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SUMMARY

Using both semiparametric and parametric estimation methods, this paper corroborates earlier findings
of fractionally integrated behaviour in the forward premium. Two new explanations are also proposed to
help reconcile earlier conflicting empirical evidence on the time series properties of the forward premium.
Traditional regression approaches used to test the forward rate unbiasedness hypothesis are then evaluated,
including regression in levels, in returns (Fama’s, 1984, regression), and in error-correction format. Interesting
statistical and/or interpretive implications are found in all three cases. For example, the predictions of the
appropriate nonstandard limit theory are consistent with many of the standard empirical results reported
from Fama’s regression, including the commonly occurring, yet puzzling negative correlations between spot
returns and the forward premium. It is suggested that the principal failure of unbiasedness, may be due
instead to the difference in persistence between these two series. Copyright  2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

For nearly two decades the failure of forward exchange rates to forecast future spot rates has posed
one of the central puzzles in international finance. Most surprisingly, negative estimates from the
regression of the spot return on the forward premium suggest that the forward rate predicts changes
in the spot rate with the wrong sign. For example, if the forward rate is above the current spot
rate, it seems that one should actually expect the spot rate to fall. This conclusion is not only
intuitively unappealing, but has also proved extremely difficult to explain using the traditional
models of international finance.1

This interpretation of these regression results relies to a large extent on the presumed short-
memory stationarity of both the spot return and the forward premium. It has been well established
that the spot rate itself follows a unit root process, implying a stationary spot return. However,
although the short-memory stationarity of the forward premium was once taken for granted, the
current evidence from unit root and cointegration tests appears to lead to conflicting conclusions.

Using a semiparametric approach to estimating the fractional differencing parameter and some
recent asymptotic theory of Phillips (1999a), and Kim and Phillips (1999a,b), we join Baillie and
Bollerslev (1994) in finding evidence of fractionally integrated behaviour in the forward premium.
This finding is further confirmed using parametric maximum likelihood estimation on parsimonious

* Correspondence to: Professor Alex Maynard, Department of Economics, 150, St. George Street, Toronto, Ontario, Canada
M55 3G7. E-mail: amaynard@chass.utoronto.ca
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1 Previous attempts to understand this puzzle have focused on time-varying risk premia, learning, peso problems, and
central bank feedback rules. Surveys of the field are provided by Engel (1996), Lewis (1994) and Hodrick (1987).
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672 A. MAYNARD AND P. C. B. PHILLIPS

ARFIMA specifications. As Baillie and Bollerslev (1994) also argue, such long-memory behaviour

may help to explain why traditional tests have had difficulty in distinguishing between the more

extreme alternatives of a unit root and short-memory stationarity. Complementing this explanation,

we also identify two potentially strong sources of finite sample bias that may have contributed to

the conflicting unit root and cointegration test results mentioned above.

Our estimates of the fractional differencing parameter suggest that traditional statistical theory

may not be applicable to many of the regressions commonly used to test forward rate unbiasedness.

New limit theories are therefore developed, based on stochastic integrals of fractional Brownian

motion, and they are shown to be compatible with the principal empirical regularities from the

three most widely employed specifications.

The difference in persistence between the short-memory spot return and long-memory forward

premium does not admit a valid regression relation in returns and the slope coefficient in the
Fama (1984) regression is found to converge to zero. Given a symmetric distribution this would

appear incompatible with the preponderance of negative estimates reported in the literature.

However, an interesting feature of the limit theory for the slope coefficient in this regression

is that it entails a highly biased and skewed distribution, similar to those found in unit root

asymptotics. In particular, the estimated long-run parameters imply a long left tail. These results

would seem to cast some doubt on the meaningfulness of the empirical estimates and suggest

that the above-mentioned mismatch in persistence may instead bear primary responsibility for the

rejection of unbiasedness.2

A brief informal discussion of some possible of explanations for the persistent or long-memory

behaviour in the forward premium (most of which are not new to this paper) is also provided. Our

econometric results suggest that this line inquiry may be worth further investigation.

The paper is divided into seven sections. Section 2 contains a background discussion. Empirical

estimates of the fractional differencing parameter are provided in Section 3. Section 4 presents

evidence of finite sample biases that may affect unit root and cointegration tests. In Section 5 we

derive the econometric implications of the long-memory forward premium for three regression

specifications commonly used to test forward rate unbiasedness. In Section 6, we then discuss

these results in the context of the relevant empirical and economic literature. Section 7 concludes.

Technical lemmas and proofs are contained in the Appendix.

2. BACKGROUND DISCUSSION

Tests of forward rate unbiasedness provided the original motivation for much of the empirical work

behind the forward discount anomaly. Written as EtstCk D ft,k , where st and ft,k denote the (log)

spot and forward rates and k is the length of the forward contract, the hypothesis states that the

forward rate should act as an unbiased forecaster for the future spot rate. It is generally interpreted

as a joint test of market efficiency, rational expectations, and risk neutrality. Unbiasedness is

also equivalent to Uncovered Interest Parity (UIP),3 a condition featured prominently in many

international macroeconomic models.

2 Baillie and Bollerslev (2000) and Kuersteiner (1996) contain some similar ideas, although they focus on only one of
the three regressions considered here, and give no analytic results. Both authors kindly provided us with copies of their
papers during our research on this topic.
3 This follows by covered interest parity.
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FORWARD DISCOUNT ANOMALY 673

Some of the earliest tests of unbiasedness (e.g. Frenkel, 1976) were conducted in exchange rate
levels by regressing the future spot rate on the forward rate:

stCk D ˛1 C ˇ1ft,k C ε1,tCk. ⊲1⊳

The results from these regressions seemed promising at first, since estimates of ˇ1 were generally

‘close’ to one. However, due to the non-stationarity in the spot and forward rates, the regression in
levels (1) has more recently been interpreted as a cointegrating regression. In this case, as Barnhart
and Szakmary (1991) argue, estimates of ˇ1 close to one indicate only a tendency for the spot and

forward rates to move together in the ‘long run’. This is a necessary but not a sufficient condition
for forward rate unbiasedness.

Following Fama (1984), perhaps the most influential tests have been conducted using a
regression in returns,4 in which the spot return (stCk � st⊳ is regressed on the forward premium

(ft,k � st):

stCk � st D ˛C ˇ⊲ft,k � st⊳C εtCk . ⊲2⊳

Under the null hypothesis one would expect an estimate of ˇ close to one.5 However, quite

surprisingly, empirical estimates of ˇ from (2) are typically negative, and often significantly so.
These negative estimates form the central stylized fact underlying the forward discount anomaly.

They imply such a strong rejection of unbiasedness that forward rates consistently mispredict even
the direction in which the spot rate will move and the UIP condition must be reversed in sign.
Furthermore, although such a rejection could in principle be explained by the existence of a risk

premium, estimates of this kind also lead to discouraging implications for capital asset pricing
models. In particular, Fama (1984) shows that a negative value of ˇ in (2) requires the variance

of the risk premium ft,k � EtstCk to exceed that of the expected spot return EtstCk � st. Although
theoretically possible, such models have difficulty reproducing this inequality under reasonable

levels of risk aversion.6

The final regressions we consider are the approximate error-correction (ECM) models such as:

stC1 � st D ˛2 C ˇ2⊲ft,1 � st⊳C 
 0Qt C ε2,tC1 ⊲3⊳

where Qt includes lagged differences of the spot and forward rate.7 This specification adds to the
simpler regression in returns by allowing for extra dynamics in the spot and forward rates through

the inclusion of Qt. This regression also yields negative estimates of ˇ2.
In all three regressions, inference procedures have typically relied upon the presumption of

certain short-memory stationarity properties of the data. For example, inference in the returns
regression has been conducted under the assumption of a short memory forward premium.

Likewise, inference on the cointegrating vector requires the assumption of full I(1) cointegration
between the spot and forward rates.8

4 This regression is often referred to as a return/premium or uncovered interest parity regression.
5 The null hypothesis of unbiasedness in this regression is ˛ D 0, ˇ D 1, and EtstCk D 0.
6 See recent surveys by Engel (1996) and Lewis (1994) for further discussion.
7 We refer to this equation as approximate, because it assumes a cointegrating vector equal to ⊲�1, 1⊳. There is also a
second variation of this specification, discussed later.
8 Short-memory stationarity in the forward premium requires that the cointegration between the spot and forward rates be
fully I(1), as well as 1 : 1.

Copyright  2001 John Wiley & Sons, Ltd. J. Appl. Econ. 16: 671–708 (2001)



674 A. MAYNARD AND P. C. B. PHILLIPS

The recent empirical literature provides less than full support for these assumptions. In
fact, evidence from both unit root tests and cointegrating regressions have yielded surprisingly
conflicting results. Crowder (1994, 1995) and Kuersteiner (1996) fail to reject unit roots in several
forward premia series and, using the KPSS test, Crowder is also able to reject stationarity in both of
his data sets. However, this conclusion appears to contrast sharply with evidence from similar tests
conducted by Hai et al. (1997), Horvath and Watson (1994), and Barnhart and Szakmary (1991).
Likewise, as Engel (1996) discusses, conflicting evidence has also been reported from tests of one
for one (1 : 1) cointegration between the spot and forward rates (i.e. that ˇ1 D 1 in 1).9

The conflicting nature of the unit root tests suggests that perhaps neither the usual short-memory
assumptions nor the unit root model are entirely appropriate for the data at hand. In fact, Baillie
and Bollerslev (1994) find that a fractionally integrated model appears to fit the data quite well.
They argue that this intermediate result helps to explain the conflicting unit root tests results. After
confirming their empirical results, we take the argument further by showing that long memory
in the cointegrating errors can also lead to spurious rejection of 1 : 1 cointegration between the
spot and forward rates. In addition, we argue that severe data contamination, as well as large
differences in magnitude between the spot return and forward premium, may lead to substantial
biases in the unit root and cointegration tests. In the remainder of the paper we then consider the
implications of this long memory process for the three regressions mentioned above, as well as
for the forward discount anomaly more generally.

3. EVIDENCE OF FRACTIONAL INTEGRATION

Testing for a unit root forces a choice between what can be regarded as extreme alternatives. Thus,
in the simple autoregression

xt D ˛C �xt�1 C εt ⊲4⊳

the long-run behaviour of xt is very different at � D 1 and, say, � D 0.99, having innovations εt
which are permanent in the first case, yet disappear geometrically in the second. This knife-edge
property of the model is sometimes seen as being too rigid to adequately capture the long-run
behaviour of certain data. The conflicting results reported from previous unit root tests suggest that
this may be relevant in the case of the forward premium, indicating that the fractionally integrated
model

⊲1 � L⊳d⊲xt � �⊳ D ut ⊲5⊳

where ut is a general short-memory time series, may be better suited to the data.
This second approach allows for a much smoother transition between the two extremes in (4).

The fractional parameter d determines the degree of long range persistence in xt. A value of
d D 0 implies short-memory stationarity, corresponding to � < 1 in the autoregressive model,

9 At an abstract level, the assumption of a unit root has untenable implications for the forward premium. In particular, it
implies that with probability one the forward premium will eventually wander off, becoming arbitrarily large, behaviour
that might be ruled out a priori. Nevertheless, the local wandering behaviour of the forward premium could well be
explained by a unit root process, giving rise to inference problems in the regressions mentioned above. It is possible, as
Maynard (1998) discusses, that the forward premium could follow a regulated unit root process within a certain distance
of the origin. Then, if the finite sample of data did not contain realizations outside the range it would be impossible to
identify the nature of the regulation of the process. The fact that the overall scale of the forward premium is tiny in
comparison with that of the spot return makes this possibility more compelling, because the time to arrival of the forward
premium at a distant boundary is much longer.

