
MANUFACTURING & SERVICE
OPERATIONS MANAGEMENT

Vol. 7, No. 3, Summer 2005, pp. 248–271
issn 1523-4614 �eissn 1526-5498 �05 �0703 �0248

informs ®

doi 10.1287/msom.1050.0081
©2005 INFORMS

Retailer-Supplier Flexible Commitments Contracts:
A Robust Optimization Approach

Aharon Ben-Tal, Boaz Golany, Arkadi Nemirovski
Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa 32000, Israel

{abental@ie.technion.ac.il, golany@ie.technion.ac.il, nemirovs@ie.technion.ac.il}

Jean-Philippe Vial
Department of Management Studies, University of Geneva, 40 Bd du Pont d’Arve, CH-1211 Geneva 4, Switzerland,

jean-philippe.vial@hec.unige.ch
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1. Introduction
The field of operations management (OM) contains
a vast collection of multiperiod problems concerning
production, inventory, scheduling, and distribution
decisions. Many of these problems involve uncer-
tain quantities such as demand rates, cost coefficients,
lead times, etc. Dynamic programming (DP) has long
emerged as the leading methodology to address such
problems and has lead to significant breakthroughs in
the early 1960s such as the optimality of base stock
or �s� S� policies (Scarf 1960, Veinott 1966). Stochastic
programming with recourse (SPR), which is the pre-
vailing approach to uncertain mathematical programs
(particularly linear programs) in the OR literature, has
also been applied to OM problems (see, e.g., van Delft
and Vial 2004).
DP is an attractive and powerful technique. It mod-

els the overall dynamic decision process as a sequence
of simpler optimization problems. This feature makes
it possible to reveal the theoretical structure of the
optimal policy for simple systems. DP is also very

flexible: it enables the modeling of problems with
nonlinear transitions or problems in which the actions
influence the transition probabilities. DP also has
its limitations, and some of them are quite severe.
The main drawback is the complexity of the under-
lying recursive optimization problems that explode
with the number of state variables, thus making DP
impractical for computing the actual policy param-
eters of large problems. This phenomenon, which
has become known as the “curse of dimensionality,”
has motivated the development of numerous ad-hoc
heuristic approaches that could only offer subopti-
mal solutions. DP also requires that the state variables
correctly summarize the past history. This require-
ment is violated by time correlated uncertainties.
This drawback can be circumvented with the help
of auxiliary state variables, but this fix is of limited
help because it intensifies the curse of dimensional-
ity. Finally, the time separability assumption makes it
difficult to model some global constraints, such as a
bound on the risk measured by the expected shortfall,
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because these constraints link several periods but are
not separable.
The SPR approach can be considered as a viable

alternative to some OM problems. Contrary to DP, SPR
is not plagued with the curse of dimensionality in
the state variables. It also handles global nonseparable
constraints very naturally (van Delft and Vial 2004).
However, its usefulness is limited to problems with
very few periods, because it is adversely affected by
the exponential explosion of the event tree when the
number of periods increases.
Approximate dynamic programming (ADP) (e.g.,

Bertsekas and Tsitsiklis 1996, Schweitzer and Seid-
mann 1985) offers an alternative to the standard
DP approach. It consists of approximating Bellman’s
value function and typically using either simulation-
based learning or linear programming to obtain the
parameters that define the approximation. In this way,
it becomes possible to work with larger dimensional
spaces. The simulation-based methods are involved
and do not offer a complexity bound. The linear pro-
gramming approach is relatively easier to implement
and solves an optimization problem with few decision
variables, yet still with a large number of constraints.
This is in contrast with the small size of the polynomi-
ally solvable LP or conic-quadratic problems that arise
in the methodology used in this paper.
Another difficulty associated with both stochas-

tic DP and SPR, where the typical objective is to
minimize expected cost, is the need to provide the
probability distribution functions of the underlying
stochastic parameters. This requirement creates a
heavy burden on the user because in many real-
world situations, such information is unavailable or
hard (costly) to obtain. Thus, the need arises for a
new optimization methodology that can address the
uncertain nature of the problem without making spe-
cific assumptions on probability distributions, which
is applicable to a wide range of OM problems and is
computationally tractable for problems with a large
number of state and decision variables, time periods,
and stochastic parameters.
The main purpose of this paper is to introduce

robust optimization (RO) as a general purpose com-
putational approach that can solve complex OM prob-
lems. RO was originally designed to handle static

problems that can be formulated as linear program-
ming (or conic-quadratic) problems with uncertain
parameters, where these parameters can reside any-
where in the LP (in the cost vector, the right-
hand side, or the activity matrix)—see Ben-Tal and
Nemirovski (2002). The description that RO requires
for the uncertainty is rather crude—the uncertain
parameters are assumed to reside within a deter-
ministic “uncertainty set.” RO adopts a min-max
approach that addresses data uncertainty by guar-
anteeing the feasibility and optimality of the solu-
tion against all instances of the parameters within the
uncertainty set.
The RO modeling technique has been successfully

applied to some large-scale and highly complex engi-
neering design problems (Ben-Tal and Nemirovski
1997, Ben-Tal et al. 1999) and is gradually taking a
place in optimization similar to the role of robust con-
trol in control theory. Recently, Bertsimas and Thiele
(2004) have developed RO models for various sup-
ply chain settings and showed the advantages of the
technique over DP in situations where the underlying
probability distribution of the uncertain parameters
is not known exactly. For a summary of the state of
the art in RO, the reader is referred to Ben-Tal and
Nemirovski (2002) and references therein.
The original RO model deals with static problems

where all the decision variables have to be deter-
mined before any of the uncertain parameters are real-
ized. This is not the typical situation in most OM
problems that are multiperiod in nature, and where
a decision at any period can and should account
for data realizations in previous periods. Recognizing
the need to address such dynamic environments, RO
was recently extended into a new paradigm termed
as affinely adjustable robust counterpart (AARC); see
Ben-Tal et al. (2004). A main feature in AARC is that
part of the decision variables can be determined after
a portion of the uncertain data is realized. In the
AARC method, the dependence of these “adjustable”
variables on the realized data is restricted to be in the
form of affine functions. This restriction is imposed
to achieve tractability. Indeed, in the AARC method,
the family of uncertain linear programs is replaced by
a single tractable deterministic problem (either a linear
or a conic-quadratic one). The price to pay for using
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only suboptimal policies is, of course, problem spe-
cific but, at least for the problem we discuss here, a
large simulation study reveals that it is very low.
To demonstrate the use of AARC to OM settings,

we consider in this paper a two-echelon T -period
supply chain problem known as the retailer-supplier
flexible commitment (RSFC) model. This problem
involves a retailer who faces uncertain demand for a
product by end customers. The retailer orders from
a supplier and operates under a contract whereby he
commits (at time zero) to a vector of order quan-
tities over a fixed time horizon, and then dynami-
cally replaces these committed quantities with actual
orders. Besides the usual costs (ordering, holding,
and shortage) and ending salvage values, the retailer
incurs additional cost stemming from penalties on
deviations between actual and committed orders
and deviations between successive committed/actual
orders.
Like any other method, AARC also has some limi-

tations. At present, it is applicable only to multistage
finite horizon problems whose deterministic versions
are linear programs. Also, the method works only on
problems where the uncertainty is exogenously given,
rather than influenced by endogenous decision vari-
ables. For example, it will not be applicable to multi-
stage pricing problems where the market price chosen
today influences the uncertainty associated with the
demand tomorrow. The AARC method uses a min-
max objective function, which is reasonable if no reli-
able knowledge of the probability distributions of
the uncertain parameters is available. Otherwise, an
objective function based on expectation, median, etc.,
may be more appropriate and will result in a less con-
servative policy. However, we argue that even in the
latter case, a decision maker who wants a strong guar-
antee on the performance of his chosen policy in the
face of uncertainty may adopt a min-max approach.
Finally, the AARC uses a linear decision rule to obtain
an approximated solution and there is no guarantee
that the optimal solution (which is often impossible
to find) is close to a linear decision rule.
The rest of this paper is organized as follows. In §2

we describe in detail the RSFC model and review the
relevant literature on this model. We first consider the
RSFC problem in the case of known (certain) demand
and model it as a linear programming problem. For

uncertain data we develop in §2.2 the min-max-based
adjustable robust optimization model (called min-max
RSFC) that allows decisions at period t to be functions
of past demands (i.e., policies). We then outline in §2.3
the DP approach to solve the min-max RSFC prob-
lem and discuss its limitations. For the case where
the uncertainty is a T -dimensional box, we show that
an optimal solution of the min-max RSFC problem
can be obtained by solving a large-scale linear pro-
gram (with design dimension of order 2T ). In §3 we
present our general methodology for solving min-max
multiperiod uncertain linear programming problems.
We start with a nonadjustable robust counterpart (RC)
formulation, develop the corresponding adjustable RC
(ARC) model, and then approximate it through the
AARC method. We then apply the general AARC
methodology to the specific RSFC problem and derive
a single deterministic convex optimization problem
that is either a linear program or a conic-quadratic
one—thus, a tractable problem even for large-scale
instances. In §4 we report on a large simulation exper-
iment that we designed to test the performance of
the AARC. First, we benchmark the AARC and the
RC solutions against the optimal solution of a min-
max RSFC problem with box uncertainties. Then, we
analyze the actual cost that AARC yields through
its mean value across many simulations, and com-
pare it to the mean solution that might be generated
under perfect information conditions. This is followed
by several additional analyses in which we tested
other aspects of the proposed approach. These aspects
include an investigation of the linear decision rule
policies that AARC yields, a comparison to base stock
policies, an investigation of the effects of box versus
ellipsoidal uncertainty sets, a study of the effects of
information gaps, analysis of the trade-off between
various parameters, and a study of a folding-horizon
version of the problem. Then, in §5 we briefly dis-
cuss possible extensions of the basic RSFC model to
incorporate additional features such as multiproduct
settings, randomness in the cost coefficients, random
yield in the fulfillment of the retailer’s orders by the
supplier, and additional types of penalties on devia-
tions from cumulative commitments. Finally, §6 offers
a summary and concluding remarks.
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2. The RSFC Problem
2.1. Literature Review
Demand uncertainty is a source of contention among
supply chain parties. In conventional settings, each
party tries to pass on as much of the uncertainty bur-
den as possible to other parties. From a retailer’s per-
spective, it is desireable to hold as little inventory as
possible. A retailer orders in each period and adjusts
the orders up or down according to the customers’
actual demand. However, shortage costs motivate the
retailer to keep some inventory, and order costs often
cause him not to order in each period. When this
happens, the situation worsens because the variabil-
ity increases as information flows backward in the
chain. This contributes to the celebrated “bullwhip”
effect (see, e.g., Lee et al. 1996). A supplier naturally
wishes the opposite—he would like to see the retailer
buy the material in advance and keep a large inven-
tory to meet the fluctuations in external demand. One
of the traditional tools that suppliers have employed
to entice retailers in this direction is to offer quantity
discounts (Monahan 1984).
In recent years several studies have pointed out

the potential benefit to both suppliers and retailers
from implementing a new coordination mechanism,
known as “flexible commitments” (Bassok et al. 1997,
Bassok and Anupindi 1998, Anupindi and Bassok
1999). The purpose of a flexible commitment agree-
ment between a retailer and a supplier is to assist
both of them in facing the uncertainty that is associ-
ated with the external demand. It is assumed that the
retailer’s position in the chain enables him to better
forecast the future demand of his customers. There-
fore, the retailer is expected to help the supplier by
providing him with advanced information in the form
of future commitments. These are estimates of his
future orders for a given number of future periods.
In return, the supplier offers him a discounted cost
as long as his actual orders do not differ too drasti-
cally from the original commitments and charges cer-
tain penalties otherwise. Now, given these cost and
penalty parameters and facing uncertain demand, the
retailer’s challenge is to find an optimal ordering pol-
icy minimizing the maximal (with respect to all pos-
sible demand) total cost. We refer to this class of
problems as retailer-supplier flexible contracts (RSFC)
models.

