.

Such trade credit policy is one kind of encouragement of the retailer to order large

quantities because a delay of payments indirectly reduces inventory cost. Hence, the re-

tailer may purchase more goods than that can be stored in his/her own warehouse (OW).

These excess quantities are stored in a rented warehouse (RW). The proposed model is

applicable for the business of small- and medium-sized retailers since their storage ca-

pacities are small and limited. Especially, Taiwan has traditionally relied on its small- and

medium-sized firms to compete in international markets since the 1970s. Therefore, this

proposed model is more applicable for the special industrial environment in Taiwan. In

general, the inventory holding charges in RW are higher than those in OW. When the de-

mand occurs, it is first replenished from the RW which stores those exceeding items. This

is done to reduce the inventory costs. It is further assumed that the transportation costs

between warehouses are negligible. Several researchers have studied in this area such as

Sarma [26], Pakkala and Achary [27], Benkherouf [28], Goswami and Chaudhuri [22],

and Bhunia and Maiti [29].

Under these conditions, this paper tries to deal with the optimal retailer’s lot-sizing

policy with two warehouses under partially permissible delay in payments. We model

the retailer’s inventory system as a cost minimization problem to determine the retailer’s

optimal cycle time and optimal order quantity. Three theorems are developed to effi-

ciently determine the optimal replenishment policy for the retailer. This means that the

operation/production department, market department, and finance department are in

an enterprise jointly to determine the policy. Therefore, the policy involves inventory,

marketing, and financing issues. So, we investigate that this integrated model is very im-

portant and valuable to the enterprise.
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2. Model formulation

In this section, we want to develop the retailer’s inventory model with two warehouses

under partially permissible delay in payments. The following notation and assumptions

will be used throughout.

Notation:

D = demand rate per year

A= ordering cost per order

W = retailer’s storage capacity

c = unit purchasing price

h= unit stock holding cost per year excluding interest charges

k = unit stock holding cost of rented warehouse per year, (k ≥ h)

Ie = interest earned per $ per year by retailer

Ik = interest charged per $ in stocks per year due to partially permissible delay in

payment

M = the trade credit period in years

α= the fraction of the delay payments permitted by the supplier per order, 0≤ α≤ 1

T = the cycle time in years; time interval between the two consecutive replenishment

orders by retailer

TRC (T)= the annual total relevant cost, which is a function of T

T∗ = the optimal cycle time of TRC(T)

Q∗ = the optimal order quantity =DT∗.

Assumptions:

(1) Demand rate, D, is known and constant.

(2) Shortages are not allowed.

(3) Time horizon is infinite.

(4) Ik ≥ Ie.

(5) If the order quantity is larger than retailer’s storage capacity, the retailer will rent

the warehouse to store these exceeding items. When the demand occurs, it is first

replenished from the warehouse which stores those exceeding items. In addi-

tion, the transportation cost between retailer’s warehouse and rented warehouse

is negligible. Therefore, we define tw = the rented warehouse time,

tw =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

DT −W

D
if DT >W

(

T >
W

D

)

,

0 if DT ≤W

(

T ≤
W

D

)

.

(2.1)

(6) As the order is received, the retailer must make a partial payment (1−α)cDT to

the supplier. Then the retailer must pay off the remaining balance αcDT at the

end of the trade credit period. Therefore, the retailer must pay for the interest

charges with rate Ik under partially permissible delay in payments.

(7) During the time, the account is not settled, generated sales revenue is deposited

in an interest-bearing account with rate Ie.
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The model. If the order quantity is larger than retailer’s storage capacity, the retailer will

rent the warehouse to store these exceeding items,DT >W (T >W/D). Otherwise, the re-

tailer has not necessarily to rent a warehouse to store items, DT ≤W (T ≤W/D). Hence,

the stock holding cost is different between these both situations. In addition, the interest

charge is different between M < (1−α)T(M/(1−α) < T) and M ≥ (1−α)T(M/(1−α)≥

T). Therefore, we will divide three cases to construct the annual total relevant cost: (1)

M ≥W/D, (2) M <W/D ≤M/(1−α), and (3) M/(1−α) <W/D.

Case 1. Suppose that M ≥W/D.

(1) Annual ordering cost =A/T .

(2) There are two cases to occur in annual stock holding cost (excluding interest

charges).

(i) 0 < T ≤W/D.

In this case, the order quantity is not larger than retailer’s storage capacity.

So the retailer has not necessarily to rent warehouse to store items. Hence,

annual stock holding cost =DTh/2.

(ii) W/D < T .

In this case, the order quantity is larger than retailer’s storage capacity. So

the retailer needs to rent the warehouse to store those exceeding items.

Hence, annual stock holding cost = annual stock holding cost of rented

warehouse + annual stock holding cost of the own storage capacity =

ktw(DT − W)/2T + h[Wtw + W(T − tw)/2]/T = k(DT − W)2/2DT

+hW(2DT −W)/2DT .

(3) According to assumption (6), there are three cases to occur in interest charged

per year.