Copyright  2001 John Wiley & Sons, Ltd. J. Appl. Econ. 16: 671–708 (2001)
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while d D 1 corresponds to a unit root (� D 1). The intermediate values of d can then be split

into two ranges. For 0 < d < 1/2 the process remains stationary (with mean �), but is said to

contain long memory, having innovations that disappear hyperbolically rather than geometrically.
On the other hand, for 1/2 < d < 1, xt is non-stationary (with initialization parameter �) and is

recurrent. Shocks are non-permanent and the unconditional variance grows at a slower rate than

in the case of a unit root.

Using daily data on six currencies against the dollar from November 1986 to March 1998
we employ both a parametric and a semiparametric frequency domain approach to estimation

of the fractional differencing parameter. The advantages of the semiparametric estimator we

use are its robustness to non-stationarity, its capacity to work well over the region 1
2
< d < 2,

which is relevant to much economic time series data, and its semiparametric nature, requiring

only weak assumptions on the short-memory process ut. However, as with other semiparametric

methods there is the proviso of possible finite sample bias in the estimation that may arise from

strongly autoregressive short-memory (see, for example, Agiakloglou et al., 1993). While less
robust in large sample, the accompanying parametric ARFIMA estimates, which explicitly allow

for autoregressive and moving average terms in ut, are less prone to finite sample bias. It is

reassuring to note that the two sets of estimates match fairly closely.

3.1. Modified Log Periodogram Estimation

Consider the fractionally integrated process xt, given by (5) where ut is a short-memory,
mean zero time series satisfying some rather weak regularity conditions such as those given in

Phillips (1999a). A new semiparametric approach to the estimation of d that applies over stationary

and non-stationary domains of d is suggested in Phillips (1999a). The approach uses the exact

form of the discrete Fourier transform of a fractionally integrated process and non-linear versions
of the log periodogram (Geweke and Porter-Hudak, 1983; Robinson, 1995a) estimator and local

Whittle (Künsch, 1987; Robinson, 1995b) estimator are suggested. A simpler version of the log

periodogram (LP) procedure involves a straightforward modification to the periodogram ordinates,

is easy to apply in practical work and has been justified by Kim and Phillips (1999b) to apply
over the range 0 < d < 2, so it seems to be well suited to economic applications. We will use that

procedure in our empirical work.

LP regression involves the least squares regression (over s D 1, . . . , m)

ln⊲Ix⊲�s⊳⊳ D ĉLP � OdLP ln
∣∣1 � ei�s

∣∣2 C error

where Ix⊲�s⊳ is the periodogram of xt at the fundamental frequencies �s D 2�s/n for s D 1, . . . , m.

Modified LP regression involves the similar linear regression

ln⊲Iv⊲�s⊳⊳ D ĉMLP � OdMLP ln
∣∣1 � ei�s

∣∣2 C error ⊲6⊳

in which the periodogram ordinates, Ix⊲�s⊳, are replaced by the modified periodogram ordinates
Iv⊲�s⊳ D vx⊲�s⊳vx⊲�s⊳

Ł where

vx⊲�s⊳ D wx⊲�s⊳C ei�s

1 � ei�s

xnp
2�n

. ⊲7⊳

Copyright  2001 John Wiley & Sons, Ltd. J. Appl. Econ. 16: 671–708 (2001)



676 A. MAYNARD AND P. C. B. PHILLIPS

Since (see Phillips, 1999a),

wx⊲�s⊳ D ⊲1 � ei�s⊳wx⊲�s⊳C ei�sp
2�n

⊲xn � x0⊳ ⊲8⊳

we have

Iv⊲�s⊳ D 1
∣∣1 � ei�s

∣∣2
∣∣∣∣wx⊲�s⊳C ei�s

x0p
2�n

∣∣∣∣
2

D 1
∣∣1 � ei�s

∣∣2

[
Ix⊲�s⊳C 2

x0p
2�n

Re ⊲wx⊲�s⊳e
�i�s⊳C x2

0

2�n

]

or

Iv⊲�s⊳ D Ix⊲�s⊳∣∣1 � ei�s
∣∣2 ⊲9⊳

when x0 D 0. Thus, modified LP regression is equivalent to LP regression with differenced data
when x0 D 0, and essentially equivalent to it when x0 D Op⊲1⊳. Kim and Phillips (1999b) show

that the modified LP estimator d̃ is consistent for all d 2 ⊲0, 2⊳ and has the following limit theory:

p
m⊲ OdMLP � d⊳

d! N

(
0,
�2

24

)
, ⊲10⊳

for d 2 ⊲ 1
2
, 2⊳. Thus, the limit theory for OdMLP is the same as that of the conventional LP estimator

OdLP in the stationary case (Robinson, 1999a; Hurvich, Deo and Brodsky, 1998). By contrast, the

usual log periodogram estimator d̂ has a mixed normal limit theory when d D 1, as shown in
Phillips (1999b) and is inconsistent when d > 1 (Kim and Phillips, 1999a). Simulations in Kim

and Phillips (1999b) also show OdMLP to compare favourably to OdLP for 0.5 < d < 1. Thus, the
modified regression (6) is especially useful in the non-stationary case when d > 1

2
.

3.2. Empirical Estimates

Estimates of the fractional differencing parameter are shown in Table I.10 We include both OdMLP and
estimates from two simple ARFIMA(p,d,q) specifications, using exact maximum likelihood (ML)

Table I. Semiparametric and parametric estimates for d

OdMLP
OdML

OdML
OdMLP

OdML
OdML

p D 1 q D 1 p D 1 q D 1

Aus$ 0.957 0.948 0.965 DM 0.888 0.929 0.957
(0.032) (0.021) (0.027) (0.033) (0.017) (0.022)

Can$ 0.937 0.956 0.957 Yen 0.882 0.92924 0.934
(0.033) (0.023) (0.027) (0.032) (0.020) (0.022)

FR 0.885 0.858 0.8691 UK 0.993 0.9583 0.992
(0.032) (0.021) (0.025) (0.032) (0.020) (0.028)

m D n3/4.

10 Due to data errors discussed in the following section, one-month London nominal interest rate differentials are used in
place of the forward premium. By covered interest arbitrage these two series are equivalent.

Copyright  2001 John Wiley & Sons, Ltd. J. Appl. Econ. 16: 671–708 (2001)
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Figure 1. Nominal interest differential (Can$/US$)

estimation.11 The estimates we obtain are somewhat larger than those first reported by Baillie and
Bollerslev (1994), yet still fall into the same general range.12 Estimating a low-order ARFIMA
model on the monthly forward premium from 1974 to 1991, Baillie and Bollerslev (1994) report
point estimates for d of 0.45, 0.77, and 0.55 for Canada, Germany, and the UK respectively. In
both cases the estimates suggest that the forward premium probably displays less persistence than a
unit root process (d < 1⊳ yet still too much persistence to satisfy stationarity (d > 0.5). It therefore
seems reasonable to model the forward premium as a non-stationary fractionally integrated process
with 0.5 < d < 1. (Figure 1 shows the nominal interest differential for the Canadian Dollar.)

4. FINITE SAMPLE BIAS AND CONFLICTING UNIT ROOT AND COINTEGRATION
TEST RESULTS

As Baillie and Bollerslev (1994) argue, the fractional integration of the forward premium may
help to explain the conflicting unit root tests found in the previous literature13 and we show later,
in Section 5, that similar arguments can be made for the conflicting evidence on tests of 1 : 1
cointegration between the spot and forward rates. However, as we show below, there appear also
to be two rather strong sources of finite sample bias, which may complement this explanation.

4.1. Evidence of Data Contamination

Matched daily spot and one-month forward rates from five sources are compared with each other
and with the matched daily one-month London Eurocurrency nominal interest differential. The
spot and forward rates come from Reuters Instrument Code (RIC), Midlands Bank (MB), Bankers
Trust (BT), National Westminster Bank (NW), and Barclays Bank (BB).14

11 Using the ARFIMA package on Ox (see Doornik and Ooms, 1999) the ML estimator was applied to the first differenced
series and the resulting estimate of d was then increased by one.
12 Ongoing work has led us to suspect that this difference primarily reflects the differing sampling periods. The more
modern sampling period, which our data covers, appears to display particularly strong long-memory characteristics.
Different estimation methods may also play a role. Based on the ARFIMA estimates in Table I, finite sample bias doesn’t
seem to have played a role and sampling our data on a monthly basis actually resulted in higher (though more variable)
estimates (available upon request).
13 For example, many of the commonly employed unit root tests, including both the ADF and Zt tests, are based on t
statistics from models similar to (4). Sowell (1990) shows that the t statistic in (4) diverges to negative infinity when xt
is fractionally integrated with d < 1, suggesting an eventual rejection for large enough sample sizes. On the other hand,
unit root tests are also known to have low finite sample power against fractional alternatives.
14 The data from RIC comes from Data Resources (DRI), the four bank series are from Data Stream International (DS),
and the interest rates are from the Financial Times, obtained from DS.

Copyright  2001 John Wiley & Sons, Ltd. J. Appl. Econ. 16: 671–708 (2001)
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Figure 2. Evidence of data contamination: Matched daily Yen/Dollar rates in annual percentage return

Figure 2 shows the interest differential for Japan in the top-left panel, followed by each of the

forward premia in the five panels below.15 To varying degrees all five forward premia show large
one-day fluctuations not found in the interest differential.16 This is somewhat surprising, since

15 Midlands Bank is excluded from Figure 2 for considerations of space.
16 The relative quality of the data from Reuters (RIC) is due to an automatic filter designed to eliminate inaccurate bank
quotes.
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FORWARD DISCOUNT ANOMALY 679

by covered interest arbitrage the forward premium and nominal interest differential should be
identical.17 The right-hand panels of Figure 2 show the implied deviations from covered interest
parity converted into annual percentage returns. Even the more modestly sized spikes imply rather
enormous deviations from CIP, which are far in excess of those commonly reported in tests of
CIP (see for example, Taylor, 1987, 1989).18 Furthermore, if there were any underlying economic
motivations for the spikes, we would expect them to appear on the same dates regardless of the
data source. However, Figure 2 in fact shows that the one-day spikes appear on different days for
different sources and are more frequent in some sources than in others.

To understand how errors of this kind could go unnoticed observe that in the top two panels
of Plate 1 all five spot and forward rates appear identical.19 It is only in the bottom panel, which
shows the forward premium for each series, that the differences become apparent. This is because
the errors are only ‘large’ relative to the size of the forward premium. They are, in fact, minuscule
in comparison with the spot and forward rates themselves. Furthermore, in monthly data it becomes
more difficult to distinguish one day spikes from one month movements, suggesting that all but
the very largest errors might be difficult to detect, even in the forward premium itself.

An unfortunate consequence of this data contamination is that it tends to obfuscate the true
time series properties of the forward premium, creating a clear (finite sample) bias in favor of
stationarity. While the interest differential shown in Figure 2 displays strong signs of a stochastic
trend, this same trend is far less apparent in the forward premia shown below. The one-day spikes
have effectively masked the underlying persistence in the true forward premium.