The concept of flexible commitments was pro-
posed in several variants by its original developers.
In Bassok and Anupindi (1997), the authors specify
a model in which the buyer commits to purchasing
at least a given total quantity of a single product
over a finite time horizon. The model specifies an
additional volume that is also available at the same
price and a higher price is charged for any quantity
larger than that volume. Another variant (Anupindi
and Bassok 1999) allows the buyer to submit to the
supplier initial forecasts for his period-by-period pur-
chases over a T -period horizon. Then, he may revise
each period’s purchase one time within specified per-
centage bounds. For this scenario, the authors pro-
pose a heuristic policy and discuss its effectiveness.
The RSFC model in its different variants is an

NP-hard problem. Although it is possible to formu-
late it by means of standard inventory recursions, it
is impractical to solve it through a standard dynamic
programming procedure when the number of deci-
sion and state variables is large. Recognizing this dif-
ficulty, researchers have developed various heuristics
to solve the problem. Bassok et al. (1997) developed
lower and upper bounds and then showed that the
gap between them is small enough to allow using the
upper bound as an approximate solution. The lower
bound is based on relaxing the constraints in the
model that relate order quantities to commitments—
yielding a standard newsvendor problem. The upper
bound is generated by maximizing the probability of
being able to raise the inventory in each period to
the base stock level (as obtained by the newsven-
dor solution). For the T -period RSFC problem with
minimum total commitments, Bassok and Anupindi
(1997) showed that the optimal policy is given by
T critical numbers, consisting of T order-up-to levels
�S1� S2� � � � � ST � and an additional order-up-to level SM

that corresponds to a single-period newsvendor prob-
lem with zero purchase costs. Until the minimum
commitment is met (say, at period t), the retailer
orders according to SM , and from that period onward
he orders according to St−1� � � � � S1. The T order-up-
to levels are computed through a stochastic dynamic
program, and SM is found through the ordinary
newsvendor solution.
The pioneering work of Bassok and Anupindi was

joined by Tsay (1995) and later by Tsay and Lovejoy
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(1999) who studied a rolling-horizon contract in a
multiple echelon setting, allowing for nonstationary
demand with information updating. They defined
two types of supply nodes: a “flex” node, which deals
with internal demand from a downstream production
stage, and a “semiflex” node that deals with exter-
nal demand. The authors developed an open loop
feedback control (OLFC) heuristic to determine the
actions of a flex node and showed that a determin-
istic OLFC model yields a “minimum commitment”
policy, where at any period the present decisions min-
imize the exposure to future costs subject to meet-
ing service requirements. For a semiflex node they
again formulate an OLFC model. However, the latter
does not induce a deterministic formulation. Hence,
the authors had to develop heuristics that relaxed the
model and led to a “sequential fractile” policy that is a
generalization of a multiperiod newsvendor problem.
More recently, Urban (2000) suggested extensions to
multiproduct, multiconstraint models, and Chen and
Krass (2001) developed a total order quantity com-
mitment model and studied its performance under
various conditions.
All the exact models formulated in the papers

reviewed above suffer from the “curse of dimen-
sionality” that is common to stochastic DP models.
Therefore, optimal solutions for these models can be
obtained, at best, for small size problems; while for
more realistic problem sizes they offer only approxi-
mate solutions that are based on heuristic procedures.
Furthermore, most of the heuristics mentioned above
are based to a certain extent on solutions of the well-
known newsvendor problem. When the structure of
the problem deviates from the classical assumptions
pertaining to the newsvendor model, the performance
of these heuristics may be questionable. In contrast,
the RO methodology we propose hereafter does not
depend on the classical assumptions and is quite
capable of addressing a wide variety of flexible com-
mitment arrangements at the expense of more sophis-
ticated computation.

2.2. Model Formulation
We consider a single-product, two-echelon, multi-
period supply chain in which inventories are man-
aged periodically over a finite horizon of T periods.
At the beginning of the planning horizon the retailer

specifies a vector of commitments w = w1� � � � �wT for
the product. These commitments serve as forecasts
for the supplier who uses them to determine his pro-
duction capacity. At the beginning of each period t,
the retailer has an inventory of size xt and he orders a
quantity qt from the supplier at a unit cost ct . The cus-
tomers then place their demands dt . The retailer’s sta-
tus at the beginning of the planning horizon is given
through the parameters x1 (initial inventory) and w0
(a nominal value that might represent the last order
prior to the planning horizon or some average of pre-
vious orders). Consequently, the following costs are
incurred:
• holding cost= htmax�0�xt +qt −dt�, where ht are

the unit holding costs,
• shortage cost= ptmax�0�dt −xt −qt�, where pt are

the unit shortage costs.
Moreover, due to the stipulations in the contract, the
retailer incurs the following additional costs:
• penalty due to deviations between committed

and actual orders (“forecast error”)

�+
t max�qt −wt�0�+�−

t max�wt − qt�0��

where �+
t , �−

t are the unit penalties for positive and
negative deviations, respectively;
• penalty on deviations between successive com-

mitments

�+
t max�wt −wt−1�0�+�−

t max�wt−1−wt�0��

where �+
t , �−

t are the associated unit penalties.
Inventory xT+1 left at the end of period T has a

unit salvage value s.1 To make sense in our context,
s must be smaller than cT . Also, as we show later,
to maintain convexity of the objective function in our
model, s must satisfy for the terminal period T the
inequality

hT − s ≥ −pT � (1)

The constraints in the model include
(a) “balance” equations that link the inventory in

each period to the inventory, order quantity, and
demand in the preceding period;
(b) upper and lower bounds on the order quantities

in each period, Lt ≤ qt ≤Ut ; and

1 For a thorough discussion of ending inventory valuation, the
reader is referred to Fisher et al. (2001).
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(c) upper and lower bounds on cumulative order
quantities in each period, �Lt ≤∑t

�=1 q� ≤ �Ut .
The choice of values to be assigned to the parame-

ters in the last two types of constraints �Lt�Ut� �Lt� �Ut�

offers a flexible modeling of various contractual
agreements between the retailer and the supplier. For
example, if the retailer only commits to a minimal
cumulative quantity L for the entire horizon (as in
Bassok and Anupindi 1997) we would set

Lt = �Lt = 0 ∀ t < T � LT = 0� �LT = L� and

Ut = �Ut = 
 ∀ t�

If all the model’s parameters are known, includ-
ing the demand vector d = �d1� � � � � dT �, then the RSFC
problem is represented by the following deterministic
mathematical program (where ���+ ≡max���0�):

min
x� q�w

{
−s�xT+1�

+ +
T∑

t=1
�ctqt +ht�xt+1�

+ + pt�−xt+1�
+

+�+
t �qt −wt�

+ +�−
t �wt − qt�

+ +�+
t �wt −wt−1�

+

+�−
t �wt−1−wt�

+�
}

(2)

s.t. �a�� xt+1 = xt + qt − dt� t = 1� � � � � T �

�b�� Lt ≤ qt ≤Ut� t = 1� � � � � T �

�c�� �Lt ≤
t∑

�=1
q� ≤ �Ut� t = 1� � � � � T �

Problem (2) can be further reduced to a linear pro-
gramming problem by adding auxiliary variables that
eliminate piecewise linear terms in the original for-
mulation. This results in the following LP model:

LP RSFC

min
w�x�q�y�z

T∑
t=1

�ctqt + yt +ut + zt� (3)

s.t. �a�� �b�� �c�� and ∀ t = 1� � � � � T �

�e1�� yt ≥ h̄txt+1�

�e2�� yt ≥ −ptxt+1�

�f1�� ut ≥ �+
t �qt −wt��

�f2�� ut ≥ −�−
t �qt −wt��

�g1�� zt ≥ �+
t �wt −wt−1��

�g2�� zt ≥ −�−
t �wt −wt−1��

where h̄t = ht ∀ t = 1� � � � � T − 1, h̄T = hT − s, and
the new variables yt , ut , zt are upper bounds on the
piecewise linear components in the objective func-
tion of (2): yt represents the holding and shortage
costs as well as accounting for the salvage value in
the last period; ut represents the forecast error penal-
ties; and zt represents the commitments inconsistency
penalties.
In reality the demand vector d is, of course, uncer-

tain. Consequently, at any time t, the inventory in
the system should be treated as a state variable xt

evolving according to the balance equation xt+1 =
xt + qt − dt , where dt is the exogenous uncertain
demand and the order qt is chosen by the retailer
and can, in principle, be an arbitrary function of the
events preceding time t. For a given ordering policy,
the events preceding time t are uniquely defined by
the past demands dt−1 = �d1� � � � � dt−1�, so that without
loss of generality the retailer’s policy can be thought
of as a collection qt�dt−1� of decision rules specify-
ing current orders as functions of the past demands.
For such a policy, the states of the inventory and all
other related variables in (3) (i.e., yt , ut) also become
functions of demands linked with each other by the
constraints

xt+1�dt�= xt�d
t−1�+ qt�d

t−1�− dt�

Lt ≤ qt�d
t−1�≤Ut�

�Lt ≤
t∑

�=1
q��d

�−1�≤ �Ut�

(4)

�e1�� yt�d
t−1�≥ h̄txt+1�d

t��

�e2�� yt�d
t−1�≥ −ptxt+1�d

t��

�f1�� ut�d
t−1�≥ �+

t �qt�d
t−1�−wt��

�f2�� ut�d
t−1�≥ −�−

t �qt�d
t−1�−wt��

�g1�� zt ≥ �+
t �wt −wt−1��

�g2�� zt ≥ −�−
t �wt −wt−1��

which should be satisfied for all demand trajecto-
ries dT from a given domain. Note that wt and zt
relate to decisions that must be made before any real-
ization of the data becomes known, and therefore they
are not given as functions of the demand trajectories.
Our goal now is to choose all the dependencies

xt+1�dt�, qt�dt−1�� � � � in an optimal fashion under the



Ben-Tal, Golany, Nemirovski, and Vial: A Robust Optimization Approach
254 Manufacturing & Service Operations Management 7(3), pp. 248–271, © 2005 INFORMS

restriction that the above constraints (which now
become inequalities/equalities between functions of
the demands) are satisfied for any dT from the set of
all possible demand trajectories. In this context, two
standard concepts of optimality are used. The first,
used in stochastic programming, assumes that the set
of demand trajectories is associated with a probabil-
ity distribution, and the goal is to minimize the cor-
responding expected cost. The second concept—the
min-max approach—requires the minimization of the
maximal cost over all demand trajectories. The lat-
ter is the approach we adopt in this paper because
(as explained in §1) we wish to address situations
where the demand is only known to belong to a
(convex and bounded) uncertainty set �T = �1 ×
�2 × · · · × �T , where �t is the uncertainty of the
demand dt at period t. The min-max model can be
written as