(i) M/(1−α)≤ T .

In this case, the retailer must make a partial payment (1−α)cDT to the sup-

plier as the order received. Hence, the retailer must pay the interest charge

from amount (1−α)cDT on (0,M]. In addition, the retailer pays off the re-

maining balance αcDT at the end of the trade credit period. So, the retailer

pays the interest charge from amount αcDT on [M,T]. The total amount

of interest payable is shown in Figure 2.1. Therefore, the annual interest

payable = cIk(DT2/2−αDTM)/T .

(ii) M ≤ T ≤M/(1−α).

In this case, the retailer must make a partial payment (1−α)cDT to the sup-

plier as the order received. Hence, the retailer must pay the interest charge

from amount (1−α)cDT on (0,(1−α)T]. In addition, the retailer pays off

the remaining balance αcDT at the end of the trade credit period. So, the

retailer pays the interest charge from amount αcDT on [M,T]. The total

amount of interest payable is shown in Figure 2.2. Therefore, the annual

interest payable = cIk[(1− α)2DT2/2 + D(T −M)2/2]/T = (cDIk/2)[(1−

α)2T2 + (T −M)2]/T .

(iii) W/D < T ≤M, as shown in Figure 2.3.

In this case, the retailer only makes a partial payment (1− α)cDT to the

supplier as the order received. Hence, the retailer must pay the interest
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M (1�α)T T
Time

αDT

DT

Inventory level

Figure 2.1 The inventory level and the total accumulation of interest payable when M/(1−α)≤ T .

M(1�α)T T
Time

αDT

DT

Inventory level

Figure 2.2 The inventory level and the total accumulation of interest payable when M ≤ T ≤

M/(1−α).

charge from amount (1−α)cDT on (0,(1−α)T]. The total amount of in-

terest payable is shown in Figure 2.3. Therefore,the annual interest payable

= cIk[(1−α)2DT2/2]/T .

(4) According to assumption (7), there are two cases to occur in interest earned per

year.

(i) M ≤ T .

In this case, the retailer can earn the interest from sales revenue on (0,M].

Therefore, the annual interest earned = cIe(DM2/2)/T .

(ii) T ≤M.

In this case, the retailer can earn the interest from sales revenue on (0,M].

The total amount of interest earned is shown in Figure 2.4. Therefore, the

annual interest earned=cIe[DT2/2 +DT(M−T)]/T=cIeDT(M−T/2)/T .
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M(1�α)T T
Time

αDT

DT

Inventory level

Figure 2.3 The inventory level and the total accumulation of interest payable when 0 < T ≤M.

MT
Time

cDT

$

Figure 2.4 The total accumulation of interest earned when T ≤M.

From the above arguments, the annual total relevant cost for the retailer can be ex-

pressed as TRC(T) = ordering cost + stock-holding cost + interest payable − interest

earned:

TRC(T)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

TRC1(T) if T ≥
M

1−α
,

TRC2(T) if M ≤ T ≤
M

1−α
,

TRC3(T) if
W

D
< T ≤M,

TRC4(T) if 0 < T ≤
W

D
,

(2.2)
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where

TRC1(T)=
A

T
+
k(DT −W)2

2DT
+
hW(2DT −W)

2DT

+ cIkDT

(

T

2
−αM

)

/

T − cIeDM
2/2T ,

(2.3)

TRC2(T)=
A

T
+
k(DT −W)2

2DT
+
hW(2DT −W)

2DT

+ cIkD
[

(1−α)2T2 + (T −M)2
]/

2T − cIeDM
2/2T ,

(2.4)

TRC3(T)=
A

T
+
k(DT −W)2

2DT
+
hW(2DT −W)

2DT

+ (1−α)2cIkDT
2/2T − cIeDT

(

M−
T

2

)/

T ,

(2.5)

TRC4(T)=
A

T
+
DTh

2
+ (1−α)2cIkDT

2/2T − cIeDT

(

M−
T

2

)/

T. (2.6)

Case 2. Suppose that M <W/D ≤M/(1−α).

If M <W/D ≤M/(1−α), (2.2) will be modified as

TRC(T)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

TRC1(T) if T ≥
M

1−α
,

TRC2(T) if
W

D
< T ≤

M

1−α
,

TRC5(T) if M ≤ T ≤
W

D
,

TRC4(T) if 0 < T ≤M.

(2.7)

When M <W/D ≤M/(1− α), the annual total relevant cost, TRC5(T), consists of the

following elements.

(1) Annual ordering cost =A/T .

(2) In this case, the order quantity is not larger than retailer’s storage capacity. So the

retailer will not necessarily rent warehouse to store items. Hence, annual stock

holding cost =DTh/2.

(3) Annual interest payable= cIk[(1−α)2DT2/2 +D(T −M)2/2]/T = (cDIk/2)[(1−

α)2T2 + (T −M)2]/T .

(4) Annual interest earned = cIe(DM2/2)/T .