Table II shows the effect of the data contamination on the estimates of d, as well as on the
estimate of the autoregressive parameter. The data sources are roughly ordered from the cleanest to
the most contaminated. The results generally confirm the visual evidence shown in Figure 2, with
the least contaminated series showing the highest levels of persistence.20 In an earlier version of
the paper (available by request) we showed that the measurement error had similar effects on unit
root tests. Not surprisingly, the standard tests tended to provide greater evidence against a unit root
the greater the degree of data contamination. To minimize the impact of data errors throughout the

Table II. Effects of measurement error on measures of persistence (Yen/US$)

Data AR d̂MLP d̂Ml d̂Ml Data AR d̂MLP d̂ML d̂Ml

source coeff. p D 1 q D 1 source coeff. p D 1 q D 1

i� iŁ 0.999 0.88 0.93 0.94 BT 0.818 0.31 0.43 1.05
RIC 0.978 0.60 0.64 1.15 NWB 0.788 0.30 �0.36 0.47
MB 0.870 0.34 0.48 1.05 BB 0.629 0.24 0.34 0.36

17 The exact formula for CIP is ln⊲1 C it,k⊳� ln⊲1 C iŁt,k⊳ D ft,k � st . However, replacing this by the approximation
it,k � iŁt,k D ft,k � st did not produce any noticeable differences.
18 Since the data fails to satisfy the criteria set out by Taylor (1987) that it be recorded ‘at the same instant in time in
which a trader could have dealt’, CIP need not hold exactly in this data set. Transactions costs have also been ignored, but
these are estimated by Clinton (1988) as no more than 0.1% in annual returns. The implied deviations shown in Figure 2
seem far too large to be accounted for by either of these reasons. Japan did experience some large deviations to CIP in
the 1970s due to capital controls. However, according to Ito (1992, p. 323), CIP has ‘held without exception’ since these
controls were abolished in 1980.
19 Bekaert and Hodrick (1993) also report finding errors in the forward premium, but do not provide further detail.
20 For q D 1 we were surprised to find that a few of the contaminated estimates of d turned up larger than one, technically
implying explosive behaviour. However, these estimates were accompanied by estimates of the moving average parameter
close to negative one, suggesting that this more likely reflects a problem of identification.
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rest of the paper spot rates are taken from DRI and both the forward rate and forward premium
are calculated implicitly by CIP, using the nominal interest differential.

4.2. Scale Differences and Evidence from Tests of Cointegration

Together with the standard assumption of a unit root in the spot rate, a fractionally integrated
forward premium ⊲ft � st⊳ implies 1 : 1 fractional cointegration between the spot and forward
rates. Trivially,

st D ft,k C εŁ
1,t

where the fractionally integrated residual εŁ
1,t is simply the (negative) forward premium. Likewise,

regression (1) may be rewritten as

stCk D ft,k C ε1,tCk

where ⊲˛1, ˇ1⊳ D ⊲0, 1⊳ and the residual

ε1,tCk D stCk � ft,k D ⊲stCk � st⊳� ⊲ft,k � st⊳

is also integrated of order d.
As argued in Section 5, this suggests that the long-memory property of the forward premium

may bear some responsibility for the conflicting tests of 1 : 1 cointegration between st and ft,k
reported in the literature (see Engel, 1996). However, it also appears that cointegration tests may
be further biased when based on ⊲stCk, ft,k⊳, as in (1), rather than on the contemporaneous rates
⊲st, ft,k⊳. Given the focus on prediction, tests on based on ⊲stCk, ft,k⊳ naturally have intuitive
appeal. Nevertheless, cointegration of ⊲st, ft,k⊳ is equivalent to cointegration of ⊲stCk, ft,k⊳ and
it turns out that use of the latter adds considerable noise into the cointegrating residual. This
extra noise may substantially impact the finite sample behaviour of the test statistic. An informal
discussion of this problem is given below. A more rigorous treatment would require either an
extensive simulation or the use of small sigma asymptotics.

Cointegration tests on ⊲st, ft,k⊳ resemble unit root tests on the forward premium itself, while
cointegration tests on ⊲stCk, ft,k⊳ resemble unit root tests on ε1,tCk , the sum of the spot return and
the (negative) forward premium. In either case, given the stationary I(0) behaviour of stCk � st,
the order of integration of the regression residual is determined solely by ft,k � st. The inclusion
of stCk � st in ε1,tCk simply adds additional noise that could bias the results in finite sample. For
example, when non-overlapping data is used (k D 1), the nearly independent behaviour of stCk � st
(see, for example, Baillie and Bollerslev, 2000) would tend to make ε1,tCk appear less persistent,
possibly inducing a bias in favor of cointegration. With overlapping data (k > 1) stCk � st is not
only noisy, but also follows an MA⊲k⊳ (see for example, Baillie and Osterberg, 1997). In this case,
there is also a possible finite sample bias against cointegration due to the short-run persistence in
stCk � st.

One might normally expect such potential biases to be of minor importance in reasonable sample
sizes and any such biases of course disappear as n ! 1. What makes them more problematic
in the current context is the fact that the extra noise term stCk � st dwarfs the term of interest
ft,k � st in sheer magnitude (see Plate 2 and Table III). Consequently, as shown in Plate 4, the
estimated cointegrating residual (Oε1,tCk) using ⊲stCk, ft,k⊳, is almost indistinguishable from the spot
return itself. It therefore seems unlikely that we can learn much about the nature of the persistence
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Table III. Sample standard deviations (in annual %)

stCk it,. ⊲1 � L⊳d stCk it ⊲1 � L⊳d

�st �iŁt, ⊲it � iŁt ⊳ �st �iŁt ⊲it � iŁt ⊳

Aus$ 0.91 0.081 0.0078 DM 1.24 0.089 0.0035
Can$ 0.48 0.055 0.0047 Yen 1.30 0.068 0.0034
FR 1.17 0.083 0.0083 UK 1.24 0.067 0.0051

k D 25.

Table IV. Semiparametric estimates of d: spot return and
forecast error

OdLP
OdLP

stC1 stC1 stC1 stC1

�st �ft �st �ft

Aus$ 0.12 0.18 DM �0.06 0.00
Can$ �0.01 0.03 Yen 0.11 0.17
FR 0.00 0.06 UK �0.04 0.00

m D n3/4. The standard error is 0.10 for the MLP estimator.

in the forward premium from ε1,tCk D stCk � ft,k . By contrast, as shown in Plate 3, the estimated

residual using ⊲st, ft,k⊳ quite closely matches the mirror image of the forward premium.21

It appears that this extra noise term can strongly influence estimation and test results. For

example, estimates of the fractional parameter for ε1,tCk D stCk � ft,k in Table IV22 nearly equal

estimates for stCk � st, but look nothing like the estimates for ft,k � st reported in Table I.

Likewise, residual-based cointegration tests shown in Table V strongly reject no cointegration

using ⊲stCk, ft,k⊳, yet fail to find as compelling evidence for full I(1) cointegration using ⊲st, ft,k⊳.

5. ECONOMETRIC IMPLICATIONS FOR COMMON REGRESSION SPECIFICATIONS

This section derives the econometric implications of the long-memory properties of the forward

premium for the three common regression specifications mentioned above: regressions in returns,

in levels, and in error-correction format. The technical results are presented here and further

discussion of the empirical and economic implications follows in the next section.

21 A similar point is also made in recent work by Newbold et al. (1998). Working in an ARIMA context, they identify a
large negative moving average term in stC1 � ft,1 and argue that this would help to conceal the apparent unit root found
in the forward premium.
22 These estimates were computed using data sampled at every k D 22 business days. Estimates using daily data appeared
to suffer from an upward bias, probably as a consequence of the large-order moving average process in the spot return
that results from the use of overlapping data. In particular, estimates of d for the k-period spot return using daily data
were far larger than those for the one period spot return using either daily or monthly data (available upon request). By
contrast, the overlapping nature of the data does not in any way appear to be responsible for the finding of long memory
in the forward premium. In fact, using monthly data, we obtained even larger estimates than those reported in Table I
(available upon request).
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Table V. Residual-based cointegration tests

stCk and ft,k st and ft,k stCk and ft,k st and ft,k

z˛ zt zalpha zt z˛ zt zalpha zt
Aus$ �128.5c �8.07c �8.2 �2.70 DM �101.3c �7.17c �2.0 �0.98

Can$ �120.0c �7.78c �22.9b �3.58b Yen �95.0c �6.94c �2.3 �0.91
FR �105.1c �7.31c �9.5 �2.12 UK �93.5c �6.88c �9.7 �2.47

aRejection at 10%, bat 5%, c at 1%. The critical values are �27.9, �20.5, and �16.9 for z˛ and �3.88, �3.36, and �3.04
for zt .

5.1. Assumptions and Notation

A simple econometric model is used to re-evaluate regressions (1), (2), and (3) in light of the non-
stationary long-memory properties of the forward premium. Employing covered interest arbitrage
as the only underlying structural relationship in Assumption I, we treat all three regressions
simultaneously, without imposing any controversial economic or econometric specifications.23

Assumption II characterizes the nominal interest rate differential as a nonstationary fractionally
integrated process. This follows the empirical evidence presented both here and in Baillie and
Bollerslev (1994). The spot rate is modelled as a unit root process in (III), an assumption which
is by now non-controversial, and the forward rate is defined implicitly by CIP in (I).

Using the approach of Phillips and Solo (1992) we then represent the innovations to the spot
rate and interest differential jointly, in terms of a linear process in (IV). However, in order to
ensure weak convergence to fractional Brownian motion we are forced to use stronger moment
and homogeneity assumptions in (V) than are required by Phillips and Solo (1992).24 The very
large difference in scale between the spot rate innovations �t and the innovations to the interest
differential �t shown in Table III also plays a central role in all three regressions, but is not
modelled formally.

Assumptions

(I) (CIP)ft,k � st D iCt,k, where iCt,k D it,k � iŁt,k .
(II) iCt,k D ⊲1 � L⊳�d�t for 1

2
< d < 1.

(III)st D �t and s0 D �0 D 0.

(IV) ⊲�t, �t⊳
0 D C⊲L⊳εt, where C⊲L⊳ D

∑1
jD0 cjL

j and
∑1

jD1 j
∣∣cj
∣∣ < 1.

(V) ε
0
t D ⊲ε1,t, ε2,t⊳ ¾ i.i.d.⊲0, I⊳ and E jjεtjjg < 1 for

g D max

(
4,

4⊲1 � d⊳

d� 1
2

)

23 By assuming that CIP holds exactly we abstract away from the data contamination discussed earlier. So long as the
data contamination process has at least two plus epsilon moments and is uncorrelated with the other variables this should
not affect our results. Otherwise, the presence of data contamination can cause additional complications, not captured by
our analytic results.

24 See Sowell (1990). The moment condition in V is more restrictive as d & 1
2 . For d D 3

4
, fourth moments are required,

whereas for d D 5

8
, twelfth moments are needed. The latter is strong for exchange rate data. However, it is not yet clear

whether moment conditions as strong as these are actually necessary.
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Notation

The linear process representation helps to simplify notation. Let W⊲r⊳ denote a two dimensional

vector of independent standard Brownian motions, and define B⊲r⊳ D ⊲Bs⊲r⊳, Bi⊲r⊳⊳
0 D C⊲I⊳W⊲r⊳ D

BM⊲�⊳, where

� D
(
��� ���

���

)
D C⊲I⊳C⊲I⊳

0

is the long-run covariance matrix of ⊲�t, �t⊳
0
. By standard functional limit theory (e.g. Phillips and

Solo, 1992)

1p
n

[nr]∑

tD1

εt ) W⊲r⊳,
1p
n

[nr]∑

tD1

�t ) Bs⊲r⊳, and
1p
n

[nr]∑

tD1

�t ) Bi⊲r⊳

where ) signifies convergence in distribution. Standardizing Bs and Bi as Ws D ��1/2
�� Bs and

Wi D �
�1/2
�� Bi and employing the conditioning formula given in Phillips (1989), Bs can then be

decomposed as

Bs D ����
�1/2
�� Wi C �sjiWsÐi ⊲11⊳

where WsÐi is independent of Wi and �2
sji D ��� ��2

����� is the variance of Bs conditional on Bi.

