
Rethinking Children’s Programming with Contextual Signs

Ylva Fernaeus

Computer Science Department

Stockholm University 

SE-164 40 Kista, Sweden

ylva@dsv.su.se

Mikael Kindborg

Computer Science Department

Linköping University

SE-58183 Linköping, Sweden

mikki@ida.liu.se

Robert Scholz

Computer Science Department

Linköping University,

SE-58183 Linköping, Sweden

robsc@ida.liu.se

ABSTRACT

We present an approach to children’s programming inspired 

by the semiotics of comics. The idea is to build computer 

programs in a direct and concrete way by using a class of 

signs that we call contextual signs. There are two aspects 

that  distinguish contextual  signs  from other  sign systems 

used  for  programming.  The  first  is  that  the  signs  are 

displayed in the immediate visual context of the object that 

they  refer  to.  The  second  is  that  the  signs  are  used  to 

illustrate  actions  and  properties  in  a  way that  is  directly 

perceivable by the user. We argue that these two properties 

make contextual signs a promising high-level approach for 

building systems that are rich in dynamic properties, such 

as the ones that children often like to build.

Keywords

Visual  programming,  tangible  programming,  children, 

comics, semiotics.

ACM Classification Keywords

D.1.7 Visual Programming, K.3 Computers and Education.

INTRODUCTION

There are two basic motivations for designing programming 

tools  for  children,  to  “make  children  smarter”  and  to 

empower  children  to  create  interactive  simulations,  toys, 

and games. The work we present aims for the latter goal, 

and  we  will  focus  on  high-level  programming  with 

behaviours, rather than low-level algorithmic programming. 

By  computer  programming  we  refer  to  the  activity  of 

developing working computational systems. In the case of 

children’s programming, the systems aimed at are often rich 

in dynamic and interactive properties, similar to games and 

software  children  use  in  their  everyday  activities  on  the 

computer. To build such software requires the user to learn 

some  form  of  notation  that  can  be  interpreted  by  the 

computer, using a programming tool. Since programming is 

known  to  be  complex,  much  research  has  concerned 

alternative ways of representing computational systems [7]. 

Studying comics is relevant to programming, because like 

programs, comics depict  dynamic activities using a static 

representation.  For  readers  that  have  learned  the  sign 

language of comics, the visual presentation can produce a 

very direct reading experience, creating an illusion of for 

example motion and sound, even though the medium itself 

is static and silent (see Figure 1). At the same time, a static 

representation provides an overview and can be edited in a 

straightforward way, which is important to programming. A 

basic sign for expressing dynamics in comics is a sequence 

of panels [2,10]. Previous work has shown that comic strips 

can be used for programming [9]. However, in this paper 

we  discuss  a  second  approach  to  using  comics  for 

programming, based on the concept of contextual signs. 

Even though visual symbols and iconic representations are 

core to all  visual programming tools and languages, they 

are usually not displayed in the same manner as in comics. 

Contextual signs are used inside the panels in a comic strip, 

to communicate to the reader what is not possible to express 

with  an  ordinary  static  picture  [10].  Examples  include 

motion markers (e.g. speed lines and ghost images), voice 

balloons,  and  sound  imitating  words  (onomatopoetic 

symbols), see Figure 1. The directness and dynamics that 

contextual signs bring to the characters in comics could also 

be used for visual programming. 

Figure  1. Contextual  signs  in  comics.  The  sound  symbol 

“KRRRACK” in the first panel contributes to the impression 

of  the rock cracking loose.  In the second panel,  the motion 

lines and the sound symbol “A   A  A  A AAA”, transforms a 

static picture of a falling person into a dynamic impression of 

falling.  The  voice  balloon  in  the  last  panel  creates  the 

impression of a person speaking. (From page 22 of “Adele och 

odjuret”, original title “Adèle et la bête”, by Jacques Tardi. 

Published in 1979 by Carlsen if.)