Min-Max RSFC Problem

min
0≤wt� zt� xt �·�� qt �·�� yt �·�� ut �·�

�t=1�2�����T �

max
d∈�T

{
E =

T∑
t=1

�ctqt�d
t−1�+ yt�d

t−1�

+ut�d
t−1�+ zt�

}
(5)

s.t. ∀dt ∈�t =�1×�2×···×�t� t=1�2�����T �

xt+1�d
t�= xt�d

t−1�+ qt�d
t−1�− dt�

Lt ≤ qt�d
t−1�≤Ut�

�Lt ≤
t∑

�=1
q��d

�−1�≤ �Ut�

�e1�� yt�d
t−1�≥ h̄txt+1�dt��

�e2�� yt�d
t−1�≥ −ptxt+1�dt��

�f1�� ut�d
t−1�≥ �+

t �qt�d
t−1�−wt��

�f2�� ut�d
t−1�≥ −�−

t �qt�d
t−1�−wt��

�g1�� zt ≥ �+
t �wt −wt−1��

�g2�� zt ≥ −�−
t �wt −wt−1��

(6)

2.3. Methods for Solving the Min-Max
RSFC Problem

A standard approach to solving multiperiod prob-
lems such as (5) is dynamic programming (DP)
(see Iyengar 2005). Here the formulation of the DP

problem is as follows:

Min-Max DP

min
0≤w1�w2�����wT

{
F �w1�w2� � � � �wT �

=
T∑

t=1

[
�+

t �wt −wt−1�
+ +�−

t �wt−1−wt�
+]

+ f1�w1�w2� � � � �wT �x1� �q1�
}
� (7)

where f1�w1�w2� � � � �wT !x1� �q1� is computed recur-
sively for fixed wts in terms of the state variables xt =
inventory level at start of period t (x1 is a given data)
and �qt = cumulative order in periods 1�2� � � � � t − 1
� �q1 = 0�, as follows:

ft�wt�wt+1� � � � �wT �xt� �qt�
=min

qt∈ �Qt

max
dt∈�t

#ctqt +max�h̄txt+1�−ptxt+1�$

+�+
t �qt −wt�

+ +�−
t �wq − qt�

+

+ ft+1�wt+1+�wt+2� � � � �wT �xt+1� �qt+1��




1≤ t ≤ T − 1 (8)
where xt+1 = xt +qt −dt , �qt+1 = �qt +qt , and �Qt is the set

�Qt = #qt� Lt ≤ qt ≤Ut� �Lt − �qt ≤ qt ≤ �Ut − �qt$�
The end condition for the recursion is explicitly
given by

fT �wT �xT � �qT �
= min

qT ∈ �QT

max
dT ∈�T

#cT qT +�+
T �qT −wT �

+ +�−
T �wT − qT �

+

+max#�hT − s��xT + qT − dT ��−pT �xT + qT − dT �$︸ ︷︷ ︸
g�qT �

$�

Note that the piecewise linear function g�·� is convex
if and only if hT − s ≥ −pT , a condition we assumed a
priori (see Equation (1)).
An attempt to solve the min-max RSFC problem

via the DP formulation (7) would encounter severe
difficulties: the objective function F �w1�w2� � � � �wT �

is generically nonsmooth. Each function evaluation
needs the solution of the Bellman Equation (8), that
(in the case of continuous demand) may entail the dis-
cretization of the state variables xt , �qt and hence pro-
duce only an approximate value of F �w�. Moreover,
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the above computation does not produce derivative
(or subdifferential) information. Hence, F �w� has to
be minimized by a zero-order optimization method
(i.e., one that uses only function values), and such
methods are notoriously slow. To make things worse,
when extending the RSFC problem to the case of more
than one product, even the computation of ft via
the Bellman recurrence, for a fixed w = �w1� � � � �wT �,
becomes infeasible for realistic problem sizes.
There is, however, a case where problem (5) itself

can be solved directly. This is the case where the
uncertainty set is a T -dimensional box:

�box =�1×�2× · · · ×�T � (9)

where

�t = �dmint � dmaxt �� t = 1�2� � � � � T � (10)

with dmint < dmaxt . In this case, it can be shown2 that
problem (5) is equivalent to a problem where �box is
replaced by a finite set �ext consisting of the extreme
points of �box. We call this problem Pext. In this equiv-
alent problem, the uncertainty set includes 2T extreme
demand trajectories that can be naturally identified with
a path of length T in a binary tree.
Thus, the problem can be identified with a regu-

lar stochastic problem with a binary event tree and a
min-max objective criterion. The so-called determinis-
tic equivalent is a simple extension of the base deter-
ministic problem, in which the temporal variables and
constraints are made contingent to the nodes of the
event tree. This is a large LP because for a problem
with horizon T , the number of nodes is of order 2T .
When T is a moderate integer like 10–12, the result-
ing problem can be routinely solved to high accuracy
by a standard LP solver. We have used this scheme in
our computational study (see §4.2).

3. Robust Optimization (RO)
Formulation of the RSFC Problem

3.1. The RO Methodology for Multiperiod
Problems

The RSFC problem, like many other OM problems, is
an instance of a generic uncertain T -period LP prob-
lem whose data #�At� ct� bt�� t = 1�2� � � � � T $ depend

2 See the appendix.

affinely on a vector of uncertain parameters ) =
�)1�)2� � � � �)T �:

min
x=�x1�����xT �

{ T∑
t=1

ct�)�xt�
t∑

�=1
x�A

�
t �)�≤ bt�)��

t = 1�2� � � � � T
}
� (11)

where A�
t and bt are vectors of the same dimension.

The RO approach was developed to deal with situ-
ations in which the vector of uncertain parameters )
is only known to reside within an uncertainty set *.
Thus, formulation (11) in fact represents a family of
LPs—one for each possible realization of the uncer-
tain data.
Rather than adopting a feedback control policy

(such as the one that is obtained by solving the min-
max DP RSFC (7)), suppose that our “min-max deci-
sion maker” wants to optimally choose, a priori at
the beginning of Period 1, a vector of fixed decisions
through time. He then solves the following single
deterministic problem (the so-called robust counterpart
(RC) of (11)):

RC

E∗ = min
x=�x1�����xT �

max
)∈*

{ T∑
t=1

ct�)�xt�
t∑

�=1
x�A

�
t �)�≤ bt�)�

∀) ∈*� t = 1�2� � � � � T
}
� (12)

A solution x∗ of (12) is called robust. Such a solution
satisfies the constraints for all possible realizations of
the data ) ∈ *, and guarantees an optimal objective
function value not worse than E∗. Note that while
the data �A� c� b� depend on the realization of ), the
decision vector x is not dependent on any particular
scenario.
Problem (12) being a semi-infinite LP seems compu-

tationally intractable, yet it turns out that for a wide
variety of compact, convex3 uncertainty sets *, the
RC model is a tractable (polynomially solvable) con-
vex mathematical problem, typically an LP or a conic-
quadratic problem (see Ben-Tal and Nemirovski 2000,
2002). In particular, Bertsimas and Thiele (2004) have

3 Note that when * is composed of a finite number of points (sce-
narios), it can be replaced by its convex hull—a compact convex set.
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used the RC approach (with polyhedral uncertainty
sets, yielding an RC that is an LP) to study classi-
cal supply chain problems. They derived qualitative
results on the structure of the optimal policy that par-
allels the classical �s� S� policy.4

For the general time dependent (multiperiod) prob-
lem (12), where the entire decision vector x is to be
determined before actual realization of the uncertain
data �At� ct� bt� occurs, one may encounter difficult
cases where no feasible solution exists or where the
objective function is grossly overestimated. For exam-
ple, this is the case when (12) involves flow balance
constraints and lost sales rather than backlogging.
These difficulties can be remedied if we take into
account the fact that in multiperiod settings part of
the decisions do not have to be determined a priori.
Instead, some of the decisions can be delayed to later
periods when part of the uncertain parameters have
already become known.
To be specific, let the vector x be partitioned to x =

�xa� xna�. The subvector xna (nonadjustable variables)
consists of “here and now” decisions, i.e., those that
must be determined before any uncertain data is real-
ized. (In the RSFC problem, these are: q1—the first
period order—and the commitments w1�w2� � � � �wT .)
The subvector xa (adjustable variables) consists of
“wait and see” decisions that can be adjusted based
on the revealed data by the time the decision must be
made (in the RSFC problem xa = �q2� � � � � qT �).
The partition of x = �xa� xna� induces a partition of

the index set #1�2� � � � � T $= Ia ∪ Ina, in terms of which
we can now model our time-dependent (multiperiod)
uncertain LP as follows:

Min-Max Multiperiod Adjustable Robust Counterpart
�ARC�

min
xna�E

{
E� such that ∀) ∈* ∃xt = xt�)

t−1�� t ∈ Ia�

∑
�∈Ina

c� �)�x� + ∑
�∈Ia

c� �)�x��)
�−1�≤ E�

∑
�∈Ina�t�

x�A
�
t �)�+

∑
�∈Ia�t�

x��)
t−1�A�

t �)�≤ bt�)��

t = 1�2� � � � � T
}
� (13)

4 Note that in the RSFC problem, an �s� S� policy is not necessarily
optimal even in the deterministic case due to the additional penalty
terms in the objective function and the additional constraints.

where )s = �)1� � � � �)s�,

Ina�t�= Ina ∩ #1� � � � � t$� Ia�t�= Ia ∩ #1� � � � � t$�

The min-max RSFC problem (5) is a particular
instance of the general model (13). A special feature
of (5) is that its constraints admit a simple form

f �xa + g�xna ≥ l�d�� (14)

where the right-hand side l�d� is an affine function
of the uncertain demand vector d while the parame-
ters on the left-hand side of (14) are certain (� stands
for transpose). As a demonstration, consider con-
straint (3e1) for t < T . By eliminating the xt variables
using the balance equation (2a), constraint (3e1) after
rearrangement becomes

�e1� yt −ht

t∑
�=1

q� ≥ htx1−ht

t∑
�=1

d� �

Note that now we have on the left-hand side a linear
term with certain coefficients involving the adjustable
variables yt and q2� � � � � qt and the nonadjustable vari-
able q1. All the uncertain terms are in the right-hand
side, which is indeed an affine function of d. In fact,
all the constraints in the LP RSFC problem are of the
same general form (14).
The added flexibility offered by the ARC model (13)

is offset by the fact that it is often computationally
intractable (NP-hard). This is the case even for sim-
ple uncertainty sets (e.g., a general polyhedral set);
see Ben-Tal et al. (2004). The core of the difficulty in
solving the ARC model is the unknown functional
relations between xa

t and the “history” )t−1. To over-
come this difficulty, Ben-Tal et al. (2004) suggested
to approximate the ARC solution by restricting these
functional relations to be affine. Thus, each adjustable
variable xa

t in (13) is substituted by the following linear
decision rule (LDR):

xa
t �)

t−1�=/0t +
t−1∑
�=1

/�
t )�� (15)

where the coefficients /�
t are the new decision vari-

ables. Note that the actual value of the policy xa
t �)

t−1�
will be determined by (15) only at period t when the
vector )t−1 has been realized.
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The idea of focusing on LDRs is quite a common
heuristic in many branches of science and engineering
(linear controllers or linear feedback rules in control
theory, linear estimators/predictors in signal process-
ing, etc.). In a different context, LDRs were suggested
in the early 1960s by Holt et al. (1960, Ch. 6) to study
the existence of a certainty equivalent in stochastic
decision problems.
With the affine transformation (15), the ARC model

is approximated by the affinely adjustable RC (AARC)
model:

AARC

E∗∗ = min
xna�E�/�

s

{
E� ∀) ∈*�

∑
�∈Ina

c� �)�x� + ∑
�∈Ia

c� �)�

·
[
/0� +

�−1∑
s=1

/s
�)s

]
≤ E�

∑
�∈Ina�t�

x�A
�
t �)�

+ ∑
�∈Ia�t�

[
/0� +

�−1∑
s=1

/s
�)s

]
A�

t �)�≤ bt�)��

t = 1�2� � � � � T
}
� (16)

The minimal cost E∗∗ that the AARC model yields is
“optimal” in the sense that no other solutions to (13),
for which the adjustable vector xa depends linearly on
the uncertain parameters, can do better while satisfy-
ing the constraints for all possible realizations ) ∈ *.
Note that the RC model (12) is a “degenerate” special
case of the AARC model where all the variables /�

t

are forced to be 0 for t = 1� � � � � T and � > 0.
An important class of AARC models (referred to

as “fixed recourse”) corresponds to a situation where
the parameters �ct�A�

t �, associated with the adjustable
variables in the uncertain LP (13), are not uncertain.
In particular, the RSFC problem belongs to this class
(see (14) and the discussion therein). For problems
in this class, AARC depends affinely on all uncertain
parameters, and its mathematical structure is similar
to that of the RC model (12). As a result, AARCs
with fixed recourse are computationally tractable for
a wide spectrum of uncertainty sets (see Ben-Tal et al.
2004).5

5 For the nonfixed recourse case, good approximations of AARC
(with guaranteed level of proximity to the true optimal solutions)
are available (see Ben-Tal et al. 2004, §4).