Two-dimensional standard fractional Brownian motion is then defined as

W⊲q⊳⊲r⊳ D 1

⊲q C 1⊳

∫ r

0

⊲r � x⊳qdW⊲x⊳

for �0.5 < q < 0.5 and extended to fractional Brownian motions with more general covariance

structures by

B⊲q⊳⊲r⊳ D C⊲I⊳W⊲q⊳⊲r⊳ D 1

⊲q C 1⊳

∫ r

0

⊲r � x⊳qC⊲I⊳dW⊲x⊳

D 1

⊲q C 1⊳

∫ r

0

⊲r � x⊳qdB⊲x⊳

for � 1
2
< q < 1

2
. We also define Wi⊲q⊳⊲r⊳ D �

�1/2
�� Bi⊲q⊳⊲r⊳.

The following notational conventions are also used throughout the remainder of the paper. A bar

under a random variable represents deviations from the mean in the discrete case and deviations

from the Lebesque integral from 0 to 1 in the continuous case. For example, iCt,k D iCt,k � 1
n

∑n
rD1 i

C
r,k

and B⊲r⊳ D B⊲r⊳�
∫ 1

0 B⊲r⊳ dr. Weak and almost sure convergence are represented by ) and !
respectively. The dependence of discrete variables on k and of continuous random variables, such

as B⊲r⊳, on r, as well as the integrand dr and the limits of integration when integrating over ⊲0, 1⊳,

are often suppressed for notational convenience. For example, iCt,k is written as iCt , and
∫ 1

0 B⊲r⊳dr

as
∫
B.
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5.2. Implications for the Regression in Returns

The simple model described in Section 5.1 leads to some interesting implications for the regression

in returns (2). Define ̂̌ as the OLS estimate of ˇ in (2) and the modified statistic

̂̌
m D ̂̌ � n⊲i,sr⊳

n∑

tD1

⊲f
t,k

� st⊳
2

where i,sr D
∑1

jD0 E
[
iC0 ⊲sjCk � sj⊳

]
D
∑1

jD0 E
[
⊲f0,k � s0⊳⊲sjCk � sj⊳

]
is the one-sided

long-run covariance of the spot return and the first differenced interest differential (or forward

premium). ̂̌m is modified to remove second-order endogeneity effects and allows us to capture an

important part of limit theory, which does not show up in the asymptotic distribution of Ǒ . In the

result below note that d > 2d� 1 for d 2 ⊲ 1
2
, 1⊳, so ̂̌m has a faster convergence rate than Ǒ .

Theorem 1 Under Assumptions I to V Ǒ ! 0,

n⊲2d�1⊳̂̌ ) i,sr∫
B2
i⊲d�1⊳

D
(
i,sr

���

)
1∫

W2
i⊲d�1⊳

and

nd̂̌m )
k
∫
Bi⊲d�1⊳dBs∫
B2
i⊲d�1⊳

D
(
k���

���

) ∫
Wi⊲d�1⊳dWi∫
Wi2⊲d�1⊳

C
(
k�sji

�
1/2
��

) ∫
Wi⊲d�1⊳dWsÐi∫
W2
i⊲d�1⊳

The limiting behaviour of the coefficient in the returns regression is best understood as a
hybrid of the asymptotics for the cointegrating regression given in Phillips and Hansen (1990)
and the fractional unit root distribution derived by Sowell (1990). Since the regressor in (2) is
non-stationary, but the dependent variable has short memory, the resulting residuals can only be
stationary for a true value of ˇ equal to zero. Otherwise, they must inherit the stochastic trend in
the regressor. In this way (2) is similar to a cointegrating regression with cointegrating vector (1,

0) and the convergence of ̂̌ to zero is therefore quite natural. Furthermore, the three components
that appear in the limit theory given in Theorem 1, i.e.

(
i,sr

���

)
1∫

W2
i⊲d�1⊳

,

(
k���

���

) ∫
Wi⊲d�1⊳dWi∫
W2
i⊲d�1⊳

and

(
k�sji

�
1/2
��

) ∫
Wi⊲d�1⊳dWsÐi∫
W2
i⊲d�1⊳

also correspond loosely to the endogeneity, serial correlation, and mixed normal terms, discussed
by Phillips and Hansen (1990). (Examples of the first two terms are shown in Figures 3
and 4.)

By contrast, the difference in the convergence rates for ̂̌ and ̂̌m bears a closer resemblance
to the asymptotic behaviour of the fractional unit root discussed by Sowell (1990). For d < 1,
the endogeneity term dominates the other two terms asymptotically and the limiting distribution
therefore has its entire weight to one side of zero. However, because this distribution is only valid
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(
k���

���

) ∫
Wi⊲d�1⊳dWi∫
W2

i⊲d�1⊳

for
k���

���

D 1

up to an error of order Op⊲n
�⊲1�d⊳⊳, these other terms are likely to play an important role in finite

sample, especially as d approaches one. The rate of convergence also depends on d. For d D 1,

rate n convergence is achieved. However, for values of d < 0.75 the convergence rate is slower

than n1/2, becoming logarithmic as d approaches one half.

Asymptotic behaviour for the test statistics is equally non-standard. Let t denote the standard t

statistic, tŁ the test statistic for the hypothesis that ˇ D 1, R2 the coefficient of determination, and

�sr D var⊲sk � s0⊳ D
∑k

jD1

∑k
lD1 E⊲vkvl⊳ the variance of the spot return.
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Corollary 1.1 Under Assumptions I to V,

t

n⊲1�d⊳ ) i,sr

�sr
(∫
B2
i⊲d�1⊳

)1/2
for i,sr 6D 0

t )
k
∫
Bi⊲d�1⊳dBs

�sr
(∫
B2
i⊲d�1⊳

)1/2
for i,sr D 0, and

1

n2d
tŁ ) � 1

�sr

(∫
B2
i⊲d�1⊳

)1/2

Corollary 1.2 Under Assumptions I to V R2 ! 0

n⊲2d�1⊳R2 ) 1

�2
sr

2
i,sr∫
B2
i⊲d�1⊳

for i,sr 6D 0

and

nR2 )
k2
(∫
Bi⊲d�1⊳dBs

)2

�2
sr

∫
B2
i⊲d�1⊳

for i,sr D 0

Just as in the case of a regression of a random walk on a linear trend, the standard t statistic can
lead to the inference that the coefficient is significant, even though the estimator itself converges to
the ‘correct’ value of zero. Furthermore, in close resemblance to the test statistic for the fractional
unit root, it diverges for d < 1 and i,sr 6D 0, going towards �1 for i,sr < 0 and C1 for
i,sr > 0. The divergence of the t statistic when i,sr 6D 0 is explained by the fact that there is
long run covariation between the spot return and interest differential (forward premium) and this

covariation is being picked up by the regression, albeit at a second-order level via n2d�1 Ǒ . The
coefficient of determination converges to zero and unbiasedness is rejected in the limit, since tŁ

diverges.

5.3. Implications for Regression in Levels

The long-run relationship between the spot and forward rate appears remarkably strong in levels.
Figure 5, for example, shows the general good fit of the regression equation (1) to the data. In
fact, as shown in Figure 6, using the current spot rate as the independent variable, as in the
contemporaneous levels regression

st D ˛1 C ˇ1ft,k C εŁ
1,t ⊲12⊳

produces an even tighter fit. However, the test results in Table V suggest that the spot and forward
rates may not be fully cointegrated in the traditional sense. In fact, the fractional integration of the
interest differential implies a similar fractional cointegration between the spot and forward rates.25

25 Perhaps this is best understood from the perspective of the CIP: st D ft,k � ⊲it,k � iŁt,k⊳� ut , which allows us to
rewrite the levels specifications (1) and (12) as st D ft,k C εŁ

t for εŁ
t D �⊲it,k � iŁt,k⊳� ut and stCk D ft,k C ε1,tCk for

ε1,tCk D ⊲stCk � st⊳� ⊲it,k � iŁt,k⊳� ut , respectively. This formulation also suggests that the regression in levels may
simply be reproducing the CIP relation, albeit with the interest differential hidden in the residual.
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Figure 5. Plot for regression of stCk on ft,k (UK£/US$)
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Figure 6. Plot for regression of st on ft,k (UK£/US$)

For 0.5 < d < 1 the cointegrating residuals are not only fractionally integrated, but also lie

in the non-stationary range. As Theorem 2 below shows, the asymptotic behaviour for the

regressions in levels therefore falls between the case of the standard cointegrating regression

and the spurious regression (see Phillips, 1986, 1998). Let Ǒ
1,p, tŁ1,p, and R2

1,p denote the slope

coefficient, the t statistic for the test of ˇ1,p D 1, and the coefficient of determination respectively

in the regression

stCp D Ǫ C Ǒ
1,pft,k C ε̂1,tCp for p ½ 0

The contemporaneous regression of st on ft,k (12) is covered by p D 0 and the regression of stCk
on ft,k as in (1) corresponds to p D k.
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Theorem 2 Under Assumptions I to V Ǒ
1,p ! 1,

n1�d⊲ Ǒ1,p � 1⊳ ) �
∫
BsBi⊲d�1⊳∫
B2
s

D �
(
���

���

)1/2
∫
WsWi⊲d�1⊳∫

W2
s

tŁ1,p

n
1
2

) �
∫
BsBi⊲d�1⊳{∫

B2
s

∫
B2
i⊲d�1⊳ � ⊲

∫
BsBi⊲d�1⊳⊳

2
}1/2

, and R2
1,p ! 1

Since the spot and forward rates are fully I(1), while the residual is only integrated of order
d < 1, the signal of the regressor grows faster than the noise of the residual. Therefore, the

estimator remains consistent despite the non-stationarity in the residual and the R2 statistic also
tends to unity. However, the rate of convergence is considerably slower than normal and the test
statistic for the unbiasedness hypothesis tŁ1,p diverges. This divergence is particularly interesting

since it may well explain why cointegration-based tests of ˇ1 D 1 often lead to rejection (e.g.
Phillips and McFarland, 1997; Goodhart et al., 1997; and Evans and Lewis, 1995) even though
the estimates themselves are close to unity.26 Results from regressions (1) and (12) are shown in
Table VI, and seem generally to match the implications from Theorem 2. In particular, the slope

coefficient and regression R2’s are close to one, while many of the t statistics are quite large.
To understand the behaviour of these regressions one must also appreciate the enormous

difference in scale between the innovations to the spot rate and interest differential shown in
Plate 2 and Table III. First, as argued in Section 3, this difference tends to obscure the long

memory component in the residuals from the regression of the future spot rate on the current
forward rate as in (1), causing it to appear as if it were fully cointegrated. Second, because this
residual is so small compared to the regressor, the spot and forward rates appear to lie virtually
on top of one another, generating the very tight fit in Figures 5 and 6 . This explains why the

long-run relationship between the spot and forward rate appears so strong, despite the fractional
non-stationarity of the residual. Finally, this scale difference also helps to explain why estimates
of ˇ1 are so close to one in practice. The small size of the residual innovations produces a high

finite sample signal to noise ratio and a very tight asymptotic distribution for Ǒ
1,p as witnessed

by the very tiny ratio of ��� to ��� estimated in Table V.