Combining the above elements, we get

TRC5(T)=
A

T
+
DTh

2
+ cIkD

[

(1−α)2T2 + (T −M)2
]/

2T − cIeDM
2/2T. (2.8)
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Case 3. Suppose that M/(1−α) <W/D.

If M/(1−α) <W/D, (2.2) will be modified as

TRC(T)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

TRC1(T) if T >
W

D
,

TRC6(T) if
M

1−α
≤ T ≤

W

D
,

TRC5(T) if M ≤ T ≤
M

1−α
,

TRC4(T) if 0 < T ≤M.

(2.9)

When M/(1−α) <W/D, the annual total relevant cost, TRC6(T), consists of the follow-

ing elements.

(1) Annual ordering cost =A/T .

(2) In this case, the order quantity is not larger than retailer’s storage capacity. So the

retailer will not necessarily rent a warehouse to store items. Hence, annual stock

holding cost =DTh/2.

(3) Annual interest payable = cIk(DT2/2−αDTM)/T .

(4) Annual interest earned = cIe(DM2/2)/T .

Combining the above elements, we get

TRC6(T)=
A

T
+
DTh

2
+ cIkDT

(

T

2
−αM

)/

T − cIeDM
2/2T. (2.10)

3. Decision rule of the optimal cycle time T∗

In this section, we will determine optimal cycle time for the above three cases under

minimizing annual total relevant cost.

Case 1. Suppose that M ≥W/D.

From (2.3)–(2.6), derive TRC′i (T
∗

i )= 0 for all i= 1,2,3,4. Then, we can obtain

T∗1 =

√

√

√

√

2A+
(

W2/D
)

(k−h)− cDM2Ie

D
(

k+ cIk
) if 2A+

W2

D
(k−h)− cDM2Ie > 0, (3.1)

T∗2 =

√

√

√

√

2A+
(

W2/D
)

(k−h) + cDM2
(

Ik − Ie
)

D
{

k+ cIk
[

1 + (1−α)2
]} , (3.2)

T∗3 =

√

√

√

√

2A+
(

W2/D
)

(k−h)

D
{

k+ c
[

(1−α)2Ik + Ie
]} , (3.3)

T∗4 =

√

2A

D
{

h+ c
[

(1−α)2Ik + Ie
]} . (3.4)

Then, we derive TRC′′i (T) for all i = 1,2,3,4. We can find TRC′′i (T) > 0 for all i =

2,3,4. In addition, we can obtain TRC′′1 (T) > 0 when 2A+ (W2/D)(k−h)− cDM2Ie > 0.
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Therefore, all TRCi(T) are convex functions for all i = 1,2,3,4 when 2A+ (W2/D)(k−

h)− cDM2Ie > 0.

Equation (3.1) implies that the optimal value of T for the case of T ≥M/(1− α) is

T∗1 ≥M/(1−α). We substitute (3.1) into T∗1 ≥M/(1−α), then we can obtain that

iff −

[

2A+
W2

D
(k−h)− cDM2Ie

]

+D

(

M

1−α

)2
(

k+ cIk
)

≤ 0. (3.5)

Similarly, (3.2) implies that the optimal value of T for the case of M ≤ T ≤M/(1− α) is

M ≤ T∗2 ≤M/(1−α). We substitute (3.2) into M ≤ T∗2 ≤M/(1−α), then we can obtain

that

iff −

[

2A+
W2

D
(k−h)− cDM2Ie

]

+D

(

M

1−α

)2
(

k+ cIk
)

≥ 0,

iff −

[

2A+
W2

D
(k−h)

]

+DM2
{

k+ c
[

(1−α)2Ik + Ie
]}

≤ 0.

(3.6)

Likewise, (3.3) implies that the optimal value of T for the case of W/D < T ≤M is W/D <

T∗3 ≤M. We substitute (3.3) into W/D < T∗3 ≤M, then we can obtain that

iff −

[

2A+
W2

D
(k−h)

]

+DM2
{

k+ c
[

(1−α)2Ik + Ie
]}

≥ 0,

iff − 2A+
W2

D

{

h+ c
[

(1−α)2Ik + Ie
]}

< 0.

(3.7)

Finally, (3.4) implies that the optimal value of T for the case of T ≤W/D, that is T∗4 ≤

W/D. We substitute (3.4) into T∗4 ≤W/D, then we can obtain that

iff − 2A+
W2

D

{

h+ c
[

(1−α)2Ik + Ie
]}

≥ 0. (3.8)

Furthermore, we let

∆1 =−

[

2A+
W2

D
(k−h)− cDM2Ie

]

+D

(

M

1−α

)2
(

k+ cIk
)

, (3.9)

∆2 =−

[

2A+
W2

D
(k−h)

]

+DM2
{

k+ c
[

(1−α)2Ik + Ie
]}

, (3.10)

∆3 =−2A+
W2

D

{

h+ c
[

(1−α)2Ik + Ie
]}

. (3.11)

Equations (3.9)–(3.11) imply that ∆1 ≥ ∆2 ≥ ∆3. From above arguments, we can summa-

rize the following results.