3.2. Applying the AARC Model to the
RSFC Problem

The first step in converting the RSFC problem to its
AARC formulation is to determine the specific form
of the linear decision rules for the adjustable vari-
ables qt (for t > 1). Here we set

�i� qt = q0t +
t−1∑
�=1

q�
t d��

�ii� q�
t = 0 if ��� t� ∈ Jt�

(17)

where Jt denotes the pairs ��� t�, 1≤ � < t, such that qt
does not depend on the demand d� at period � . Jt may
include periods � that are too distant in the past, or it
may include periods that are too close to the present.
For example, if there exists a two-period delay in
reporting past demands, then Jt = #t − 1� t − 2$.
With qt being affine functions of the demand d� ,

� < t, the balance equations (2a) enforce the vari-
ables xt+1 to also become affine functions of the d�s:

xt+1�d
t�= x0t+1+

t∑
�=1

x�
t+1d� � (18)

With this definition of xt+1, the variables yt (see (3e))
should become maxima of affine functions of the d�s.
However, working with variables that are piecewise
linear functions of the data would lead to a very
complicated robust counterpart. To overcome this
difficulty and keep the problem tractable, we take a
somewhat conservative approach by making the yts
affine functions of the d�s. With this approach (which
works both for the yts and for the uts, see (3e)
and (3f)), we arrive at

yt = y0t +
t−1∑
�=1

y�
t d��

ut = u0t +
t−1∑
�=1

u�
t d� �

(19)

The variables zt , on the other hand, are affected only
by the nonadjustable variables wt , and so they are not
substituted by an affine function of the demands.
The second step in building the AARC formulation

is the selection of the uncertainty set for the objective
function and each of the constraints of problem (3)
involving the uncertain demands. A guiding princi-
ple is to choose uncertainty sets for which the resul-
tant AARC can be solved efficiently. From the theory
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in Ben-Tal and Nemirovski (2000), we know that this
will be the case if we choose the uncertainty set to
be either a polyhedral or an ellipsoidal set. The resul-
tant AARC will either be an LP or a conic-quadratic
program. Both can be solved very efficiently using
readily available software even for large-scale prob-
lem instances. To be concrete in what follows, we
select a particular configuration of these two types of
uncertainty sets.
We assume that the only data we have on each

uncertain demand dt is that it resides within a cer-
tain interval around a “nominal” demand value d̄t .
To ensure that the “physical” constraints (like balance
equations (3a) and bounds on the orders (3b–c)) will
hold for any demand realization, we choose for all of
the constraints a “box uncertainty” set

�box = #d ∈�T � �dt − d̄t� ≤ 2Gt� t = 1�2� � � � � T $� (20)

where the positive numbers Gt represent “uncertainty
scale” and 2> 0 is the “uncertainty level.” A particu-
lar case of interest is Gt = d̄t , which corresponds to a
simple case where �box contains demands whose rel-
ative deviation from the nominal demand is of size
up to 2. An uncertainty set of type �box may be used
to model situations of independent demand.
In contrast, when treating the objective function, it

is not compulsory to provide an absolute guarantee
of its optimal value for all possible demands in �box.
For example, when the demands are independent ran-
dom variables, the probability that they simultane-
ously occur at the “corners” of �box is very small;
hence such rare events can be ignored quite safely.
The ellipsoidal uncertainty set �ell can indeed cut the
corners of �box. The general form of �ell is

�ell = #d ∈�T � �d − d̄�S−1�d − d̄�≤42$� (21)

where S is a T ×T symmetric positive definite matrix
and 4≥ 0 is a “safety parameter.”6
With the above choices of the linear decision

rules (Equations (17)–(19)) and the uncertainty sets

6 Natural choices of d̄ and S when the demand vector is stochas-
tic are d̄ = E�d� and S = cov�d� (see Ben-Tal and Nemirovski 2000,
2002).

(21)–(20), the AARC formulation corresponding to the
LP RSFC problem (3) is finally the following:

min
q�t � x

�
t+1�y

�
t �

u�
t �wt� zt�E

E

s.t. E ≥
T∑

t=1

[
ctq

0
t + y0t +u0t + zt

+
t−1∑
�=1

[
ctq

�
t + y�

t +u�
t

]
d�

]

∀d ∈�ell and ∀ t = 1� � � � � T �

�∗� x0t+1+
t∑

�=1
x�
t+1d� = x0t +

t−1∑
�=1

x�
t d� + q0t

+
t−1∑
�=1

q�
t d� − dt�

y0t +
t−1∑
�=1

y�
t d� ≥ h̄t

[
x0t+1+

t−1∑
�=1

x�
t+1d�

]

∀d ∈�box�

y0t +
t−1∑
�=1

y�
t d� ≥ −pt

[
x0t+1+

t−1∑
�=1

x�
t+1d�

]

∀d ∈�box�

u0t +
t−1∑
�=1

u�
t d� ≥ �+

t

[
q0t +

t−1∑
�=1

q�
t d� −wt

]

∀d ∈�box�

u0t +
t−1∑
�=1

u�
t d� ≥ −�−

t

[
q0t +

t−1∑
�=1

q�
t d� −wt

]

∀d ∈�box�

zt ≥ �+
t �wt −wt−1��

zt ≥ −�−
t �wt −wt−1��

Lt ≤ q0t +
t−1∑
�=1

q�
t d� ≤Ut ∀d ∈�box�

�Lt ≤
t∑

�=1

(
q0� +

�−1∑
5=1

q5
� d5

)
≤ �Ut ∀d ∈�box�

q�
t = 0� �t� �� ∈ Jt� (22)

The equality constraints �∗� above are used to elimi-
nate the variables x0t+1 that are then substituted in the
next two inequalities. Note that after this substitution,
the problem retains its affine structure and consists
only of inequalities.
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Remark. The first constraint in (22), which relates
to the objective function of the AARC model, is of
the form

��� d�x ≤ � ∀d ∈�ell�

Because we assume that actually d ∈ �box, we may
violate the actual robust constraint

���� d�x ≤ � ∀d ∈�box�

Let xell be the solution of (�). Then, we would like to
estimate the probability

p = pr#d�xell ≤ � ∀d ∈�box$�

As shown in Ben-Tal and Nemirovski (2001), when
d1�d2� � � � � dT are independent random variables
with support �box and mean d̄t , then by choos-
ing the diagonal matrix S with diagonal entries
22G21�2

2G22� � � � � 2
2G2T , the above probability satisfies

p ≥ 1− exp�−42/2��

In particular, by taking 4 = 3, the constraint ��� is
assured with probability p ≥ 0�989.
3.3. Deriving a Computationally Tractable

Optimization Problem Equivalent to the
AARC Problem (22)

Problem (22) is intractable in the sense that it con-
tains a continuum of constraints. In this section we
show how to convert each such continuum into a
few deterministic constraints that are either linear or
conic quadratic. Let v denote the vector consisting
of all the decision variables q�

t , x
�
t+1, y

�
t , u

�
t , wt , zt , E

�1≤ t ≤ T � 1≤ � < t�. To denote the fact that a func-
tion f depends affinely on v, we write f �v�.
Clearly, each of the constraints in (22) has the gen-

eral form

)0�v�+
T∑

t=1
)t�v�dt ≤ 0�

either ∀d ∈�ell or ∀d ∈�box� (23)

For the box uncertainty set �box, inequality (23) is
equivalent to (we temporarily write )t = )t�v�)

max
d∈�T

{
)0+

T∑
t=1

)tdt� �dt − d̄t� ≤ 2Gt�

t = 1� � � � � T
}

≤ 0� (24)

The optimal solution of problem (24) is dt = d̄t +
sign�)t�2Gt , and so (24) becomes

)0+
T∑

t=1
�)td̄t +2Gt�)t��≤ 0�

which can be further expressed by adding new vari-
ables 81� � � � �8T as in the following linear inequalities:


)0+

T∑
t=1

�)td̄t +2Gt8t�≤ 0�

−8t ≤ )t ≤ 8t� t = 1� � � � � T �

(25)

Recalling that each )t = )t�v� is an affine function
of v, it follows that (25) remains a linear system of
inequalities in the original vector of variables v.
For the ellipsoidal uncertainty set �ell, inequal-

ity (23) is equivalent to

max
d∈�T

{
)0+

T∑
t=1

)tdt� �d − d̄�T S−1�d − d̄�≤42
}

≤ 0� (26)

Problem (26) can be solved easily using the Karush-
Kuhn-Tucker conditions; the optimal d is given by

d = d̄ + 4√
)T S)

S)�

and so (26) becomes

)0+
∑

)td̄t +4
√
)T S)≤ 0! (27)

this is a conic-quadratic constraint in the )ts. When
making an affine substitution of variables ) = )�v�,
(27) remains a conic-quadratic inequality in the origi-
nal decision vector v.
When the demand vector d is a random vector with

mean d̄ and covariance matrix S, inequality (27) has
an intuitively appealing explanation. Note that the
right-hand side of (23) is a random variable 9�v� ≡
)0�v� + ∑T

t=1 )t�v�dt with mean E�9�v�� = )0 + ∑
)td̄t

and standard deviation SD�9�v�� = √
)T S). Thus, the

robust counterpart (27) is

E�9�v��+4SD�9�v��≤ 0� (28)

The latter corresponds to a common engineering prac-
tice, where an uncertain inequality9�v�≤ 0 is replaced
by its “safe” version (28) (typically, with 4≈ 3).
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The analysis we have carried out shows that each
of the semi-infinite constraints in the AARC prob-
lem (22) can be written equivalently either as a finite
set of linear constraints or a single conic-quadratic
constraint. Problems with these types of constraints
are called conic-quadratic (CQ). They are known
to be polynomially solvable (see, e.g., Ben-Tal and
Nemirovski 2001), and very efficient algorithms (and
software, e.g., MOSEK7) are available to find their
solution. In particular, if all the uncertainty sets are of
type �box (or, more generally, a polyhedral set), then
the AARC is an LP.