Table VI. Regression in levels: estimates and underlying parameters

Currency Ǒ
1,0 tŁ1,0 R1,0

Ǒ
1,k tŁ1,k R1,k

O���
O���

Aus$/US$ 1.004 5.91 0.999 0.901 �12.84 0.827 0.00036
Can$/US$ 1.016 57.82 1.000 1.002 0.625 0.961 0.00116
FF/US$ 1.004 7.44 0.999 0.907 �12.38 0.837 0.00004
DM/US$ 1.007 13.75 0.999 0.909 �12.31 0.843 0.00007

Yen/US$ 0.996 �18.07 1.000 0.948 �11.21 0.936 1.3 ð 10�8

UK/US$ 1.011 26.85 1.000 0.885 �13.37 0.791 0.00069

k D 25. Using daily data creates overlapping observations for p D k but not p D 0, thereby inflating tŁ1,k but
not tŁ1,0.

26 Such tests are based on modified versions of tŁ1,p (see, for example, Phillips and Hansen, 1990).
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5.4. Implications for Error-correction Models

Many of the more recent tests of unbiasedness have been conducted using approximate error-

correction specifications.27 Based on (12), the exact error-correction model (ECM) is given by

stC1 � st D ˛2 C ˇ2⊲ˇ1ft,1 � st⊳C 
 0
2Qt C ε2,tC1 ⊲13⊳

where Qt contains lagged differences of the spot and forward rates.28 An alternative specification,

based on (1), is given by

stC1 � st D ˛2 C ˇ2⊲ˇ1ft�1,1 � st⊳C 
 0
2Qt C ε2,tC1. ⊲14⊳

In their commonly employed two-step estimation procedure, Engle and Granger (1987) suggest

estimating ˇ1 first, using regression in levels. Then, relying on the super consistency of the

cointegrating regression, (13) or (14) may be estimated by linear regression with ˇ1 replaced by
Ǒ

1. However, due to the large number of estimates for ˇ1 near one, the common practice is instead

simply to assume ˇ1 D 1, as in (3) or

stC1 � st D ˛2 C ˇ2⊲ft�1,1 � st⊳C 
 0
2Qt C ε2,tC1 ⊲15⊳

We therefore refer to these two models as approximate error-correction specifications.

Because they attempt to estimate both the short- and long-run dynamics, error-correction models

do not benefit from the same robustness properties as the (semiparametric) regression in levels.

In fact, the nonstationary long memory of the forward premium causes the procedure of Engle

and Granger (1987) to break down in two distinct ways. To begin with, the first-stage estimate

of ˇ1 is no longer superconsistent. In fact, as shown in Theorem 2, it converges at a rate slower

than n1/2. This undermines our ability to treat the estimate from the first-stage regression as if

it were known when conducting inference in the second stage (i.e. we have a generated regimes

problem). A second, and more serious problem, occurs because even if we were to substitute

ˇ1 D 1 (which is the true value in this case) for Ǒ
1 as in (3) or (15), the error-correction terms:

ft�1,1 � st D ⊲ft,1 � st�1⊳�st and st � ft,1 contain the forward premium and are therefore

fractionally non-stationary.

Consider the approximate ECM

stC1 � st D Ǫ 2,p C Ǒ
2,p⊲ft�p,1 � st⊳C O
 0

2,pQt C Oε2,tC1 ⊲16⊳

where p D 0 and p D 1 correspond to specifications (3) and (15), respectively. Defining Oet,p as

the residual from the regression of the error-correction term on Qt:

f
t�p,1 � st D Oυ0

1,pQt C Oet,p ⊲17⊳

27 These include Hakkio and Rush (1989), Baillie (1989), Barnhart and Szakmary (1991), Bekaert (1995), and Clarida
and Taylor (1993).
28 Non-overlapping data is generally employed so that k is normally equal to one.
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Ǒ
2,p can be written compactly as the estimated coefficient in the regression of stC1 � st on Oet,p:

Ǒ
2,p D

n∑

tD1

Oet,p⊲stC1 � st⊳

n∑

tD1

Oe2
t,p

.

This, then, allows us to define the modified statistic

Ǒ
2,m D Ǒ

2,p �
n⊲p �Ł

p �p⊳
n∑

tD1

Oe2
t,p

where p D
∑1

jD0 E⊲i
C
�psjC1⊳, Ł

p D 
 0
sq

{∑1
sD0 E⊲Qsi

C
�p⊳� EQ0

[
s0 � s�p

]}
, p D E

[
s1⊲s0 � s�p⊳

]
, and 
 0

sq D E⊲s1Q
0
0⊳
[
E⊲Q0Q

0
0⊳
]�1

reflect the various sources of endogeneity

between the spot return and the error-correction term.29 As in Theorem 1, such corrections allow

us to account for the serial correlation and mixed normal terms, whose strong finite sample influ-

ence fades only slightly faster than that of the endogeneity terms, which dominate the asymptotic

distribution. Let also,

1p
n

[nr]∑

tD1

Qt ) BQ⊲r⊳

define the Brownian motion BQ.

Theorem 3 Under Assumptions I to V

n⊲2d�1⊳ Ǒ
2,p )

p �Ł
p �p∫

B2
i⊲d�1⊳

, nd Ǒ
2,m )

∫
Bi⊲d�1⊳d⊲Bs � 


0
sqBQ⊳∫

B2
i⊲d�1⊳

t2,p

n⊲1�d⊳ )
p �Ł

p �p

�sr
(∫
B2
i⊲d�1⊳

)1/2
for p �Ł

p �p D 0

and

t2,p )
∫
Bi⊲d�1⊳d⊲Bs � 


0
sqBQ⊳

�sr
(∫
B2
i⊲d�1⊳

)1/2
for p �Ł

p �p 6D 0

This asymptotic theory is similar to the results of Theorem 1 and we therefore refer the reader

to Section 5.2 for an in-depth discussion.

29 For p D 0, p D 0 and Ł
p D i,sr .
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6. DISCUSSION

6.1. A Comparison of the Asymptotic Theory and Empirical Regularities

Although the negative estimates of ˇ in the returns regression (2) have played a central role in the
forward discount anomaly, the non-stationary long memory of the forward premium suggests a

statistical imbalance in the regression itself. One simply cannot explain a (short-memory) stationary
variable, like the spot return, using a regressor with a stochastic trend. The ‘true’ value of ˇ in (2)
must in fact be zero, otherwise this trend would be transferred to the spot return as well. Since

the variance of the regressor increases over time, Theorem 1 shows that Ǒ does indeed converge
to zero. This is confirmed quite clearly by the recursively calculated slope estimates in Figure 8.

The absence of any simple linear relationship between the spot return and forward premium is
also revealed by the nearly circular regression plot shown in Figure 7 and the very low R2 statistics
reported in Table VII.30 Nevertheless, despite the poor fit of this regression, the previous literature
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nominal interest differential
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tu
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Figure 7. Plot for regression in returns: (CAN$/US$)

Table VII. Regression in returns: estimates and underlying parameters

Currency Ǒ t tŁ
R2

Oi,sr
O���

k O���
O���H0:ˇ D 0 H0:ˇ D 1

Aus$ �1.23 �1.29 �2.34Ł 0.01237 �69.8 73.8
Can$ �1.17 �1.67Ł �3.11Ł 0.02064 �139.8 105.4
FR �1.31 �0.41 �1.31 0.00127 �268.4 �217.8
DM �0.19 �0.18 �1.11 0.00024 82.68 �217.23
Yen �3.36 �2.29Ł �2.98Ł 0.03818 �1126.7 6417.8
UK 0.07 0.05 �0.06 0.00002 �113.6 �16.4

ŁSignificant at 5%. First four columns use month-end sampling to avoid inflation of t statistics due to

overlapping data. (Daily results for Ǒ and R2 are similar).

30 In the traditional interpretation of this regression low R2 statistics are explained by the extra noise added into the UIP
equation when the expected spot return is replaced by its realization.
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Figure 8. Recursive slope estimates for the regression in returns (sampled at month end)

has focussed a great deal of attention on these negative estimates. There are three principal reasons

for this. The first is the preponderance of negative coefficients in empirical research, the second

comes from their apparent magnitude, and the third from the often significantly negative t statistics.

For example, in Table VII, five of the six estimates are negative, four of these are larger than one,

and two are significant.

The results from Section 6.1 suggest an alternative way to account for these three empirical

regularities. Consider first the preponderance of negative estimates. Given a symmetric limiting

distribution, the fact that the vast majority of reported slope estimates are negative might seem at

odds with the convergence of the estimator to zero. However, the non-standard limiting behaviour

given in Theorem 1 is anything but symmetric and could quite easily give rise to such a skewed

distribution of empirical estimates. In fact, the endogeneity and serial correlation terms are

associated with long left-tailed distributions for values of i,sr < 0 and ��� > 0 respectively

(see Figures 3 and 4). In this sense, it is possible for the vast majority of slope estimates to turn

up negative, even through the estimator itself converges to zero.31 This is somewhat analogous to

31 Our theoretical results do not explain why the slope estimates on certain currencies have changed in recent subsamples,
as reported by Baillie and Bolllerslev (2000). However, neither are they inconsistent with this finding. The theory itself
does not dictate a distribution skewed in any particular direction. At most it tells us that we should not count on
a standard symmetrical distribution. Estimates of the underlying parameters do suggest a negative distribution for our
particular sample, but these underlying parameters may have shifted over time, in which case the shape of the distribution
may also have changed. Second, even holding these parameters constant the fact there are two terms with skewed limiting
distributions and different rates of convergence suggests that the small sample distributions may look quite different than
the distributions associated with larger samples. For this reason, estimates may show up positive in certain subsamples,
even if they are generally negative across the entire sample.
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the case of the unit root distribution, in which autoregressive estimates almost always turn up less
than one, even when the true coefficient is itself equal to one.

Significantly negative t statistics can also be understood in terms of their non-standard

limiting behaviour. For values of i,sr < 0 the t statistic diverges (possibly quite slowly)
to negative infinity. (Figure 9 plots recursively estimated t statistics and this does appear to

be the case for three of the six currencies.) Alternatively for i,sr D 0 and/or d D 1 the t

statistic has a random but still highly non-standard limit, which may also lead to spurious
inference.

Finally, at first sight, the apparent magnitude of the negative coefficients seems quite surprising

as well. The Yen, for example, has a coefficient of �3.36. However, in light of the gigantic
differences in scale between the spot return and forward premium discussed in Section 4.2

(and shown in Plate 2 and Table III), it hardly seems appropriate to refer to these estimates

as ‘large’. In fact, if the units of measurement were readjusted so as to make the forward
premium and spot return of comparable size, the same estimates would actually look quite

small.

The explanation given above is, for the most part, corroborated by the estimated coefficients

on the endogeneity and serial correlation terms32
(

Oi,sr/ O��� and k O���/ O���
)

shown in the last

two columns of Table VII.33 Oi,sr is in fact negative for five of the six currencies and O��� is
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Figure 9. Recursive t statistics from the regression in returns (sampled at month end)

32 Given n ³ 2800 and estimates of Od ³ .9 the finite sample influence of the endogeneity term, is roughly twice as large
as that of serial correlation term.
33 Using daily data and our estimates from Table I, the appropriate variables were either first or fractionally differenced,
the first 100 observation were discarded to allow the fractional differencing to take effect, and the estimates were then
computed using dspectra in COINT 2, which employs the approach of Andrews (1991) along with a Q-S kernel window.
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positive for three. However, the estimates themselves appeared somewhat unstable, particularly
for the Yen, and must be interpreted with some caution.34

While the convergence of Ǒ to zero is due to the time series imbalance between the spot return
and forward premium, it is important to note that the non-standard behaviour of the regression
estimate and t statistic is instead a direct consequence of the long memory properties of the forward

premium itself. Another way of seeing this is to subtract the forward premium from both sides of
(2) giving the alternative regression formulation35

stCk � ft,k D ˛C υ⊲ft,k � st⊳C εtCk ⊲18⊳

where υ D ˇ � 1. Under this formulation there is no apparent regression imbalance since both

sides (the regressand and the regressor) contain fractionally integrated components. Nevertheless,
this regression is essentially no different from (2) and hence is equally non-standard. Observe that
under a null of ˇ D 1 (υ D 0) both the regressor and the regression error in (18) are fractionally
integrated. On the other hand, if ˇ D 0, then υ D �1 and the regressor is fractionally integrated

but the regression error is stationary.