Theorem 3.1. Suppose that M ≥W/D. Then the following hold.

(A) If ∆3 ≥ 0, then TRC(T∗)= TRC(T∗4 ) and T∗ = T∗4 .

(B) If ∆2 > 0 and ∆3 < 0, then TRC(T∗)= TRC(T∗3 ) and T∗ = T∗3 .

(C) If ∆1 > 0 and ∆2 ≤ 0, then TRC(T∗)= TRC(T∗2 ) and T∗ = T∗2 .

(D) If ∆1 ≤ 0, then TRC(T∗)= TRC(T∗1 ) and T∗ = T∗1 .
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Case 2. Suppose that M <W/D ≤M/(1−α).

If M <W/D ≤M/(1−α), we know TRC(T) as follows from (2.7):

TRC(T)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

TRC1(T) if T ≥
M

1−α
,

TRC2(T) if
W

D
< T ≤

M

1−α
,

TRC5(T) if M ≤ T ≤
W

D
,

TRC4(T) if 0 < T ≤M.

(3.12)

From (2.8), derive TRC′5(T∗5 )= 0. Then, we can obtain

T∗5 =

√

√

√

√

2A+ cDM2
(

Ik − Ie
)

D
{

h+ cIk
[

1 + (1−α)2
]} . (3.13)

Then, we derive TRC′′5 (T) and find TRC′′5 (T) > 0. Therefore, TRC5(T) is a convex

function.

Similar as above procedure in Case 1, we substitute (3.1) into T∗1 ≥M/(1− α), then

we can obtain that

iff −

[

2A+
W2

D
(k−h)− cDM2Ie

]

+D

(

M

1−α

)2
(

k+ cIk
)

≤ 0. (3.14)

Substitute (3.2) into W/D < T∗2 ≤M/(1−α), then we can obtain that

iff −

[

2A+
W2

D
(k−h)− cDM2Ie

]

+D

(

M

1−α

)2
(

k+ cIk
)

≥ 0,

iff −

[

2A+ cDM2
(

Ik − Ie
)]

+
W2

D

{

h+ cIk
[

1 + (1−α)2
]}

< 0.

(3.15)

Substitute (3.13) into M ≤ T∗5 ≤W/D, then we can obtain that

iff −

[

2A+ cDM2
(

Ik − Ie
)]

+
W2

D

{

h+ cIk
[

1 + (1−α)2
]}

≥ 0,

iff − 2A+DM2
{

h+ c
[

(1−α)2Ik + Ie
]}

≤ 0.
(3.16)

Substitute (3.4) into T∗4 ≤M, then we can obtain that

iff − 2A+DM2
{

h+ c
[

(1−α)2Ik + Ie
]}

≥ 0. (3.17)
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Furthermore, we let

∆4 =−
[

2A+ cDM2
(

Ik − Ie
)]

+
W2

D

{

h+ cIk
[

1 + (1−α)2
]}

, (3.18)

∆5 =−2A+DM2
{

h+ c
[

(1−α)2Ik + Ie
]}

. (3.19)

Equations (3.9), (3.18), and (3.19) imply that ∆1 ≥ ∆4 > ∆5. From the above arguments,

we can summarize the following results.

Theorem 3.2. Suppose that M <W/D ≤M/(1−α). Then the following hold.

(A) If ∆5 ≥ 0, then TRC(T∗)= TRC(T∗4 ) and T∗ = T∗4 .

(B) If ∆4 ≥ 0 and ∆5 < 0, then TRC(T∗)= TRC(T∗5 ) and T∗ = T∗5 .

(C) If ∆1 > 0 and ∆4 < 0, then TRC(T∗)= TRC(T∗2 ) and T∗ = T∗2 .

(D) If ∆1 ≤ 0, then TRC(T∗)= TRC(T∗1 ) and T∗ = T∗1 .

Case 3. Suppose that M/(1−α) <W/D.

If M/(1−α) <W/D, we know TRC(T) as follows from (2.9):

TRC(T)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

TRC1(T) if T >
W

D
,

TRC6(T) if
M

1−α
≤ T ≤

W

D
,

TRC5(T) if M ≤ T ≤
M

1−α
,

TRC4(T) if 0 < T ≤M.

(3.20)

From (2.10), derive TRC′6(T∗6 )= 0. Then, we can obtain

T∗6 =

√

2A− cDM2Ie

D
(

h+ cIk
) if 2A− cDM2Ie > 0. (3.21)

Then, we derive TRC′′6 (T) and find TRC′′6 (T) > 0 when 2A− cDM2Ie > 0. Therefore,

TRC6(T) is a convex function when 2A− cDM2Ie > 0.

Similar as the above procedure in Cases 1 and 2, we substitute (3.1) into T∗1 >W/D,

then we can obtain that

iff −

[

2A− cDM2Ie
]

+
W2

D

(

h+ cIk
)

< 0. (3.22)

Substitute (3.21) into M/(1−α)≤ T∗6 ≤W/D, then we can obtain that

iff −

[

2A− cDM2Ie
]

+
W2

D

(

h+ cIk
)

≥ 0,

iff −

[

2A− cDM2Ie
]

+D

(

M

1−α

)2
(

h+ cIk
)

≤ 0.