4. Analysis of the RSFC Model
4.1. Preliminaries
In this section, we provide a summary of a large set
of experiments that were generated to test the per-
formance of the AARC method, as applied to the
RSFC problem, on simulated data. We benchmark the
AARC model against the RC solution (12), the opti-
mal min-max solution (5), and a “perfect hindsight”
(PH) solution8—the solution that would have been
obtained to the LP RSFC model (3) if it was possi-
ble to “reverse the time” and know the realizations
of demand at the beginning of the horizon. The PH
solution is clearly the ultimate lower bound on the
minimal cost of the AARC method (or any other solu-
tion method for that matter). We first compare the
AARC and RC solutions to the true optimal min-max
RSFC solution (opt(min-max) for short). Then, we test
the performance of the AARC method by comparing
its mean cost to the mean cost of the PH solution
where both means are computed over the same sim-
ulated realizations of the demands. Then, we discuss
the resultant LDRs in the AARC solutions and ana-
lyze other aspects of the AARC methodology.
The most interesting question is, of course, how

far is the AARC solution from the opt(min-max)
solution? This comparison is possible in the case
where the uncertainty set �T is equal to �box = �1 ×
�2 × · · · ×�T with ut = ��1− 5�d̄t� �1+ 5�d̄t�, d̄t being
the nominal demand at period t. Indeed, as explained
in §2.3, in this case opt(min-max) is obtained by

7 See http://www.mosek.com/.
8 See Talluri and van Ryzin (1998, p. 1,584).

solving a large LP associated with the 2T extreme
demand trajectories. The AARC solution, on the
other hand, is obtained by solving problem (22) (but
with �ell replaced by �box in the first constraint),
which is an LP as well, but of a much smaller size9

(for T = 12 it has 417 variables, compared to 16,405
variables in the LP associated with opt(min-max)). We
also obtained the solution of the RC problem (12) to
test the added advantage of using the dynamic AARC
solution compared to the static RC solution.
Our experiments assume that actual demand fluctu-

ations are restricted by a box uncertainty set. In each
experiment, we fixed the parameters associated with
the costs, penalties, upper and lower bounds on order
quantities, the horizon T , the initial inventory x1, the
initial commitment w0, the parameters describing the
uncertainty sets �box and �ell, and the set J of indices
corresponding to time periods that are not used in
the linear decision rule (see (17)). We generated more
then 300 data sets; most of them were randomly gen-
erated, while some (e.g., D2, W12) were determined
manually. Data set W12 was created to illustrate a
case where there is a marked difference between the
outcomes of the RC and the AARC models (see §4.2).
Data sets A12 and A10 were chosen from the ran-
domly generated data sets to demonstrate instances
in which the optimal LDRs rely on the entire demand
history (see §4.4) and to compare an optimal base
stock policy that is an LDR with an optimal AARC
solution (see §4.5), respectively. These data sets are
given in Table 1.
The first step in each experiment is to solve the

opt(min-max), RC, and AARC models. For the lat-
ter we obtain the coefficients of the various LDRs.
Then, we simulate demand scenarios, consistent with
our box uncertainty assumption d ∈�box, using either
a uniform or a truncated normal distribution with
support in �box. For each simulation s we record the
realized demand vector ds = �ds

1� � � � � d
s
T �, employ the

optimal LDRs, and compute the resultant cost. Finally,
we compute the mean and standard deviation of these
costs over all the simulated scenarios. Then, we solve
the LP model (3) with the demand realizations ds ,
obtain the PH solution (�ws� qs� pairs and the optimal

9 The number of variables in (LP) AARC is 2T �T + 1�+ 2T + 1, and
the number of variables in (LP) opt(min-max) is 4�2T − 1�+ 2T + 1.
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Table 1 A Sample of Data Sets

Parameter A12 D2 W12 A10

T 12 12 12 10
x1 57 100 0 18�895
w0 12 100 100 19�9613
ct 1�01 40 10 0�1818
ht 0�3 2 2 4�6194
pt 1�0 5 10 1�193
sT+1 1�13 7 0 0�2195
+
t 0�43 2 10 1�204

−
t 0�58 3 10 2�11

�+
t 0�37 1 10 0�4308

�−
t 0�04 2 10 0�6278

Lt 44 50 0 14�9948
Ut 76�54�66�88�68�60, 200 200 50�7185

82�53�53�78�72�63
�Lt 0 0 0 0
�Ut 814 
 200t 

d̄t 64 100 100 46

cost), and compute the mean and standard deviation
over all the simulated demands.
Solving the AARC problem once with �ell for the

objective function and �box for all other uncertain con-
straints over a horizon of 12 or 24 periods, where
in each period the LDRs capture the entire past
demands up to that period, leads to a mathematical
program (conic quadratic or LP) with several hun-
dred to a few thousand variables/constraints. To run
such programs efficiently thousands of times so as
to compare them in different data settings, we devel-
oped the robust commitment optimization (RobCop)
package—a dedicated software that employs the
Matlab and MOSEK software packages at its core.
RobCop is composed of two components. The first
component employs a user-friendly interface to assist
users in constructing data sets with various cost
parameters, demand uncertainty sets, etc. The second
component solves the AARC, runs the simulations,
computes the mean AARC and PH solutions, and
reports the results. A typical experiment with 100 sim-
ulation replications was executed by RobCop on a
Pentium 4 laptop computer in less than 20 seconds.
A typical outcome of the RSFC model is depicted

in Figure 1 (such figures are automatically generated
by our software). The particular outcome depicted in
Figure 1 corresponds to a specific experiment with

Figure 1 Outcome of a Typical AARC Model Run (•Bounds on
Demand, �Realized Demand, �Orders, ×Commitments,
� Inventory, ∗ Total Costs Per Period)
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a 24-period horizon, with nominal demand that fol-
lows an annual cyclical pattern with peak demand
at the middle of each year. The demand uncertainty
starts at ±20% and increases by 10% every six months.
We see that the realized demand fluctuates consider-
ably within its limiting boundaries. Consequently, the
retailer’s inventory, whose initial value was x1 = 100,
fluctuates quite significantly (dropping to about 35 in
Months 3–4 and climbing to about 250 in Month 20).
The commitments were nearly always at the upper
bound on possible demand realizations. Toward the
end of the 24-period horizon, they sharply drop (to
avoid unnecessary surplus at the end of the hori-
zon). Although the optimal orders generally follow
the changes in the realized demands, they do so in a
more moderate fashion (due to the penalties imposed
by the contract). This demonstrates that the flexible
commitment contract lives up to its expectations—
although the problem was solved from the point of
view of the retailer, the supplier enjoys a more sta-
ble sequence of commitments and actual orders with
relatively small fluctuations.

4.2. Comparing the AARC and RC Solutions to
the Opt(Min-Max) Solution

The comparison of the three alternative solutions
is demonstrated in Table 2 for data sets D2, A12,
and W12 over various levels of uncertainty. In data
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Table 2 Opt(Min-Max), AARC, and RC Solutions for Data Sets A12,
D2, and W12 (in Parentheses: Excess Over the Opt(Min-Max)
Solution)

Uncertainty
Data (in %) Opt(min-max) AARC RC

D2 10 40,750.0 40,750.0 (+0�0%) 40,750.0 (+0�0%)
20 44,150.0 44,150.0 (+0�0%) 44,150.0 (+0�0%)
30 47,550.0 47,550.0 (+0�0%) 47,550.0 (+0�0%)
40 50,950.0 50,950.0 (+0�0%) 50,950.0 (+0�0%)
50 54,350.0 54,350.0 (+0�0%) 54,350.0 (+0�0%)
60 57,760.0 57,760.0 (+0�0%) 57,760.0 (+0�0%)
70 61,170.0 61,170.0 (+0�0%) 61,170.0 (+0�0%)

A12 10 913.128 913.128 (+0�0%) 1,002.941 (+9�8%)
20 1,397.440 1,397.440 (+0�0%) 1,397.440 (+0�0%)
30 2,190.620 2,190.620 (+0�0%) 2,190.620 (+0�0%)
40 3,087.540 3,087.540 (+0�0%) 3,087.540 (+0�0%)
50 4,006.040 4,006.040 (+0�0%) 4,006.040 (+0�0%)
60 4,934.680 4,934.680 (+0�0%) 4,934.680 (+0�0%)
70 5,863.320 5,863.320 (+0�0%) 5,863.320 (+0�0%)

W12 10 13,531.8 13,531.8 (+0�0%) 15,033.4 (+11�1%)
20 15,063.5 15,063.5 (+0�0%) 18,066.7 (+19�9%)
30 16,595.3 16,595.3 (+0�0%) 21,100.0 (+27�1%)
40 18,127.0 18,127.0 (+0�0%) 24,300.0 (+34�1%)
50 19,658.7 19,658.7 (+0�0%) 27,500.0 (+39�9%)
60 21,190.5 21,190.5 (+0�0%) 30,700.0 (+44�9%)
70 22,722.2 22,722.2 (+0�0%) 33,960.0 (+49�5%)

sets D2 and A12 there was little or no change among
the three solutions. This phenomenon was quite com-
mon to many of the randomly generated data sets.
However, there are data sets such as W12 in which
the nonadaptive RC solution yields a much larger cost
estimate than the corresponding AARC solution. In
this data set, the RC’s deviation from the optimal min-
max solution (which appears in parentheses in the
table) reaches nearly 50% when the uncertainty fluc-
tuates within 70% above or below nominal demand.
The most interesting part in Table 2 is, no doubt, the

comparison between AARC and opt(min-max) solu-
tions revealing that the AARC solution is identical to
the opt(min-max) solution across all uncertainty lev-
els in all three data sets. In fact, in only 4 out of 300
randomly generated data sets did we find any devia-
tions between these two solutions (the largest devia-
tion being 4%).
Although there are no analytical results on the

structure of the optimal solution to the RSFC
problem, and particularly there is no theoretical
foundation for the optimal solution being an LDR,
our empirical results strongly support the fact that

(at least for box uncertainty) the optimal solution is
well-approximated by the LDR found by our AARC
method.10

4.3. Comparing Mean AARC and PH Performance
The AARC solution is in fact a conservative cost esti-
mator. To evaluate the actual outcomes that might
result from employing this model, we ran hundreds of
simulations with different data sets and compared the
mean performance vis-à-vis the mean PH outcome.
Table 3 reports such results for data set W12. The
mean AARC cost (over the simulation runs) is clearly
lower than the AARC solution itself. Moreover, the
deviation increases with the uncertainty levels. The
PH solution yields the lowest mean cost, which is sig-
nificantly lower than the AARC mean costs because
it solves the problem to optimality under conditions
of perfect information. Each row in Table 3 corre-
sponds to 100 simulations of a scenario in which
demand was allowed to fluctuate around the nomi-
nal demand d̄ = 100 according to the 2 value given
in the left-most column. The second column from
the left reports the AARC solutions (where only q1
and the commitments wt are predetermined while
the solution for the other variables is expressed via
optimal LDRs). The next column gives the mean
and standard deviation of the AARC solutions (i.e.,
where the policies determined by the AARC solutions
were actually employed according to the realized
demand), and the fourth column gives the corre-
sponding PH solutions over the same 100 simulations.
As expected, because the mean demand stays fixed,
the PH solutions change very little with the variability
of demand. Note that the difference between the mean
simulation result and the corresponding AARC solu-
tion grows from 1.2% to 4.8% as the size of demand
fluctuations grows from 10% to 70%. That is, one can
expect larger relative “savings” (actual AARC cost
versus the original AARC solution) as the uncertainty
becomes larger. Note also that the gap between the
conservative estimate of the AARC solution (which
protects against the worst case) and the PH solution
increases significantly with demand variability.