6.2. Implications for Unbiasedness

Given the very standard assumption of a short-memory spot return, the long-memory behaviour of
the forward premium already provides a rejection of forward rate unbiasedness. To make this point

more intuitively, note that the unbiasedness hypothesis may be stated in terms of the orthogonality
of the forward rate forecast errors stCk � ft,k :

Et⊲stCk � ft,k⊳ D 0.

If the forward premium ft � st is indeed a long-memory process and the spot return a short-
memory process, then the forecast errors stCk � ft,k D ⊲stCk � st⊳� ⊲ft,k � st⊳ must themselves

contain a long-memory component. By definition such a long-memory component is highly
correlated with the past and thus partially forecastable.36

Nonetheless, our results may suggest some reorientation in the literature, away from attempts

to explain the negative regression estimates themselves, and towards a fuller understanding of
why the forward premium displays such strong long-memory characteristics. At best, one would
hope to derive a realistic economic model that could deliver these long-memory characteristics as
an implication. At the very least, one might strive for an intuitive understanding of just why the

forward premium is so strongly persistent.
Several initial possibilities seem to present themselves. First, note that under a more general

specification (such as an international CAPM) the error in (2) typically includes several ‘missing

34 Estimates varied substantially over subsamples, and were heavily influenced by initial observations. For example,

leaving out just the first 50 observations for the Yen, Oi,sr/ O��� changed from �1126 to 79 and with only the first
observation omitted it changed to 3845. The scale differences discussed above are reflected by the large size of these
estimates, which imply a very wide asymptotic distribution for the estimator.
35 We thank an anonymous referee for suggesting that we comment on this formulation.
36 A pure long-memory process xt with fractional parameter d can be forecasted using its AR(1) representation
xt D 1

jD0�jxt�j, where �j D ⊲j� d⊳/ f⊲�d⊳⊲⊲k C 1⊳⊳g. In the case of an ARFIMA(p,d,q) the value of the �j

will depend, in part, on the ARMA coefficients for j small, but �j f⊲�d⊳g�1 j�⊲1Cd⊳ as j ! 1.
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variables’, such as the conditional variance of the spot return37 and a risk premium term. These
missing variables clearly provide one possible explanation for the long memory behaviour. Baillie
and Bollerslev (2000) for example, note that the conditional variance of the spot return displays
long memory characteristics similar to those of the forward premium and suggest this as a possible
explanation. Likewise, long memory in the forward premium could be due to long memory in the
underlying sources of risk. 38

A second possibility is suggested in Evans and Lewis (1995), who use a Peso problem argument
to explain the evidence they find in favour of unit root behaviour in the forward premium.39 Finally,
its also quite possible that, contrary to the received wisdom, the expected spot return itself contains
a long-memory component similar in size and persistence to the forward premium. If this were
indeed the case then this predictable component would be nearly impossible to detect due to the
large noise component in the spot return.40

6.3. Issues for Future Empirical Work

From a practical standpoint, one question which comes to mind is whether we can remedy these
regression procedures. There are, in principle, two basic approaches that one might take. First, as
suggested by Baillie and Bollerslev (2000), one could regress the spot return on the fractionally
differenced forward premium41

stC1 � st D ˛Ł C ˇŁ⊲1 � L⊳d⊲ft,k � st⊳C εŁ
tC1.

Since the estimator for d converges at least as slowly as the regression coefficients, new formulas
for the standard errors would need to be developed depending on the procedure used to estimate
d. Doubtless this would increase the size of the standard errors. One might even contemplate a
strategy of joint estimation of d and the regression parameters.

A more fundamental concern is that even after these adjustments are made, the modified regres-
sion no longer provides a proper framework for testing unbiasedness. In fact, given short memory
in the sport return, a finding of long memory in the forward premium is already cause for rejection,
so that no further tests are needed. Nevertheless, with properly modified standard errors, such a
formulation might still yield interesting information with regard to the high-frequency dynamics
between these two variables, even if there were no immediate economic interpretation to the results.

A second and perhaps more promising approach would be to attempt to impose balance by
adding in appropriate missing variables rather than by differencing the data.42 For example, one

37 More generally, a JIT term, which simplifies to (a multiple of) the conditional variance of the spot return under the
assumption of constant relative risk aversion. See Engel (1996) for more details.
38 Kuersteiner (1996) also develops a cash in advance model relating the level of the exchange rate to the level of the
interest rate.
39 Although the data-generating mechanism they consider displays stationary characteristics over very long horizons, it
mimics unit root type behaviour over more realistic time periods and might very well lead to econometric problems similar
to those discussed here.
40 Recall, for example, from Section 4 that the spot return dwarfs the forward premium in scale so that any long-memory
component of comparable size would go virtually undetected.
41 Newbold et al. (1998), pursue a similar strategy in the autoregressive/unit root context. They use the fitted values from
an autoregression of the forecast error stCk � ft,k to produce a whitened version of the forward premium. They then run
the regression in returns replacing the original forward premium by the whitened version. After this adjustment, they find
that their estimates no longer turn up negative.
42 We thank an anonymous referee for this suggestion.
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could follow up on Baillie and Bollerslev’s (2000) work by adding in an estimate of the Jensen’s
Inequality Term. In this case, one would look to see first whether such a term proved useful in
balancing the equation (i.e. whether it was fractionally cointegrated with the forward premium)
and if so, whether it led to more reasonable estimates of ˇ. Clearly, there are also econometric
complications involved here as well. Perhaps, most importantly, restoring balance to (2) does not,

in itself, eliminate the non-standard nature of the limit theory, since this non-standard behaviour
is primarily attributable to the long memory of the forward premium. One would be left with a
fractionally cointegrated regression leading to regression asymptotics similar to those discussed
earlier, albeit without the convergence of the estimator to zero. This might call for a modified
estimator in the spirit of Phillips and Hansen (1990)43. Similar comments would apply to the

error-correction regression.
The levels or cointegrating regression is by far the most robust of the three regressions, in

that only the convergence rates and t statistics are affected by the long memory in the residuals.
However, since this specification estimates only the long run relationship between the spot and
forward rates, it is not clear whether any additional economic insight is gained from these

improvements.

CONCLUSION

Using a new semiparametric estimator and some recent asymptotic theory of Kim and Phillips
(1999a), we join Baillie and Bollerslev (1994) in finding evidence of non-stationary long-memory
behaviour in the forward premium. This finding is further confirmed using parametric estimates

based on parsimonious ARFIMA specifications. Two new explanations are also proposed for its
conflicting empirical time series characterizations.

The non-stationary long memory of the forward premium implies an imbalance in the traditional
regression of the spot return on the forward premium underlying much of the literature on the
forward discount anomaly. Non-Standard limiting distributions for the estimator and test statistics

are derived in terms of stochastic integrals of fractional Brownian motion. The slope and R2

coefficients are shown to converge to zero, the t statistic is divergent, and the left-tailed limiting
distribution appears consistent with puzzling negative estimates reported in the literature.

Interesting implications also follow for two related empirical applications traditionally used to
test forward rate unbiasedness: regression in levels and in error-correction format. The regression

in levels is found to be fractionally cointegrating, albeit with non-stationary residuals. The slope
coefficient is still consistently estimated but the t statistic diverges, even when centred about the
true coefficient. This may provide an explanation for results in several previous empirical studies,
which have found the slope coefficient to be quite close to, yet still significantly different from,
one. Estimation of the short run dynamics in the error-correction model is shown to be even more

seriously affected.
There are two principal implications for future empirical work. First, the long memory of the

forward premium provides in itself a rejection of forward rate unbiasedness, since the wandering
behaviour predicted by the forward premium is not realized by the spot return. Given the presence
of long memory it is therefore unnecessary to conduct further tests of unbiasedness. Second, in

43 Kim and Phillips (2001) provide a fractional version of the FM estimator suited to the estimation of such fractionally
cointegrated regressions.
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order to correctly capture short-run dynamics between the spot and forward rates, the regressions
in returns and in error-correction format must be adjusted to account for the stochastic trend in

the forward premium. Work along these lines is currently underway.

Finally, our results may suggest a reorientation in the theoretical literature, away from attempts
to explain the negative regression estimates themselves, and towards a fuller understanding of why

the forward premium displays such strongly persistent behaviour. Evans and Lewis (1995) and
Baillie and Bollerslev (2000) already contain some interesting suggestions along these lines.

APPENDIX

Technical Lemmas

The following two lemmas are used in the proofs of Theorems 1 and 3 respectively.

Lemma 1 Let xt D
∑1

jD0 x,jεx,t�j and yt D
∑1

jD0 y,jεy,t�j satisfy the absolute summability

conditions
∑1

jD0

∣∣ x,j
∣∣,
∑1

jD0

∣∣ y,j
∣∣ < 1, where ⊲εx,t, εy,t⊳ is i.i.d. with zero mean and finite fourth

moments, and define their product as wt D xtyt. Then the following hold: (i) wt is weakly stationary,

(ii)
∑1

hD0 jcov⊲w0, wh⊳j < 1, (iii)
1p
n

∑n
tD1 fwt � E⊲wt⊳g D Op⊲1⊳, and (iv) 1

n

∑n
tD1 wt ! E⊲w0⊳.

Remark 1.1 This lemma applies in particular to fractionally integrated time series of order

�1/2 < d � 0.

Lemma 2 Let xn:� ! R be a sequence of random variables defined on the probability space

⊲�, Rp, P⊳ and suppose that xn � x D o⊲n�a⊳ a.s. P, where x is a constant. If the (non-random)

function g:Rp ! Rq is continuously differentiable in a neighbourhood of x then g⊲xn⊳� g⊲x⊳ D
o⊲n�a⊳ a.s. P.

Remark 2.1 This lemma also applies in the case in which x is a matrix.