(3.23)
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Substitute (3.13) into M ≤ T∗5 ≤M/(1−α), then we can obtain that

iff −

[

2A− cDM2Ie
]

+D

(

M

1−α

)2
(

h+ cIk
)

≥ 0,

iff − 2A+DM2
{

h+ c
[

(1−α)2Ik + Ie
]}

≤ 0.

(3.24)

Substitute (3.4) into T∗4 ≤M, then we can obtain that

iff − 2A+DM2
{

h+ c
[

(1−α)2Ik + Ie
]}

≥ 0. (3.25)

Furthermore, we let

∆6 =−
[

2A− cDM2Ie
]

+
W2

D

(

h+ cIk
)

,

∆7 =−
[

2A− cDM2Ie
]

+D

(

M

1−α

)2
(

h+ cIk
)

.

(3.26)

Equations (3.26) and (3.19) imply that ∆6 > ∆7 ≥ ∆5. From above arguments, we can

summarize the following results.

Theorem 3.3. Suppose that M/(1−α) <W/D. Then the following hold.

(A) If ∆5 ≥ 0, then TRC(T∗)= TRC(T∗4 ) and T∗ = T∗4 .

(B) If ∆7 ≥ 0 and ∆5 < 0, then TRC(T∗)= TRC(T∗5 ) and T∗ = T∗5 .

(C) If ∆6 ≥ 0 and ∆7 < 0, then TRC(T∗)= TRC(T∗6 ) and T∗ = T∗6 .

(D) If ∆6 < 0, then TRC(T∗)= TRC(T∗1 ) and T∗ = T∗1 .

4. Special cases

4.1. Goyal’s model. If α= 1, it means that the supplier would offer the retailer fully per-

missible delay in payments. If k = h, it means that the unit stock holding cost of the rented

warehouse and the unit stock holding cost of the retailer himself are equal. It implies that

the retailer’s storage capacity is unlimited. Therefore, when α= 1 and k = h, let

TRC7(T)=
A

T
+
DTh

2
+ cIkD(T −M)2/2T − cIeDM

2/2T ,

TRC8(T)=
A

T
+
DTh

2
− cIeDT

(

M−
T

2

)/

T ,

(4.1)

T∗7 =

√

√

√

√

2A+ cDM2
(

Ik − Ie
)

D
(

h+ cIk
) ,

T∗8 =

√

2A

D
(

h+ cIe
) .

(4.2)
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Step 1. If α= 1 and k = h, then use Theorem 4.1. Otherwise, go to Step 2.

Step 2. If M ≥W/D, then use Theorem 3.1. Otherwise, go to Step 3.

Step 3. If M <W/D ≤M/(1−α), then use Theorem 3.2. Otherwise, go to Step 4.

Step 4. If M/(1−α) <W/D, then use Theorem 3.3 and exit the procedure.

Algorithm 5.1

Then TRC′i (T
∗

i ) = 0 for i = 7,8. Equations (2.2), (2.7), and (2.9) will be reduced as fol-

lows:

TRC(T)=

⎧

⎪

⎨

⎪

⎩

TRC7(T) if M ≤ T ,

TRC8(T) if 0 < T ≤M.
(4.3)

Equations (4.3) will be consistent with [1, equations (1) and (4)], respectively. Hence,

Goyal [1] will be a special case of this paper. In addition, (3.2) and (3.3) will be reduced

as (4.2), respectively. That is, T∗2 and T∗3 obtained in this paper will be reduced as T∗7 and

T∗8 in (4.2), respectively. Then, (3.10) can be modified as ∆2 =−2A+DM2(h+ cIe). If we

let ∆=−2A+DM2(h+ cIe), Theorem 3.1 can be modified as follows.

Theorem 4.1. (A) If ∆ > 0, then T∗ = T∗8 .

(B) If ∆ < 0, then T∗ = T∗7 .

(C) If ∆= 0, then T∗ = T∗7 = T∗8 =M.

Theorem 4.1 has been discussed in Chung [2]. Hence, Theorem 1 in [2] is a special case of

Theorem 3.1 of this paper.

4.2. EOQ model. When α= 1, k = h, and M = Ik = Ie = 0, let

TRC9(T)=
A

T
+
DTh

2
, (4.4)

T∗9 =

√

2A

Dh
. (4.5)

Then TRC′9(T∗9 )= 0. Equations (2.2), (2.7), and (2.9) will be reduced to TRC9(T). Equa-

tion (4.5) is the optimal time interval of EOQ model. Therefore, EOQ model is a special

case of this paper.

5. The algorithm to determine T∗

Now, we will provide an algorithm to determine T∗ based on all theorems developed in

this paper.
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6. Numerical examples

To illustrate the results, let us apply the proposed method to efficiently solve the following

numerical examples. For convenience, the values of the parameters are selected randomly.