10 Admittedly, this may not necessarily be the case for criteria other
than the min-max, such as minimizing mean cost.
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Table 3 Simulated AARC and PH Costs with Data W12 (% in Parentheses—Excess Over
Opt(Min-Max))

Simulated AARC=
Uncertainty Opt(AARC)= simulated(min-max) Simulated PH
(in %) opt(min-max) mean(%): STD mean(%): STD

10 13,531.8 13,375.4 (−1�2%): 41.1 12,421.1 (−8�2%): 1,406.2
20 15,063.5 14,745.4 (−2�1%): 85.9 12,725.4 (−15�5%): 1,816.9
30 16,595.3 16,122.8 (−2�8%): 124.2 13,283.8 (−20�0%): 2,421.1
40 18,127.0 17,477.7 (−3�6%): 170.0 13,626.8 (−24�8%): 2,624.9
50 19,658.7 18,858.2 (−4�1%): 206.7 13,420.6 (−31�7%): 2,447.4
60 21,190.5 20,267.3 (−4�4%): 235.6 13,653.5 (−35�6%): 2,363.1
70 22,722.2 21,642.3 (−4�8%): 286.8 14,079.4 (−38�0%): 2,892.2

4.4. Realized Patterns in the LDRs
The AARC formulation gives the user the flexibility to
determine which part of the “history” of realizations
of the uncertain data will be included in the LDRs (as
given in (17)). The extreme approach is to allow all
the uncertain data that were realized at the time of
decision to be included, but this does not necessar-
ily mean that the optimal LDRs will use this entire

Table 4 Optimal LDRs for Data Sets W12 and A12
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q12




=




0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0�95 0 0
0 0 0 0 0 0 0 0 0 0 0�92 0
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0
0
0
0
0
0
0
0
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0 0 0 0 0 0 0 0 0 0 0 0
0�25 0 0 0 0 0 0 0 0 0 0 0
0�18 0�39 0 0 0 0 0 0 0 0 0 0
0�14 0�27 0�73 0 0 0 0 0 0 0 0 0
0�02 0�03 0�03 0�55 0 0 0 0 0 0 0 0
0�02 0�02 0�02 0�04 0�31 0 0 0 0 0 0 0
0�02 0�03 0�02 0�05 0�22 0�64 0 0 0 0 0 0
0�01 0�01 0�02 0�02 0�03 0�03 0�12 0 0 0 0 0
0�01 0�01 0�02 0�03 0�02 0�02 0�05 0�07 0 0 0 0
0�03 0�03 0�03 0�04 0�06 0�05 0�16 0�20 0�28 0 0 0
0�02 0�02 0�03 0�04 0�06 0�06 0�10 0�11 0�12 0�14 0 0
0�03 0�03 0�03 0�04 0�05 0�05 0�06 0�04 0�04 0�05 0�07 0
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+




76�02
32�95
19�04
−7�16
16�16
26�31
−0�07
33�69
33�69
5�50
12�46
22�89




(b)

history. So, one of the issues we wanted to explore
in these experiments is the question of whether the
resultant LDRs follow some consistent patterns. In
particular, we were curious to see whether the resul-
tant LDRs exhibit a “Markovian” behavior, i.e., the
LDR for a variable in period t (say qt) depends only
on dt−1—the demand in the previous period. Table 4
demonstrates two opposite outcomes for the LDRs.
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The table shows optimal LDRs of the orders q1� � � � � qT
generated under 30% uncertainty for two data sets.
The top half of the table (Part a), which corresponds to
data set W12, indeed exhibits a Markovian behavior
as defined above, while the bottom half of the table
(Part b), which corresponds to data set A12, reveals
a set of LDRs that are determined by all the demand
realizations prior to the time of decision. Note, how-
ever, that the weights are decreasing in time (i.e.,
recent periods have a greater impact on qt than more
distant ones).

4.5. Base Stock Policies and LDR
The optimal LDR solution to data set W12 in Table 4
bears some resemblance to a base stock (BS) solu-
tion: In the first 10 periods qt = dt−1 �d0 = 120� that
implies the BS policy qt = 120− xt . However, we note
that due to end-of-horizon effects, which characterize
all finite horizon problems, the optimal LDR found
for data set W12 deviates from the BS pattern in
the last three periods. Moreover, there is no theo-
retical foundation to assume that a BS policy is an
LDR. Indeed, let St denote the BS level for period t.
Then, the order quantity in period t is given by qt =
�St − xt�

+—a nonlinear equation. Further, substitut-
ing qt in the inventory balance equations xt+1 = xt +
qt − dt , we get xt+1 = max#St� xt$ − dt . Thus, even in
the deterministic case (let alone in the stochastic case)
a BS policy is not necessarily an LDR. In any event, if
it happens to be an LDR, its optimal BS levels will be
found by the AARC method because the latter recov-
ers the optimal LDR policy.
For a BS policy to be linear, it must have the form

qt = St − xt . In this case it is an LDR with a very spe-
cific form as described in the following lemma.

Lemma 1. A BS policy is an LDR iff

qt = qt
0+ dt−1� (29)

and in this case the BS levels are given by

St = x0− qt
0+

t−1∑
�=1

q�
0 �

Proof. Consider the BS policy

qt = St − xt� (30)

An LDR for the orders was given in (17) by qt = qt
0+∑t−1

�=1 q
t
�d� .

Now, recall the inventory balance equation (2a),
which can be rewritten as

xt = x0+
t−1∑
�=1

q� −
t−1∑
�=1

d� � (31)

Substituting (31) in (30) and equating the outcome
to (17) yields

qt
0+

t−1∑
�=1

qt
�d� = St − x0+

t−1∑
�=1

d� −
t−1∑
�=1

[
q�
0 +

�−1∑
r=1

q�
r dr

]
� (32)

Equating the coefficients of dt on both sides of (32),
we get the system of equalities

∀ t ≥ 1� qt
t−1 = 1�

1≤ r ≤ t − 2� qt
r = 1−

t−1∑
�=r+1

q�
r �

(33)

It can be easily seen that the solution of the sys-
tem (33) is

qt
� =



1 if � = t − 1�
0 if 1≤ � ≤ t − 2�

which proves the first part of the lemma.
Also, by equating the constant terms in (32), qt

0 =
St − x0 − ∑t−1

�=1 q
�
0 , we can express St as a function of

the constants x0 and q�
0 that yields the second part of

the lemma. �

Now, in our setting, the constraint Lt ≤ qt ≤ Ut is
expressed by

Lt ≤ qt
0+ dt−1 ≤Ut

∀dt−1 ∈ �dmin�dmax�≡�box�2��
(34)

where dmin = �1− 2� · d̄, dmax = �1+ 2�d̄, and d̄ is the
nominal demand. Clearly, (34) is equivalent to

Lt − �1−2�d̄ ≤ qt
0 ≤Ut − �1+2�d̄� (35)

which implies

2≤ Ut −Lt

2d̄
≡ 2critical�

Hence, a BS policy will be feasible iff the parameter 2
for Ubox�2� is smaller than 2critical.



Ben-Tal, Golany, Nemirovski, and Vial: A Robust Optimization Approach
Manufacturing & Service Operations Management 7(3), pp. 248–271, © 2005 INFORMS 265

Numerical Example. The following example dem-
onstrates that the solution obtained from a BS pol-
icy, which is LDR could be substantially worse than
the optimal LDR solution obtained through the AARC
method. Specifically, for data set A10, we obtain
2critical = 0�388. Running this data with 2= 0�35, we get
a feasible BS solution, 1,022, while the optimal AARC
solution is 880.
Furthermore, running the same problem with 2 =

0�4>2critical indeed yields no feasible solution for a BS
policy, while the AARC solution is 1,018.

4.6. Box vs. Ellipsoidal Uncertainty Sets
All the scenarios we analyzed in Table 2 assumed �box
for both the objective function and the constraints.
In the next set of experiments we wanted to test the
effect of replacing the uncertainty set for the objec-
tive function with �ell. This means that when demand
is indeed generated from a box uncertainty set, the
objective function may occasionally underestimate the
real cost. Table 5 compares the results achieved with
ellipsoidal uncertainty sets (with various values of 4
as explained in (26)) to the corresponding results for
a box uncertainty set for data set A12. The interesting
column in this table is the one on the right (where
4 = 3 implies that the probability of underestimating
the worst-case cost is about 1%). There we see that for
large uncertainty sets (exceeding 50%) the cost esti-
mate given under the assumption of ellipsoidal uncer-
tainty is smaller by about 1.3% from that provided
under the assumption of box uncertainty.

4.7. Effects of Information Gaps
One of the advantages of our proposed approach is
the flexibility it offers in constructing the LDRs from

Table 5 Ellipsoidal vs. Box Uncertainty Sets with Data A12
(in Parentheses: Excess Over Box)

Opt(AARC), ellipsoidal uncertainty
Uncertainty Opt(AARC),
(in %) box uncertainty �= 1 �= 3

0 840�732 840.732 (+0�0%) 840.732 (+0�0%)
10 1�014�143 983.942 (−3�0%) 1,014.143 (−0�0%)
20 1�300�212 1,224.414 (−5�8%) 1,300.212 (−0�0%)
30 1�720�621 1,697.849 (−1�3%) 1,718.693 (−0�1%)
40 2�326�479 2,245.172 (−3�5%) 2,313.209 (−0�6%)
50 2�969�785 2,813.708 (−5�3%) 2,942.431 (−0�9%)
60 3�629�710 3,392.953 (−6�5%) 3,587.161 (−1�2%)
70 4�289�636 3,972.198 (−7�4%) 4,231.891 (−1�3%)

historical data. As explained in (17), the set Jt indi-
cates past periods whose data is not included in the
LDR. In this section we investigate the impact of
various configurations of Jt on the outcomes of the
AARC method. Clearly, we expect the performance
of the AARC method to deteriorate as more periods
are included in Jt . In the extreme case, when Jt cov-
ers all past periods, the AARC reduces to the RC
model (12). By analyzing the changes in the “price
of uncertainty” (relative difference between the mean
PH and mean AARC solutions), we give management
a useful tool to evaluate the value of information from
various periods. In other words, we provide manage-
ment with an upper bound on the amount it would be
willing to pay to obtain additional information when
some information elements are missing.
First, we test what happens when at any period t

we are unable to use data from the periods that
immediately preceded it (say, periods t − 1 and
t − 2). Such situations may occur when information
is delayed due to data verification procedures, reg-
ulatory requirements, or other organizational con-
straints. We ran two of the uncertainty scenarios
(±30% and ±70%) that are shown in Table 2 with
Jt = #t − 1� t − 2$ over 30 simulations and report the
results in Table 6. Comparing the relevant values in
Tables 2 and 6, we observe that the price of uncer-
tainty nearly doubled in these two scenarios. Second,
we ran two experiments, each with 30 simulations,
corresponding to the same two uncertainty scenar-
ios, in which any information that is older than three
periods is not used (that is, Jt = � for t = 1�2�3�4
and Jt = #1�2� � � � � t − 4$ for t > 4). Such situations
may occur due to short product life cycles, highly
seasonal demand, or other organizational constraints.
Our findings, summarized in Table 7, indicate that
although there was an increase in the price of uncer-
tainty as compared to the case where Jt = �, the effect
is smaller than the one that occurred when the most
recent two periods were excluded. This result sug-
gests that the value of information for the AARC

Table 6 Effects of Delayed Information—Data Set W12

AARC Mean AARC Mean PH Price of
� �±%� solution results results uncertainty (%)

30 17,984 16,731 12,587 32.9
70 26,044 22,858 14,135 61.7
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Table 7 Effects of Discarding Old Information—Data Set W12

AARC Mean AARC Mean PH Price of
� �±%� solution results results uncertainty (%)

30 16,595 16,108 12,712 26.7
70 22,722 21,582 14,484 49.0

method is period-dependent with higher values asso-
ciated with more recent periods.