Proofs

Proof of Lemma 1 (i) E⊲wt⊳ D E limn!1
∑n

jD0

∑n
kD0  x,j y,kεx,t�jεy,t�k D E⊲εx,0εy,0⊳

∑1
jD0

 x,j y,j, where dominated convergence follows from
∑1

jD0

∑1
kD0

∣∣ x,j
∣∣ ∣∣ y,k

∣∣ D
∑1

jD0∣∣ x,j
∣∣∑1

kD0

∣∣ y,k
∣∣ < 1, and

n∑

jD0

n∑

kD0

 x,j y,kεx,t�jεy,t�k �
1∑

jD0

1∑

kD0

∣∣ x,j
∣∣ ∣∣ y,k

∣∣ ⊲
∣∣εx,t�jεy,t�k

∣∣

� E
∣∣εx,t�jεy,t�k

∣∣⊳C
1∑

jD0

1∑

kD0

∣∣ x,j
∣∣ ∣∣ y,k

∣∣E
∣∣εx,t�jεy,t�k

∣∣
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D
1∑

jD0

∣∣ x,j
∣∣ ∣∣ y,j

∣∣ ⊲
∣∣εx,t�jεy,t�j

∣∣� E
∣∣εx,0εy,0

∣∣⊳

C
1∑

jD0

1∑

kD0
k 6Dj

∣∣ x,j
∣∣ ∣∣ y,k

∣∣ ⊲
∣∣εx,t�jεy,t�k

∣∣� E
∣∣εx,0εy,1

∣∣⊳

C E
∣∣εx,0εy,0

∣∣
1∑

jD0

∣∣ x,j
∣∣ ∣∣ y,j

∣∣C E
∣∣εx,0εy,1

∣∣
1∑

jD0

1∑

kD0
k 6Dj

∣∣ x,j
∣∣ ∣∣ y,k

∣∣

since
∣∣εx,t�jεy,t�j

∣∣� E
∣∣εx,0εy,0

∣∣ is mean zero i.i.d. for j D 1, 2, 3, . . . and
∣∣εx,t�jεy,t�k

∣∣
� E

∣∣εx,0εy,1
∣∣ is mean-zero i.d.d for j 6D k. Then, defining wt D wt � E⊲wt⊳ a similar dominated

convergence argument implies that

E⊲w0wh⊳ D E⊲x0y0xhyh⊳�
[
E⊲x0y0⊳

]2 D E⊲ε2
x,0ε

2
y,0⊳

1∑

jD0

 x,j x,hCj y,j y,hCj

C E⊲ε2
x,0⊳E⊲ε

2
y,0⊳

1∑

jD0

1∑

rD0

 x,j x,hCj y,r y,hCr C ⊲E
[
ε
x,0
εy,0
]
⊳2

ð
1∑

jD0

1∑

rD0

 x,j x,hCr y,r y,hCj

(ii) Note first that
∑1

hD�1
∑1

jD0

∣∣ x,j x,jCh
∣∣,
∑1

hD�1
∑1

jD0

∣∣ y,j y,jCh
∣∣, and

∑1
hD�1

∑1
jD0∣∣ x,j y,jCh

∣∣ < 1 are implied by absolute summability. For example,

1∑

hD1

1∑

jD0

∣∣ x,j y,jCh
∣∣ �

1∑

jD0

( 1∑

hD1

∣∣ y,jCh
∣∣
)
∣∣ x,j

∣∣

�





jŁ∑

jD0

∣∣ x,j
∣∣

1∑

hD1

∣∣ y,jCh
∣∣C

1∑

jDjŁC1

∣∣ x,j
∣∣


 < 1.

for jŁ such that
∑1

hD1

∣∣ y,jCh
∣∣ < 1 for all j > jŁ.44 Then define aj D

∑1
hDj
∣∣ x,h y,h

∣∣, and note

that aj ! 0 since
∑n

hD0

∣∣ x,h y,h
∣∣ <
(∑n

hD0  
2
x,h

) 1
2

(∑n
hD0  

2
y,h

) 1
2

is increasing and convergent.

Therefore, choosing jŁ so that
∣∣aj
∣∣ < 1 for j > jŁ

1∑

hD0

∣∣∣∣∣∣

1∑

jD0

 x,j x,hCj y,j y,hCj

∣∣∣∣∣∣
�

1∑

jD0

aj
∣∣ x,j y,j

∣∣ <
jŁ∑

jD0

aj
∣∣ x,j y,j

∣∣C
1∑

jDjŁC1

∣∣ x,j y,j
∣∣ < 1.

44 Note that since
∑j
hD1

∣∣ y,h
∣∣ is increasing and convergent, the tail sum

∑1
hD1

∣∣ y,jCh
∣∣ D
∑1
hDjC1

∣∣ y,h
∣∣ must converge

to zero.
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Finally, we also have45

1∑

hD0

∣∣∣∣∣∣

1∑

jD0

1∑

rD0

 x,j x,hCj y,r y,hCr

∣∣∣∣∣∣
�





1∑

hD0




1∑

jD0

 x,j x,hCj




2




1
2

ð





1∑

hD0

( 1∑

rD0

 y,r y,hCr

)2




1
2

< 1

1∑

hD0

∣∣∣∣∣∣

1∑

jD0

1∑

rD0

 x,j x,hCr y,r y,hCj

∣∣∣∣∣∣
�





1∑

hD0




1∑

jD0

 x,j y,hCj




2




1
2

ð





1∑

hD0

( 1∑

rD0

 x,hCr y,r

)2




1
2

< 1

Therefore
∑1

hD0

∣∣E⊲w0wh⊳
∣∣ < 1. (iii) By the Toeplitz Lemma

1

n
E

(
n∑

tD1

wt

)2

D
n�1∑

hD�nC1

E⊲w0wh⊳� 2
1

n

n�1∑

hD1

hE⊲w0wh⊳ !
1∑

hD�1
E⊲w0wh⊳

For any ε > 0, choose Mε such that M2
ε >

1

ε

{
εC
∑1

hD�1 E⊲w0wh⊳
}

and nε such that
∣∣ 1
n
E⊲
∑n

tD1 wt⊳
2 �
∑1

hD�1 E⊲w0wh⊳
∣∣ < ε for n > nε. Then, by Chebyshev’s inequality

Pr

{
1

n1/2

n∑

tD1

wt > Mε

}
<

1

M2
ε

1
n
E

(
n∑

tD1

wt

)2

<
1

M2
ε

{
εC

1∑

hD�1
E⊲w0wh⊳

}
< ε

for all n > nε. (iv) Therefore, 1
n

∑n
tD1 wt D 1

n

∑n
tD1 wt � E⊲w0⊳ ! 0, implying that 1

n

∑n
tD1 wt !

E⊲w0⊳.

Proof of Lemma 2 First, with probability one we draw an ωε� such that na⊲xn � x⊳ ! 0. For

any ε > 0 choose n0 and υ0 < ε such that g is continuously differentiable over the closed region

C D fz : kz � xk < υ0g and that 8n ½ n0 n
akxn⊲ω⊳� xk � υ0. Next define

Mυo D sup
zεC

∥∥∥∥
dg⊲x⊳

dx
jxDz
∥∥∥∥ < 1

and then choose

υ1 < min

(
ε

Mυ0

, υ0

)

and n ½ n0. Then, by the mean-value theorem nakg ⊲xn⊲ω⊳⊳� g⊲x⊳k � Mυon
akxn⊲ω⊳� xk � ε.

45 These follow since
∑1
hD0

∣∣∣
∑1
jD0  x,j x,hCj

∣∣∣,
∑1
hD0

∣∣∑1
rD0  y,r y,hCr

∣∣,
∑1
hD0

∣∣∣
∑1
jD0  x,j y,hCj

∣∣∣, and∑1
hD0

∣∣∑1
rD0  x,hCr y,r

∣∣ < 1 and absolute summability is stronger than square summability.
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Proof of Theorem 1 Define xt D ft,k � st D iCt and ytCk D stCk � st, and then write

Ǒ D

n∑

tD1

xtytCk

n∑

tD1

x2
t

using the Frisch–Waugh–Lovell theorem. Using the Beveridge–Nelson (BN) decomposition we

then express �t and �t as the sum of a martingale difference sequence and a telescoping remainder:

(
�t
�t

)
D C⊲L⊳εt D C⊲I⊳εt C ε̃t�1 � ε̃t, for

ε̃t D C̃⊲L⊳εt D
1∑

lD0

c̃lεt�l, c̃l D
1∑

jDlC1

cj,

C⊲I⊳ D
1∑

jD0

cj, and

1∑

lD0

∣∣c̃l
∣∣ < 1 ⊲A1⊳

where summability of
∣∣c̃l
∣∣ follows from Assumption V. We can then decompose iCt D ⊲1 � L⊳�d�t as

iCt D C2⊲I⊳
0iC0,t C ĩCt�1 � ĩCt D C2⊲I⊳

0iC0,t � z̃t, where

iC0,t D ⊲I� L⊳�dεt, ĩ
C
t D ⊲1 � L⊳�dε̃2,t, and z̃t D ĩCt � ĩCt�1

By Assumption V and Theorem 2 of Sowell (1990)

1

nd�1/2
iC0,[nr] D 1

nd�1/2

[nr]∑

tD1

⊲I� L⊳d�1εt ) W⊲d�1⊳

and therefore

1

nd�1/2
x[nr] ) C2⊲I⊳

0W⊲d�1⊳ D Bi⊲d�1⊳,
1

n

n∑

tD1

xt

nd�1/2
)
∫
Bi⊲d�1⊳

1

nd�1/2
x[nr] ) Bi⊲d�1⊳ D Bi⊲d�1⊳ �

∫
Bi⊲d�1⊳, and

1

n2d

n∑

tD1

x2
t D 1

n

n∑

tD1

( xt

nd�1/2

)2

D
∫ ⊲nC1⊳/n

1/n

( x[nr]

nd�1/2

)2

dr )
∫
B2
i⊲d�1⊳

This gives the distribution for the denominator. By the BN decomposition (A1)

ytCk D
k∑

pD1

�tCp D C1⊲I⊳
0
k∑

pD1

εtCp C ⊲ε̃1,t � ε̃1,tCk⊳ ⊲A2⊳
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allowing the numerator to be divided into two components:

n∑

tD1

xtytCk D C1⊲I⊳
0
k∑

pDl

n∑

tD1

iCt εtCp C Oi,sr where Oi,sr D
n∑

tD1

iCt ⊲ε̃1,t � ε̃1,tCk⊳

Theorem 2.1 of Hansen (1992) then implies that

1

nd

n∑

tD1

iCt εtCp D
n∑

tD1

(
iCt

nd�1/2

)(εtCp
n1/2

)
)
∫
Bi⊲d�1⊳dW

and therefore

1

nd
C1⊲I⊳

0
k∑

pD1

n∑

tD1

iCt εtCp ) kC1⊲I⊳
0
∫
Bi⊲d�1⊳dW D k

∫
Bi⊲d�1⊳dBs. ⊲A3⊳

A telescoping sum can then be extracted from Oi,sr:

1

n

n∑

tD1

iCt
(
ε̃1,t � ε̃1,tCk

)
D 1

n

n∑

tD1

(
iCt � iCt�k

)
ε̃1,t � 1

n

n∑

tD1

(
iCt ε̃1,tCk � iCt�k ε̃1,t

)

D
k∑

pD1

1

n

n∑

tD1

(
iCt�kCp

)
ε̃1,t C

k∑

pD1

1

n
iCp�k ε̃1,p �

k∑

pD1

1

n
3
2

�d

(
iCnCp�k

n
d� 1

2

)
ε̃1,nCp

Since ε̃1,t and the fractionally overdifferenced variable iCt satisfy the absolute summability

condition in Lemma 1

1p
n

n∑

tD1



i

C
t

(
ε̃1,t � ε̃1,tCk

)
�

k∑

pD1

E
(
iCp�k ε̃1,0

)


 D Op⊲1⊳

∑k
pD1 E⊲i

C
p�k ε̃1,0⊳ D∑k�1

pD0 E
(
iC0 ε̃1,p

)
due to the weak stationarity of iCt and ε̃1,t. Defining

εŁ
t D jεtj � E jε0j and noting that

∑1
lD1

∣∣c1,l

∣∣ < 1 by Assumption V and

n∑

lD1

c1,lεpCj�l �
1∑

lD1

∣∣c1,l

∣∣ ∣∣εpCj�l
∣∣ D

1∑

lD1

∣∣c1,l

∣∣ εŁ
pCj�l C E jεoj

1∑

lD1

∣∣c1,l

∣∣

we then apply dominated convergence to obtain:

1∑

jD1

Ep�pCj D
1∑

jD1

1∑

lD1

c1,lEpεpCj�l D
1∑

jD1

1∑

lDj
c1,lεpCj�l

D
1∑

sD0

( 1∑

rDsC1

c1,r

)
εp�s D

1∑

sD0

c̃1,sεp�s D ε̃1,p ⊲A4⊳
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Likewise,
∣∣∣∣∣∣

n∑

jD1

Ep�pCj

∣∣∣∣∣∣
�

1∑

jD1

∣∣Ep�pCj
∣∣ D

1∑

sD0

∣∣c̃1,s

∣∣ ∣∣εp�s
∣∣

D
1∑

sD0

∣∣c̃1,s

∣∣ εŁ
p�s C E jεoj

1∑

sD0

∣∣c̃1,s

∣∣ ⊲A5⊳

where
∑1

sD1

∣∣c̃1,s

∣∣ < 1 by Assumption V. Using (A5) to invoke dominated convergence it follows

from (A4) that

k�1∑

pD0

E
(
iC0 ε̃1,p

)
D

k�1∑

pD0

E


iC0

1∑

jD1

Ep�pCj


 D

1∑

jD1

E


iC0

k�1∑

pD0

�pCj




D
1∑

jD0

E
[
iC0

(
sjCk � sj

)]
D i,sr

Therefore ,
1p
n

∑n
tD1

{
xtytCk �i,sr

}
D Op⊲1⊳,

1
n

∑n
tD1 xtytCk ! i,sr , and

1

nd

(
n∑

tD1

xtytCk � ni,sr

)
D 1

nd
C1⊲I⊳

0
k∑

pDl

n∑

tD1

iCt εtCp ) k

∫
Bi⊲d�1⊳dBs ⊲A6⊳

Applying the continuous mapping theorem and the decomposition of Bs in (11) then gives the result

in Theorem 1.

