



X

# Retargetting Motion to New Characters

Michael Gleicher Vision Technology Center Autodesk Mountain View, CA

# Retargetting Motion to New Characters

Michael Gleicher Department of Computer Science University of Wisconsin Madison, WI

#### **Motion Retargetting**

#### Apply the motion of one character to another

- Re-use motions created for another character
- Target character mimics motions
  - -retain the quality of the original motion
- Retain, not necessarily improve, the motion
  - -garbage in, garbage out
  - -aesthetic appropriateness not considered

# Motion Retargetting

DDBBBBBB

#### **More Specifically**

#### Focus on characters with same structure

- Corresponding degrees of freedom
   example: articulated figures with same joints
- Use as first step in more general problem
- Parameter values can be transferred
  - -results are may not be the same
  - must adapt motion values (curves)

## More Specifically Parameters can be reapplied Final of the teapplied Final of the teapplical of the teap of teap

#### **Previous Work**

- Compute a new motion (parameterized controllers, resynthesis, ...)
- Adjust each frame or key (using inverse kinematics or manual adjustment)
- Apply signal processing to motion
- Use Spacetime Constraints
  - -they're not just for physical synthesis

#### Why didn't you?

- Synthesize a new motion? We like our original motion!
- Solve the constraints on each frame using IK? Can't preserve temporal characteristics of motion
- Use Signal Processing?
  Doesn't allow for re-satisfying constraints
- Use global optimization (spacetime constraints)?

#### What is Important?

#### Change what isn't important to retain what is

- · Hard to define what is important
  - motion specific
  - -high-level qualities
- Stick to what's easy to define
  - -geometric constraints
  - basic signal characteristics



#### **Basic Idea 1: Constraints**



Basic geometric constraints are the most critical characteristics of a motion

- These constraints must be maintained when applying the motion to a different character
- Retargetting must adapt a motion to re-establish any violated constraints

#### **Basic Idea 2: Frequency content**

High frequencies are significant characteristics of motions

- Altering high frequencies changes motions
- Adaptations should avoid disturbing high frequencies
- Adaptations (not the underlying motion) should be frequency bounded



#### The Constraint Problem

- · Constraints for specific, geometric attributes
  - -specify position of hand, foot on floor
  - -joint limits, feet above floor
- Constraints placed at specific times
  - -create durations as a series of individual times
- Functions of character's parameters
  - include character's kinematics

The Constraints (notation)

 $\begin{array}{ll} \mbox{Motion} & m(t) \in \Re \Rightarrow \Re^n \\ \mbox{Constraint Function} & f(q) \in \Re^n \Rightarrow \Re \\ \mbox{Constraint} & f(q) = c \\ & f(q) \geq c \\ \mbox{Initial Motion} & m_0(t) \\ \mbox{Each constraint has the form:} \end{array}$ 

 $f(\mathbf{m}(t_0)) = c \text{ or } f(\mathbf{m}(t_0)) \ge c$ 

#### **Finding Adaptations**



#### Frequency bounded constraint solving

- Can't consider frames independently
  - Individual changes may add high frequencies
  - -Need to look ahead and behind
- Must consider entire motion simultaneously



#### **Implementing the Frequency Limit**

- · Find a motion that:
  - -satisfies the constraints
  - -avoids adding high frequencies
  - minimizes the difference to original
- Impose frequency limits by selecting the form of the answer
- Solve a single, large, numerical problem to compute the adapted motion



#### What Frequency Limit?

Must pick proper frequency bounds

- Too high?
  - -adds jerkiness to motion
- Too low?
  - overfitting makes "big" changes to motion
- Just right?

#### **Choosing the Frequency Limit**

- A Heuristic Method
- Decompose original motion into frequency bands
- Choose highest frequency band with lots of energy
- Or, use trial and error

#### **Constraint Solving: Method 1**



Sequential Quadratic Programming (SQP)

- Too few constraints? Many possible solutions
  - -define an objective function to pick "best"
  - -pick simple objective to make easy to solve
- Constrained minimization
- Solve a sequence of linear sub-problems
   linearize non-linear constraints at each step

#### **Constraint Solving: Method 2**

#### Non-linear least squares

- Too many constraints? No exact solution
   minimize residual error
  - -add constraints to make over-determined
- Unconstrained minimization
- Solve a sequence of linear sub-problems – linearize non-linear constraints at each step

#### Character size not constant

Target size needs to be known in each frame – it doesn't have to be the same



#### World not constant

Adaptation can change any parameters – not just those for the changed character

- We can choose which parameters are affected by the adaptation
- Solve for everything at once



#### **Different Structure**

## When the parameters aren't the same, the problem is harder

- Couple corresponding "body" parts
- Characters must be similarly sized
- Retargetting makes characters the same size
- Minimize distance between old and new points
- Must deal with different numbers of parameters



#### **Skipping Can Example**

#### 1. human motion

- 2. retarget to canproportioned human
- 3. tie corresponding points
- 4. solve for new motion



#### Why does it fail?

- Implementation limitations
- Need richer constraints
  - -balance, strength, collision, ballet form, ...
- Fundamental over-simplifications
  - -similarity computed on poses
  - -additive adaptations (no scaling or time-shift)
  - -limit of adaptation (sometimes, need new motions)



#### Summary

## We can retarget motions created for one character to another

- Re-establish geometric constraints
- Avoid adding high frequencies
- Compute adaptation with spacetime constraints

#### Because I thought you'd ask....

#### Answers to frequently asked questions

- I don't know.
- Nothing is specific to mocap. That's just what I had.
- Yes, I'd love your examples to try.
- The examples take a few seconds on a mac.
- The heads were lost in a bad mocap accident.
- The method is not specific to articulated figures.
- gleicher@cs.wisc.edu (after August 24)