4.8. Trade-offs Analysis
The RSFC model we have developed might be used
during contract negotiations by either the retailer or the
supplier in an attempt to identify fair combinations
of discretionary data parameters that will best serve
their wishes vis-à-vis the handling of demand vari-
ability. To demonstrate how such trade-offs might be
analyzed we ran a number of “iso-cost” simulations
in which decreases in purchase costs were offset by
increases in the forecast reliability penalties �t while
the overall cost to the retailer remained stable. Table 8
presents the results of these runs for data set D2 with
±20% uncertainty. Each run consisted of 10 simula-
tions, each with a cycle of 12 periods. The AARC solu-
tion in each one of the runs reported in this table was
39�620± 20. The penalties for both upper and lower
deviations were kept identical throughout these runs,
i.e., �t = �+

t = �−
t ∀ t. The table starts with total mean

deviations per cycle �qt − wt�+ + �wt − qt�+ = 92�32
(equivalent to a mean deviation of 7.7 per period). To
cut this value by nearly a half (to 41.81 per cycle) we
needed to double the penalty on these deviations. To
maintain the same total cost, the purchase cost was
reduced from 40 to 39.8. This pattern continued until
the penalty costs were set at �+

t = �−
t = 18 where the

deviations became zero.
A similar trade-off may exist between purchase cost

and minimum order quantities. The lower bounds Lt

in the RSFC model (3) play a crucial role in the

Table 8 Trade-offs Between Purchase Costs and
Forecast Error Penalties—Data Set D2

ct t Mean �qt −wt�+ Mean �wt − qt �+

40.0 2 21.07 71.25
39.9 3 44.84 12.23
39.8 4 19.36 22.45

supplier-retailer relations. From the supplier’s per-
spective, it is desirable to see large values of these
minimum order quantities. Conversely, from the
retailer’s point of view, the larger these bounds are,
the less flexibility he has and the larger the probabil-
ity that he will be stuck with unnecessary inventories.
We demonstrate this trade-off by searching for alter-
native combinations of purchase cost and minimum
order quantities that simultaneously cause a gradual
increase in the purchase cost (which represents the
revenue of the supplier) and a gradual decrease in
the total cost (which represents the retailer’s expense).
To make the comparison valid, we generated for the
same data set a single realization of demand for a
path of 10 cycles with 12 periods in each cycle and
used it throughout this experiment. The trade-off is
shown in Table 9. Initially, with a purchase cost of 40
and a minimum order quantity of 50, the retailer’s
mean total order per cycle is 1,130 and his mean total
cost is 47,837. Raising the lower bound to 60 and off-
setting it with a 0.5 discount in the purchase cost, the
supplier is able to make the retailer order 1,150 items
per cycle (thus increasing his revenue from 45,233 to
45,457) while causing a slight decrease in the retailer’s
total cost (to 47,312). The same pattern continues until
we reach a near perfect equilibrium in which the total
cost to the retailer is nearly equal to the supplier’s
revenues. Thus, the supplier is able in this case to gen-
erate a “win-win” situation in which both he and the
retailer will gain by the simultaneous change in the
parameters.

4.9. A Folding Horizon Approach
The AARC method considered thus far can be clas-
sified as “offline” in the sense that the AARC prob-
lem is solved once at the beginning of the planning
horizon (i.e., the optimal commitments and the opti-
mal coefficients of the LDRs are found a priori).

Table 9 Trade-offs Between Purchase Costs and Minimum Order
Quantities

Purchase cost Total cost
ct Lt

∑
qt (supplier’s revenue) (retailer’s expenses)

40 50 1,130 45,233 47,837
39.5 60 1,150 45,457 47,312
39 70 1,180 46,052 46,826
38.8 80 1,191 46,204 46,608



Ben-Tal, Golany, Nemirovski, and Vial: A Robust Optimization Approach
Manufacturing & Service Operations Management 7(3), pp. 248–271, © 2005 INFORMS 267

In this section, we describe an “online” version of
the AARC method that we coin the folding horizon
AARC model. A retailer using this method re-solves
in each period t an AARC problem for the remaining
periods t� t + 1� � � � � T , starting from initial invento-
ries that are the actual ones, i.e., those resulting from
his earlier decisions and the demand realizations that
occurred in periods 1�2� � � � � t − 1. The commitments
are still determined once in the first period for the
entire horizon.
Folding horizons similar to the one we explore here

can be found in the revenue management literature (e.g.,
Talluri and van Ryzin 1998, Feng and Gallego 2000)
dealing with demand for seats on flights, hotel rooms,
theater tickets, etc. In these settings, there exists a
fixed deadline after which the “goods” are lost. Pric-
ing is then done in a folding horizon manner—an ini-
tial price is set at the beginning of the horizon and
then, as demand realizations are observed, new pric-
ing policies are generated. Folding horizons are also
common in the fashion industry where, due to long
lead times, production commitments must be made a
year or two prior to actual sales and the salvage value
of the leftover inventory after the sales period is over
is rather small. Fisher and Raman (1996) describe the
difficulties associated with such scenarios and pro-
vide the motivation for a folding horizon approach.
Implementation of the folding horizon approach

requires only slight adjustments in the RSFC model.
The first run of any folding horizon model is identical
to the corresponding run of a fixed horizon model.
Then, to execute the second run we shorten the hori-
zon by one period, fix the commitments according to
their optimal values in the first run, and fix the start-
ing inventory according to the realization of demand
and order replenishment from the previous period.
This procedure is repeated until the entire original
horizon is exhausted.
The folding horizon approach allows the retailer to

incorporate more accurate information each time he
solves the problem. Hence, we can only expect it to
improve the results obtained through the fixed hori-
zon approach. To compare the performance of these
two model variations, we ran the RobCop software
with data set W12 with box uncertainty set for both
the objective function and the constraints over vari-
ous uncertainty levels with 100 simulations for each

Table 10 Comparison Between Fixed and Folding Horizon Models with
Data Set W12 (in Parentheses—% Excess Over AARC)

Uncertainty Simulated AARC Simulated AARC
(in %) Opt(AARC) fixed folding

10 13�531�8 13,375.4 (−1�2%): 41.1 13,372.5 (−1�2%): 40.7
20 15�063�5 14,745.4 (−2�1%): 85.9 14,742.5 (−2�1%): 85.5
30 16�595�3 16,122.8 (−2�8%): 124.2 16,115.2 (−2�9%): 126.6
40 18�127�0 17,477.7 (−3�6%): 170.0 17,463.7 (−3�7%): 173.5
50 19�658�7 18,858.2 (−4�1%): 206.7 18,847.8 (−4�1%): 209.2
60 21�190�5 20,267.3 (−4�4%): 235.6 20,261.2 (−4�4%): 228.7
70 22�722�2 21,642.3 (−4�8%): 286.8 21,632.8 (−4�8%): 280.4

uncertainty value. Table 10 reports the results of these
runs. To ensure fair comparisons, the realizations of
demand that were generated for each line of the fixed
horizon problems in Table 3 were stored in memory
and used for the corresponding simulation of the fold-
ing horizon model. Thus, the demand data is identical
within each line of these two tables, but it is different
across different lines. For each run, Table 10 reports
the mean and standard deviation values for the fold-
ing horizon and the fixed horizon models over the
100 simulations. As expected, the mean folding hori-
zon solution is better than the mean fixed horizon
solution. However, at least for data set W12, the dif-
ference between them is almost negligible.

5. Extensions and Future Research
The models we have presented in the preceding
sections can be extended in several ways. First, as
in Anupindi and Bassok (1998), the model can be
extended to a multiproduct setting. To do so, sup-
pose we now have N products and add the index i

to designate product i �i = 1� � � � �N � to the relevant
parameters and decision variables. Then, the AARC
formulation that replaces (2) is

min
x� q�w

{
−

N∑
i=1

simax�xi�T+1�0�

+
N∑
i=1

T∑
t=1

�citqit +hitmax�xi� t+1�0�

+ pitmax�−xi� t+1�0�+�+
itmax�qit −wit�0�

+�−
itmax�wit − qit�0�+�+

itmax�wit −wi� t−1�0�

+�−
itmax�wi� t−1−wit�0��

}
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s.t. �a�� xi� t+1 = xit + qit − dit�

i = 1� � � � �N! t = 1� � � � � T �

�b�� Lit ≤ qit ≤Uit� i = 1� � � � �N! t = 1� � � � � T �

�c�� �Lit ≤
t∑

�=1
qi� ≤ �Uit�

i = 1� � � � �N! t = 1� � � � � T � (36)

To convert (36) into a linear programming formu-
lation, we again replace the piecewise linear terms in
the objective by auxiliary variables and obtain

min
x� q�w

max
y�z

{ N∑
i=1

T∑
t=1

�citqit + yit +uit + zit�

}

s.t. �a�� �b�� �c�� and ∀ i = 1� � � � �N� t = 1� � � � � T �

�e1�� yit ≥ hitxit+1�

�e2�� yit ≥ −pitxit+1�

�f1�� uit ≥ �+
it �qit −wit��

�f2�� uit ≥ −�−
it �qit −wit��

�g1�� zit ≥ �+
it �wit −wit−1��

�g2�� zit ≥ −�−
it �wit −wit−1��

for t = T � �e1� becomes

yit ≥ �hit − si�xit+1� (37)

where, as before, yit represents the holding and short-
age costs, uit represents the forecast error penalties,
and zit represents the commitments’ inconsistency
penalties.
The AARC model for problem (37), using LDRs

over the entire history of realizations for the
adjustable variables #xit� yit� uit� qit� t = 1� � � � � T � i =
1� � � � �N $, will have 2NT �T + 1�+ 2NT variables so it
can handle many products with long planning hori-
zons. In contrast, solving such problems with DP or
with the “large LP” method we developed in §2.3
will quickly become computationally intractable as N
and T grow.
Second, new and innovative formulations of the

relations between suppliers and retailers can be
tested. These might include larger chains (perhaps
with multiple suppliers and/or retailers), new types
of flexible arrangements to govern the relationships
between the parties (e.g., different kinds of penalties

on deviations from announced commitments), and
more. For example, an interesting variation of the
RSFC model is one in which at the beginning of the
finite horizon the retailer generates a single value of
total commitment (W ) for the entire horizon rather
than a vector of periodical commitments. Penalties
on deviations from this total commitment are com-
puted only at the last period of the horizon on the
basis of the difference between the total accumulated
orders and the total commitment. This formulation
can be implemented in a finite or folding horizon
mode just like the RSFC model we have presented
above. All that is required to implement this model
variation is a slight adaptation of the objective func-
tion in model (3). The terms that involve �+

t , �−
t dis-

appear, and the terms that involve �+
t , �−

t are taken
out of the summation and replaced by �+�

∑T
t=1 qt −

W�+ +�−�W −∑T
t=1 qt�+. The rest of the steps in trans-

forming this adapted formulation to an AARC model
are identical to the ones shown above.
Third, additional uncertain parameters may be con-

sidered. For example, it is reasonable to assume that
future purchase costs are uncertain or that the size
of actual shipments may be different than the size
of the corresponding orders. This possibility was
already observed by Bassok et al. (1997) who list
quality among the key elements in a typical sup-
ply contract. They define quality as “the upper limit
on the percentage of defective units in the supply
that is acceptable to the buyer.” However, they do
not include this element (which was also referred to
in the operations management literature as “random
yield”—see, e.g., Wang and Gerchak 1996) in their
model nor have others tried to incorporate it in any
of the flexible commitment models. The reason for
this omission is quite simple—including a random
yield phenomena in these models would have ren-
dered them intractable. Treatment of random yield
in our case can be done by replacing the orders qt
with the quantities ?tqt that the retailer would actu-
ally receive where ?t is a random variable defined
over the interval �0�1�. This formulation introduces
a difficulty we have not encountered so far—namely,
the model is no longer a fixed recourse model
(see §3.1). In this case, the coefficients associated with
the adjustable variables q2� � � � � qT are uncertain. As
mentioned in §3, for such cases the corresponding
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AARC model may be intractable (NP-hard). However,
it can be tightly approximated by a tractable convex
program (conic-quadratic or semi-definite)—see §4 in
Ben-Tal et al. (2004). Additional analysis of such mod-
els will require further development of the computa-
tional aspects of the RO methodology.