The optimal cycle time and optimal order quantity for different parameters of W , α, and

k are shown in Table 6.1. The following inferences can be made based on Table 6.1.

(1) For fixed α and k, increasing the value of W will result in a significant increase in

the value of the optimal cycle time for the retailer. It means that the retailer will

order more quantity since the retailer owns larger storage space to store more

items.

(2) For fixed W and k, increasing the value of α will result in a significant increase

in the value of the optimal cycle time for the retailer. It implies that the retailer

will order a larger quantity since the retailer can enjoy greater benefits when the

fraction of the delay payments permitted is increasing. So the supplier can use the

policy of increasing α to stimulate the demands from the retailer. Consequently,

the supplier’s marketing policy under partially permissible delay in payments will

be more agile than fully permissible delay in payments.

(3) Last, for fixed α and W , increasing the value of k will result in a significant de-

crease in the value of the optimal cycle time for the retailer. It means that the re-

tailer will order less quantity to avoid renting expensive warehouse to store these

exceeding items for a too long period when the retailer must rent warehouse.

7. Summary and conclusions

This paper extends the assumption of the fully permissible delay in payments in previ-

ously published results and considers two warehouses to reflect realistic business situ-

ations. We assume that the supplier will offer the retailer partially permissible delay in

payments under two warehouses to model the retailer’s inventory system. The retailer’s

policy involves inventory, marketing, and financing issues. We investigate this integrated

model as it is very important and valuable to the retailer. Then we develop three effective

and easy-to-use theorems to help the decision maker to find the optimal replenishment

policy. Theorem 3.1 gives the decision rule of the optimal cycle time when M ≥W/D after

computing the numbers∆1,∆2, and∆3. Theorem 3.2 does the decision rule of the optimal

cycle time when M <W/D ≤M/(1−α) after computing the numbers ∆1, ∆4, and ∆5. At

last Theorem 3.3 gives the decision rule of the optimal cycle time when M/(1−α) <W/D

after computing the numbers∆5,∆6, and∆7. Then we deduce Goyal’s model [1] and EOQ

model as special cases of this paper. Finally, numerical examples are given to illustrate all

effective theorems and obtained a lot of managerial insights.

A future study will further incorporate the proposed model into more realistic as-

sumptions, such as finite replenishment rate, probabilistic demand, and allowable short-

ages. In addition, in this paper, we focus on retailer’s inventory decisions in order quan-

tity and cycle time under these conditions we assumed. In the future, we will develop an

integrated-supplier-and-retailer inventory model to investigate optimal supplier’s strat-

egy and optimal retailer’s strategy.
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Table 6.1 Optimal cycle time and optimal order quantity.

Let A= $100/order, D = 1000 units/year, c = $15/unit, h= $3/unit/year, Ik = $0.1/$/year,

Ie = $0.07/$/year, and M = 0.12 year

W α k W/D M/(1−α) Judgements of ∆i(i= 1 ∼ 7) T∗ Q∗ TRC(T∗) Theorem

100

0.2

4 0.1 0.15 ∆1 < 0 ∆2 < 0 ∆3 < 0 T∗1 = 0.18824 188.2 899.3 1-(D)

6 0.1 0.15 ∆1 < 0 ∆2 < 0 ∆3 < 0 T∗1 = 0.16927 169.3 933.49 1-(D)

8 0.1 0.15 ∆1 < 0 ∆2 < 0 ∆3 < 0 T∗1 = 0.15724 157.2 957.77 1-(D)

0.5

4 0.1 0.24 ∆1 > 0 ∆2 < 0 ∆3 < 0 T∗2 = 0.19196 192 847.75 1-(C)

6 0.1 0.24 ∆1 > 0 ∆2 < 0 ∆3 < 0 T∗2 = 0.17329 173.3 884.65 1-(C)

8 0.1 0.24 ∆1 > 0 ∆2 < 0 ∆3 < 0 T∗2 = 0.16116 161.2 911.46 1-(C)

0.8

4 0.1 0.6 ∆1 > 0 ∆2 < 0 ∆3 < 0 T∗2 = 0.19732 197.3 817.1 1-(C)

6 0.1 0.6 ∆1 > 0 ∆2 < 0 ∆3 < 0 T∗2 = 0.17686 176.9 857.08 1-(C)

8 0.1 0.6 ∆1 > 0 ∆2 < 0 ∆3 < 0 T∗2 = 0.16379 163.8 885.87 1-(C)

200

0.2

4 0.2 0.15 ∆5 < 0 ∆6 < 0 ∆7 < 0 T∗1 = 0.20221 202.2 876.13 3-(D)

6 0.2 0.15 ∆5 < 0 ∆6 < 0 ∆7 < 0 T∗1 = 0.20162 201.6 876.15 3-(D)

8 0.2 0.15 ∆5 < 0 ∆6 < 0 ∆7 < 0 T∗1 = 0.20128 201.3 876.16 3-(D)

0.5

4 0.2 0.24 ∆1 > 0 ∆4 < 0 ∆5 < 0 T∗2 = 0.20483 204.8 823.36 2-(C)