Proof of Corollary 1.1 Employing the Frisch–Waugh–Lovell theorem write

t

n⊲1�d⊳ D n⊲2d�1⊳ Ǒ

O�
(

1

n2d

∑n
tD1 x

2
t

)� 1
2

for i,sr 6D 0

t D nd Ǒ
m

O�
(

1

n2d

∑n
tD1 x

2
t

)� 1
2

for i,sr D 0

and

tŁ

nd
D 1

O�

(
1

n2d

n∑

tD1

x2
t

) 1
2

⊲ Ǒ � 1⊳ D Ǒ 1

O�

(
1

n2d

n∑

tD1

x2
t

) 1
2

� 1

O�

(
1

n2d

n∑

tD1

x2
t

) 1
2

where

O�2 D 1

n

n∑

tD1

(
y
tCk � Ǒxt

)2

D 1

n

n∑

tD1

y2

tCk � 2 Ǒ 1

n

n∑

tD1

xtytCk C Ǒ
(
n⊲2d�1⊳ Ǒ

)( 1

n2d

n∑

tD1

x2
t

)
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From the proof of Theorem 1 1
n

∑n
tD1 xtytCk , n

⊲2d�1⊳ Ǒ , and
1

n2d

∑n
tD1 x

2
t are all Op⊲1⊳, while Ǒ ! 0

a.s. Therefore O�2 ! E
(
y2
tCk

)
D �2

sr . These results and the limits given in Theorem 1 give the stated

results.

Proof of corollary 1.2 Write the (standardized) coefficient of determination as

n⊲2d�1⊳R2 D
(
n⊲2d�1⊳ Ǒ

)2

1

n2d

n∑

tD1

x2
t

1

n

n∑

tD1

y2

tCk

for i,sr 6D 0 and as

nR2
m D

(
nd Ǒ

m

)2

1

n2d

n∑

tD1

x2
t

1

n

n∑

tD1

y2

tCk

for i,sr D 0

The rest follows from the application of the continuous mapping theorem to the results of Theorem 1.

Proof of Theorem 2 By Assumption I ft,k D st C xt. Also define yp,tCp D stCp � st. Then

Ǒ
1,p D

n∑

tD1

f
t,k
stCp

n∑

tD1

f2

t,k

D

n∑

tD1

(
st C xt

) (
st C yp,tCp

)

n∑

tD1

(
st C xt

)2

D

n∑

tD1

(
st C xt

) (
fst C xtg �

{
xt � yp,tCp

})

n∑

tD1

(
st C xt

)2

D 1 �

n∑

tD1

(
st C xt

) (
xt � yp,tCp

)

n∑

tD1

(
st C xt

)2

Recall that st is I(1), xt is I(d), and yp,tCp is I(0). Therefore
1

n2

∑n
tD1 s

2
t )

∫
B2
s and

1

n1Cd

n∑

tD1

stxt D 1

n

n∑

tD1

( st

n1/2

)( xt

nd�1/2

)
D
∫ nC1

n

1
n

( s[nr]
n1/2

)( x[nr]

nd�1/2

)
dr )

∫
BsBi⊲d�1⊳

The remaining terms are all of lower order:
∑n

tD1 styp,tCp D Op⊲n⊳ and from the proof of Theorem 1∑n
tD1 xtyp,tCp D Op⊲n⊳ and

∑n
tD1 x

2
t D Op

(
n2d
)
. Therefore ˇ1,p ! 1 and

n1�d
(

Ǒ
1,p � 1

)
D

1

n1Cd

n∑

tD1

(
�stxt � x2

t C styp,tCp C xtyp,tCp
)

1

n2

n∑

tD1

s2
t C 1

n2

n∑

tD1

(
2stxt C x2

t

)
) �

∫
BsBi⊲d�1⊳∫
B2
s
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Define

tŁ1,p D

(
Ǒ

1,p � 1
)

{
n∑

tD1

f2

t

}�1/2

O�1

where O�1 D
{

1

n

n∑

tD1

(
stCp � Ǒ

1,pft,k

)2
} 1

2

Then, substitute stCp � Ǒ
1,pft,k D

(
1 � Ǒ

1,p

)
st � Ǒ

1,pxt C y
p,tCp so that

(
stCp � Ǒ

1,pft,k

)2

D
(

Ǒ
1,p � 1

)2

s2
t C Ǒ 2

1,px
2
t C 2 Ǒ

1,p

(
Ǒ

1,p � 1
)
stxt

� 2
(

Ǒ
1,p � 1

)
styp,tCp � 2 Ǒ

1,pxtyp,tCp C y2

p,tCp. ⊲A7⊳

The first three terms in (A7) are of order Op⊲n
2d⊳ while the rest are of order Op⊲n⊳ or lower.46

Therefore

1

n2d�1
O�2

1 D 1

n2d

n∑

tD1

(
stCp � Ǒ

1,pft,k

)2

)
∫
B2
s

∫
B2
i⊲d�1⊳ �

(∫
BsBi⊲d�1⊳

)2

∫
B2
s

and

tŁ1,p

n
1
2

D
n⊲1�d⊳

(
Ǒ

1,p � 1
)

{
1

n2

n∑

tD1

f2

t

}�1/2{
1

n2d�1
O�2

1

}1/2
) �

∫
BsBi⊲d�1⊳{∫

B2
s

∫
B2
i⊲d�1⊳ �

(∫
BsBi⊲d�1⊳

)2
}1/2

46 Recall that

n1�d
(

Ǒ
1,p � 1

)
) �

∫
BsBi⊲d�1⊳∫
B2
s

1

n2

n∑

tD1

s2t )
∫
B2
s

1

n1Cd

n∑

tD1

stxt )
∫
BsBi⊲d�1⊳

1

n2d

n∑

tD1

x2
t )

∫
B2
i⊲d�1⊳

1

n

n∑

tD1

styp,tCp,
1

n

n∑

tD1

xtyp,tCp

and
1

n

n∑

tD1

y2
p,tCp

are all convergent.
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For the R2 statistic, we have

R2
1,p D

Ǒ 2
1,p

n∑

tD1

f2

t,k

n∑

tD1

s2tCp

D

Ǒ 2
1,p

n∑

tD1

(
st C xt

)2

n∑

tD1

(
st C y

p,tCp

)2

D Ǒ 2
1,p




1

1 C

1

n2

n∑

tD1

(
2styp,tCp C y2

p,tCp

)

1

n2

n∑

tD1

s2t

C

1

n2

n∑

tD1

(
2stxt C x2

t

)2

1

n2

n∑

tD1

(
st C y

p,tCp

)2




! 1

Proof of Theorem 3 Define wp,t D f
t�p � st D xt�p � y

p,t
, where xt D ft � st and yt,p D st �

st�p. The estimated coefficients in (17) can be written as Oυ1 D
(

1
n

∑n
tD1QtQ

0
t

)�1
1
n

∑n
tD1Qtwp,t.

By the ergodic theorem, 1
n

∑n
tD1QtQ

0
t
! E

(
Q0Q

0
0

)
, as E ⊲Qt⊳ D 0 by assumption, and following

the proof of Theorem 1, we have

1

ndC1/2

n∑

tD1

wp,t D 1

ndC1/2

n∑

tD1

(
xt�p � y

p,t

)
)
∫
Bi⊲d�1⊳

1

n

n∑

tD1

Q
t
wp,t D 1

n

n∑

tD1

Q
t

(
xt�p � y

p,t

)
!
[ 1∑

sD0

E
(
Qsi

C
�p

)
� E

(
Q0

[
s0 � s�p

])
]

1

nd

n∑

tD1

{
Q
t
wp,t �

[ 1∑

sD0

E
(
Qsi

C
�p

)
� E

(
Q0

[
s0 � s�p

])
]}

)
∫
Bi⊲d�1⊳dBQ

Oυ1 ! ̃p, n
1�d
(

Oυ1 � ̃p

)
)
[
E
(
Q0Q

0
0

)]�1
∫
Bi⊲d�1⊳dBQ

1

nd�1/2
Oep,[nr] D 1

nd�1/2

(
x[nr]�p � y

p,[nr]
� Q0

[nr]
Oυ1

)
) Bi⊲d�1⊳, and

1

n2d

n∑

tD1

Oe2
p,t )

∫
B2
i⊲d�1⊳, where̃pD

[
E
(
Q0Q

0
0

)]�1

[ 1∑

sD0

E
(
Qsi

C
�p

)
� E

(
Q0

[
s0 � s�p

])
]
.

Substituting Oep,t D xt�p � y
p,t

� Oυ0
1Qt and xt D iCt and employing (A2) then write

1

n

n∑

tD1

Oep,tstC1 D C1⊲I⊳
1

n

n∑

tD1

iCt�pεtC1 � 1

n

n∑

tD1

stC1Q
0
t

(
Oυ1 � ̃p

)
C Op � OŁ

p � Op

Copyright  2001 John Wiley & Sons, Ltd. J. Appl. Econ. 16: 671–708 (2001)



706 A. MAYNARD AND P. C. B. PHILLIPS

where Op D 1

n

∑n
tD1 i

C
t�p⊲ε̃t � ε̃t�1⊳, OŁ

p D 1

n

∑n
tD1stC1Q

0

t
̃p, and Op D 1

n

∑n
tD1⊲st � st�p⊳

stC1. Following the proof of Theorem 1

C1⊲I⊳
0 1

nd

n∑

tD1

iCt�pεtC1 ) C1⊲I⊳
0
∫
Bi⊲d�1⊳dW

1

n

n∑

tD1

stC1Q
0
t
⊲Oυ1 � ̃p⊳ ) 


0
sq

∫
Bi⊲d�1⊳dBQ

and Op �p, OŁ
p �Ł

p, and Op �p are allOp⊲n
� 1

2 ⊳ . Applying the continuous mapping theorem

yields the results for the estimator. For the t statistic follow the proof of Corollary 1.1.
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