6. Summary
The main purpose of this paper is to present the
potential benefits of applying the robust optimization
methodology, in particular the new AARC heuristic,
to the modeling and analysis of complex operations
management problems. To do so, we focused on the
topic of flexible supplier-retailer contracts that have
attracted significant attention in recent years. We pre-
sented a “prototype” formulation (the RSFC model)
and developed its robust counterpart. Through the
analysis of this model and its extensions we have
shown that RO is a powerful technique that is capable
of treating large-scale problems that could not have
been solved through the earlier solution methodolo-
gies (mainly DP and SPR) that were proposed for such
problems. We have also demonstrated the flexibility
of the methodology and its ability to easily adapt
itself to different versions of the RSFC model.
The low computational complexity of the AARC

heuristic makes it possible to use it “offline” to assess
the value of a contract during the negotiations stages
and search for the best-fitted arrangement among par-
ties. However, it can also be used “online,” in a rolling
or folding horizon mode, where the current period
decisions are taken by solving an updated version of
the RO model to account for the actual realization
of the demand. This approach can be interpreted as
a kind of an open loop control, where the control
is not given in an analytical form, but as the opti-
mal solution of a computationally simple optimiza-
tion problem.
In much the same way, RO can be employed to

analyze a large collection of OM problems. In fact,
any such problem with uncertain parameters, whose
deterministic version can be modeled as a multi-
stage linear program, can be treated with our affinely
adjustable robust optimization methodology. One
such problem is the transshipment problem dis-
cussed by Robinson (1990). That problem, which may
be defined over finite, rolling, or folding horizons,

involves multiple retailers who must make nonad-
justable decisions at the beginning of each period
on the replenishment quantities they need to order
in that period. Then, after demand is realized, they
can adjust the decision variables that determine how
much they transship (or receive) to (from) other
retailers.
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Appendix
Let �P� be problem (5) with the box demand uncertainty
(9)–(10), and let �P+� be the problem obtained from (5) by
replacing the original uncertainty set with the one given by

ext��box�= ext��1�× · · · × ext��T ��

where ext��t� = #dmint � dmaxt $ is the set of extreme points
of the segment �t . Our goal is to prove the following
statement:

Proposition 1. The optimal values in �P� and �P+� are equal
to each other.

Proof of Proposition 1. We start with the following
simple fact about worst-case oriented dynamic program-
ming:

Lemma 2. Let D� ⊂ Rn� be convex polytopes, � = 0�1� � � � �
T , where D0 is a singleton, and let �=D0×D1× · · ·×DT . For
d = �d0�d1� � � � � dT � ∈ � and 0 ≤ � ≤ T , let d� = �d1� � � � � d� �.
Further, given sets F0� � � � � FT , � �= F� ⊂ D� , consider the opti-
mization problem

�P �F0� � � � � FT ���

min
S1�·������ST+1�·��E

{
E� E ≥ f1�S1�d

0��+ f2�S2�d
1��

+ · · · + fT+1�ST+1�d
T ��! A1S1�d

0�≥ b1!

At+1St+1�d
t�≥ Bt+1dt +Ct+1St�d

t−1�+ bt+1�

t = 1� � � � � T ! �St�d
t−1��
 ≤R�

t = 1� � � � � T + 1! ∀d ∈�T

}
�

where �T = F0 × · · · × FT , St�·� are allowed to be arbitrary func-
tions of dt−1 ∈ F0 × · · · × Ft−1 taking values in Rmt , At , Bt , and
Ct are fixed matrices of appropriate sizes, b1� � � � � bT+1 are fixed
vectors, and �u�
 is the maximum of modulae of coordinates of
a vector u.
Assume that for every t ≤ T + 1, ft�·� is a convex poly-

hedral function �c.p.f.� on Rmt , that is, ft�·� takes real values
and the value +
, the domain Domft ≡ #st� ft�st� < 
$ is
a convex set given by finitely many nonstrict linear inequali-
ties, and ft is convex and lower semicontinuous on Domft . Let
ext�Dt� denote the set of extreme points of Dt . Then, the opti-
mal value in �P �D0� � � � �DT �� is the same as the optimal value in
�P �ext�D0�� � � � �ext�DT ���.
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Proof of Lemma 2. The proof is obtained by induction
in T . Base T = 0 is trivial because D0 is a singleton and
therefore ext�D0� = D0. Let us justify the inductive step.
Consider the optimization problem (depending on sT ∈RmT

and dT ∈RnT as on parameters)

9T �sT �dT � ≡ min
sT+1

#fT+1�sT+1�� sT+1 ∈�T+1�sT � dT �$

= min
sT+1

#fT+1�sT+1�� AT+1sT+1

≥ BT+1dT +CT+1sT + bT+1� �sT+1�
 ≤R$�

and let
D�sT �=max

dT ∈FT
9T �sT � dT ��

Applying the Bellman equation (cf. (8)), we see that the opti-
mal value in �P �F0� � � � � FT �� is exactly the optimal value in
the problem

�P+�F0� � � � � FT−1��

min
S1�·������ST−1�·��E

{
E� E ≥ f1�S1�d

0��+ · · · + fT−1�ST−1�d
T−2��

+ f̃T �ST �d
t−1��! A1S1�d

0�≥ b1!

At+1St+1�d
t�≥ Bt+1dt +Ct+1St�d

t−1�+ bt+1�

t = 1� � � � � T − 1! �St�d
t−1��
 ≤R�

t = 1� � � � � T ! ∀d ∈�T−1
}
�

where
f̃T �sT �= fT �sT �+D�sT ��

Let us specify FT as DT . The following result is well known.
Consider the optimization program:

val�b�=min
s

#f �s�� As ≥ b� �s�
 ≤R$

and assume that the objective function f is a convex polyhe-
dral function. val�·� is a c.p.f. of b. Moreover, an affine trans-
formation of the variables · in val�·� retain its c.p.f. property.
In our situation, the function 9T is of this form, i.e.,

9T �sT �dT �= val�BT+1dT +CT+1sT ��

where val�·� is a c.p.f. By convexity of val�·�, we have
max
dT ∈DT

val�BT+1dT +CT+1sT �

= max
dT ∈ext�DT �

val�BT+1dT +CT+1sT �! (38)

that is,

D�sT �= max
dT ∈ext�DT �

val�BT+1dT +CT+1sT ��

This observation implies that
(a) D�·� is a cumulative probability function (as a maxi-

mum of finitely many functions of this type), so that f̃T �sT �
also is a c.p.f., and

(b) we have

opt�P �F0� � � � � FT−1�DT ��

= opt�P+�F0� � � � � FT−1��

= opt�P �F0� � � � � FT−1�ext�DT ���! (39)

indeed, both equalities are readily given by (38) combined
with Bellman equations as applied to problems �P �F0� � � � �
FT−1�DT �� and �P �F0� � � � � FT−1�ext�DT ���, respectively.
From (a) it follows that problem �P+�D0� � � � �DT−1�� sat-

isfies the premise of our lemma, so that by the inducive
hypothesis we have

opt�P+�D0� � � � �DT−1��

= opt�P+�ext�D0�� � � � �ext�DT−1���� (40)

It follows that

opt�P �ext�D0�� � � � �ext�DT ���

= opt�P+�ext�D0�� � � � �ext�DT−1���

= opt�P+�D0� � � � �DT−1��= opt�P �D0� � � � �DT ��

(the first equality is the right equality in (39) when Ft =
ext�Dt�, t ≤ T −1, the second is (40), and the third is the left
equality in (39) when Ft = Dt , t ≤ T − 1); the inductive step
is justified. �

Proof of Proposition 1 (Continued). Now we are in
a position to prove the proposition. To this end, note that
�P�, �P+� can be rewritten as �P �D0� � � � �DT ��, respectively,
�P �ext�D0�� � � � �ext�DT ��� with the data defined as follows:
• Dts and sts are given by

Dt = �d∗
t − Edt� d

∗
t + Edt�� t = 1� � � � � T �

s1 =




q1

�q1
u1

w1

z1



� st =




xt

yt

qt

�qt
ut

wt

zt



� t = 2� � � � � T � sT+1 =

[
xT+1
yT+1

]
�

• Systems of inequalities At+1st+1 ≥ Bt+1dt +Ct+1st + bt+1
are equivalent to the following relations:

t = 0� x1 = xini, L1 ≤ q1 ≤U1, �q1 = q1, �L1 ≤ �q1 ≤ �U1, w1 ≥ 0,
u1−�+

1 �q1−w11�≥ 0, u1−�−
1 �w

1
1−q1�≥ 0, z1� ≥ �+

� �w
1
� −w1�−1�,

z1� ≥ �−
� �w

1
�−1 − w1� �, � = 1� � � � � T (w10 ≡ w0 and x1 are given

by the data).
0 < t < T � xt+1 = xt + qt − dt , yt+1 − htxt+1 ≥ 0, yt+1 +

ptxt+1 ≥ 0, Lt+1 ≤ qt+1 ≤ Ut+1, �qt+1 = qt+1 + �qt , �Lt+1 ≤ �qt+1 ≤
�Ut+1, ut+1−�+

t+1�qt+1−wt+1
t+1�≥ 0, ut+1−�−

t+1�w
t+1
t+1 − qt+1�≥ 0,

wt+1 =wt , zt+1 = zt .
t = T � xT+1 = xT +qT −dT , yT+1− �hT −s�xT+1 ≥ 0, yT+1+

pT xT+1 ≥ 0.
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• The functions ft�st� are given by
t = 1� f1�s1�= c1q1+

∑T
�=1 z

1
� +u1! 1< t ≤ T � ft�st�= yt +

ut + ctqt ;
t = T + 1� fT+1�sT+1�= yT+1.

With this setup, the only difference between problems �P�
and �P �D0� � � � �DT �� is that the latter problem has additional
box constraints. Clearly, for an R large enough this restric-
tion does not affect the optimal value, and it is similar for
the pair of problems �P+�, �P �ext�D0�� � � � �ext�DT ���. Assum-
ing R large enough and applying Lemma 2, we arrive at

opt�P� = opt�P �D0� � � � �DT ��

= opt�P �ext�D0�� � � � �ext�DT ���= opt�P+�� �
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