6 0.2 0.24 ∆1 > 0 ∆4 < 0 ∆5 < 0 T∗2 = 0.20361 203.6 823.44 2-(C)

8 0.2 0.24 ∆1 > 0 ∆4 < 0 ∆5 < 0 T∗2 = 0.20289 202.9 823.49 2-(C)

0.8

4 0.2 0.6 ∆1 > 0 ∆4 < 0 ∆5 < 0 T∗2 = 0.21055 210.6 790.65 2-(C)

6 0.2 0.6 ∆1 > 0 ∆4 < 0 ∆5 < 0 T∗2 = 0.20781 207.8 791.05 2-(C)

8 0.2 0.6 ∆1 > 0 ∆4 < 0 ∆5 < 0 T∗2 = 0.2062 206.2 791.28 2-(C)

300

0.2

4 0.3 0.15 ∆5 < 0 ∆6 > 0 ∆7 < 0 T∗6 = 0.20269 202.7 876.12 3-(C)

6 0.3 0.15 ∆5 < 0 ∆6 > 0 ∆7 < 0 T∗6 = 0.20269 202.7 876.12 3-(C)

8 0.3 0.15 ∆5 < 0 ∆6 > 0 ∆7 < 0 T∗6 = 0.20269 202.7 876.12 3-(C)

0.5

4 0.3 0.24 ∆5 < 0 ∆6 > 0 ∆7 > 0 T∗5 = 0.2058 205.8 823.29 3-(B)

6 0.3 0.24 ∆5 < 0 ∆6 > 0 ∆7 > 0 T∗5 = 0.2058 205.8 823.29 3-(B)

8 0.3 0.24 ∆5 < 0 ∆6 > 0 ∆7 > 0 T∗5 = 0.2058 205.8 823.29 3-(B)

0.8

4 0.3 0.6 ∆1 > 0 ∆4 > 0 ∆5 < 0 T∗5 = 0.21279 212.8 790.33 2-(B)

6 0.3 0.6 ∆1 > 0 ∆4 > 0 ∆5 < 0 T∗5 = 0.21279 212.8 790.33 2-(B)

8 0.3 0.6 ∆1 > 0 ∆4 > 0 ∆5 < 0 T∗5 = 0.21279 212.8 790.33 2-(B)

Acknowledgments

The authors would like to thank anonymous referees for their valuable and constructive

comments and suggestions that have led to a significant improvement on an earlier ver-

sion of this paper. The NSC in Taiwan and CYUT partially finance this research, and the

project number is NSC 96-2221-E-324-007-MY3. C.-S. Lai is the corresponding author.

References

[1] S. K. Goyal, “Economic order quantity under conditions of permissible delay in payments,”

Journal of the Operational Research Society, vol. 36, no. 4, pp. 335–338, 1985.



Yung-Fu Huang et al. 17

[2] K.-J. Chung, “A theorem on the determination of economic order quantity under conditions

of permissible delay in payments,” Computers & Operations Research, vol. 25, no. 1, pp. 49–52,

1998.

[3] S. P. Aggarwal and C. K. Jaggi, “Ordering policies of deteriorating items under permissible delay

in payments,” Journal of the Operational Research Society, vol. 46, no. 5, pp. 658–662, 1995.

[4] H.-J. Chang, C.-H. Hung, and C.-Y. Dye, “A finite time horizon inventory model with dete-

rioration and time-value of money under the conditions of permissible delay in payments,”

International Journal of Systems Science, vol. 33, no. 2, pp. 141–151, 2002.

[5] H.-C. Liao, C.-H. Tsai, and C.-T. Su, “An inventory model with deteriorating items under in-

flation when a delay in payment is permissible,” International Journal of Production Economics,

vol. 63, no. 2, pp. 207–214, 2000.

[6] B. R. Sarker, A. M. M. Jamal, and S. Wang, “Supply chain models for perishable products under

inflation and permissible delay in payment,” Computers & Operations Research, vol. 27, no. 1,

pp. 59–75, 2000.

[7] A. M. M. Jamal, B. R. Sarker, and S. Wang, “An ordering policy for deteriorating items with al-

lowable shortage and permissible delay in payment,” Journal of the Operational Research Society,

vol. 48, no. 8, pp. 826–833, 1997.

[8] H.-J. Chang and C.-Y. Dye, “An inventory model for deteriorating items with partial backlogging

and permissible delay in payments,” International Journal of Systems Science, vol. 32, no. 3, pp.

345–352, 2001.

[9] H.-J. Chang, C.-H. Hung, and C.-Y. Dye, “An inventory model for deteriorating items with linear

trend demand under the condition of permissible delay in payments,” Production Planning and

Control, vol. 12, no. 3, pp. 274–282, 2001.

[10] M.-S. Chen and C.-C. Chuang, “An analysis of light buyer’s economic order model under trade

credit,” Asia-Pacific Journal of Operational Research, vol. 16, no. 1, pp. 23–34, 1999.

[11] H. Hwang and S. W. Shinn, “Retailer’s pricing and lot sizing policy for exponentially deterio-

rating products under the condition of permissible delay in payments,” Computers & Operations

Research, vol. 24, no. 6, pp. 539–547, 1997.

[12] A. M. M. Jamal, B. R. Sarker, and S. Wang, “Optimal payment time for a retailer under permitted

delay of payment by the wholesaler,” International Journal of Production Economics, vol. 66, no. 1,

pp. 59–66, 2000.

[13] B. R. Sarker, A. M. M. Jamal, and S. Wang, “Optimal payment time under permissible delay in

payment for products with deterioration,” Production Planning and Control, vol. 11, no. 4, pp.

380–390, 2000.

[14] J.-T. Teng, “On the economic order quantity under conditions of permissible delay in payments,”

Journal of the Operational Research Society, vol. 53, no. 8, pp. 915–918, 2002.

[15] K.-J. Chung, Y.-F. Huang, and C.-K. Huang, “The replenishment decision for EOQ inventory

model under permissible delay in payments,” Opsearch, vol. 39, no. 5-6, pp. 327–340, 2002.

[16] S. W. Shinn and H. Hwang, “Optimal pricing and ordering policies for retailers under order-

size-dependent delay in payments,” Computers & Operations Research, vol. 30, no. 1, pp. 35–50,

2003.

[17] K.-J. Chung and Y.-F. Huang, “The optimal cycle time for EPQ inventory model under permissi-

ble delay in payments,” International Journal of Production Economics, vol. 84, no. 3, pp. 307–318,

2003.

[18] Y.-F. Huang and K.-J. Chung, “Optimal replenishment and payment policies in the EOQ model

under cash discount and trade credit,” Asia-Pacific Journal of Operational Research, vol. 20, no. 2,

pp. 177–190, 2003.

[19] M. K. Salameh, N. E. Abboud, A.N. El-Kassar, and R. E. Ghattas, “Continuous review inventory

model with delay in payments,” International Journal of Production Economics, vol. 85, no. 1, pp.

91–95, 2003.



18 Mathematical Problems in Engineering

[20] Y.-F. Huang, “Optimal retailer’s ordering policies in the EOQ model under trade credit financ-

ing,” Journal of the Operational Research Society, vol. 54, no. 9, pp. 1011–1015, 2003.

[21] C.-T. Chang, L.-Y. Ouyang, and J.-T. Teng, “An EOQ model for deteriorating items under sup-

plier credits linked to ordering quantity,” Applied Mathematical Modelling, vol. 27, no. 12, pp.

983–996, 2003.

[22] A. Goswami and K. S. Chaudhuri, “An economic order quantity model for items with two levels

of storage for a linear trend in demand,” Journal of the Operational Research Society, vol. 43,

no. 2, pp. 157–167, 1992.

[23] C.-T. Chang, “An EOQ model with deteriorating items under inflation when supplier credits

linked to order quantity,” International Journal of Production Economics, vol. 88, no. 3, pp. 307–

316, 2004.

[24] K.-J. Chung and J.-J. Liao, “Lot-sizing decisions under trade credit depending on the ordering

quantity,” Computers & Operations Research, vol. 31, no. 6, pp. 909–928, 2004.

[25] Y.-F. Huang, “Optimal retailer’s replenishment policy for the EPQ model under the supplier’s

trade credit policy,” Production Planning and Control, vol. 15, no. 1, pp. 27–33, 2004.

[26] K. V. S. Sarma, “A deterministic order level inventory model for deteriorating items with two

storage facilities,” European Journal of Operational Research, vol. 29, no. 1, pp. 70–73, 1987.

[27] T. P. M. Pakkala and K. K. Achary, “A deterministic inventory model for deteriorating items

with two warehouses and finite replenishment rate,” European Journal of Operational Research,

vol. 57, no. 1, pp. 71–76, 1992.

[28] L. Benkherouf, “A deterministic order level inventory model for deteriorating items with two

storage facilities,” International Journal of Production Economics, vol. 48, no. 2, pp. 167–175,

1997.

[29] A. K. Bhunia and M. Maiti, “A two warehouse inventory model for deteriorating items with a

linear trend in demand and shortages,” Journal of the Operational Research Society, vol. 49, no. 3,

pp. 287–292, 1998.

Yung-Fu Huang: Department of Marketing and Logistics Management, Chaoyang University of

Technology, Wufong Township, Taichung County 41349, Taiwan

Email address: huf@mail.cyut.edu.tw

Chih-Sung Lai: Department of Business Administration, Chaoyang University of Technology,

Wufong Township, Taichung County 41349, Taiwan

Email address: cslai@cyut.edu.tw

Maw-Liann Shyu: Department of Business Administration, Chaoyang University of Technology,

Wufong Township, Taichung County 41349, Taiwan

Email address: mlshyu@cyut.edu.tw

mailto:huf@mail.cyut.edu.tw
mailto:cslai@cyut.edu.tw
mailto:mlshyu@cyut.edu.tw


Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