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for  profit  or  commercial  advantage and that  copies  bear  this  notice  and  the full 

citation on the first page. To copy otherwise, to republish, to post on servers or to 

redistribute to lists, requires prior specific permission and/or a fee.

IDC '06, June 7-9, 2006 Tampere, Finland 

Copyright 2006 ACM 1-59593-316-6/06/07... $5.00



To elaborate on the values of contextual signs in children’s 

programming,  we will  start  by discussing an example of 

how  two  children  have  described  the  functionality  of  a 

dynamic computer game when sketching it out  on paper. 

Thereafter  follows  a  description  of  what  we  mean  by 

contextual  signs  in  programming,  illustrated  by  three 

prototype  systems.  We end  by  discussing  design  aspects 

related to programming with such signs.

THE USE OF COMICS IN CHILDREN’S GAME DESIGN

In our previous research, we have involved children aged 8-

12  in  making  their  own  computer  games  [3,4,14],  using 

existing programming tools such as ToonTalk [6]. Figure 2 

shows a sketch of a game created by two girls in sixth grade 

who  participated  in  one  such  project.  In  this  study  the 

whole class was involved in  weekly sessions of building 

computer games in school, and as part of the game design 

the children often made drawings on paper.  We selected 

this  particular  example  because  it  contains  several 

important  features  that  we find common in sketches  that 

children make when expressing game ideas on paper. What 

we would like to call attention to is the rich visual language 

that the children use, and in particular how this relates to 

conventions used in comics.

The design sketch is  based around a  sequence of  panels, 

making it possible to read almost as if it was a comic strip. 

Pictures  of  the  active  objects  in  the  game  dominate  the 

visual representation, and the names of the objects are listed 

below the first panel. This is also typical for comics, where 

pictures of domain objects (e.g. characters featured in the 

story) are the most central elements of the presentation. 

To further point to the dynamic properties of the game, the 

girls have made use of contextual signs, such as arrows and 

labels. The description has been augmented by using textual 

explanations of how the different objects should animate, as 

well  as  instructions  for  use.  All  these  elements  in 

combination  provide  an  elaborate  image  of  how  the 

proposed system should work, especially how the girls want 

their game to appear to the player. To the reader, it is clear 

that the basic idea of the game is to fly and control a hot air 

balloon, and that the objective is to collect bags and go to a 

house,  and  at  the  same  time  avoid  birds  and  dangerous 

pieces of glass that will destroy the balloon. 

There are two aspects of this sketch that we find especially 

relevant to visual programming. The first regards the visual 

layout of elements within each panel.  The dotted lines in 

the fourth panel do for instance give a quite vivid image of 

how the  birds  are  meant  to  be  moving in  the  game.  An 

important part in achieving this effect is the layout of the 

symbols in the context of the game objects. Related to this 

is  also  how  the  children  combine  textual  and  visual 

descriptions.  Much  effort  in  the  development  of  visual 

programming tools  has  focused upon representations  that 

are entirely “text free”. However, despite the visually rich 

language in the sketch, textual descriptions and labels seem 

to serve an important role here. 

The  second  aspect  concerns  what  parts  of  the  dynamic 

actions that  the girls  have chosen to account  for  in their 

illustration. Notably, the panels do not express rule-based 

“if…then...”  programming  constructs,  which  are  used  in 

some programming tools  (see  e.g.  [8]  and  [13]).  On the 

contrary,  each  panel  focuses  on  different  aspects  of  the 

behaviour  of  the  objects  in  the  game.  Many  children's 

programming  tools  are  based  on  a  paradigm  of 

programming that is oriented towards algorithmic structures 

and conditional  rules.  The girls  in  this  example however 

seem  to  be  primarily  focusing  on  the  behaviour  of  the 

objects  and how the game should be experienced by the 

player,  rather  than  on  how  it  should  work  on  a  more 

technical  level.  The  sketch  does  for  instance  not  reveal 

exactly how the balloon should be steered, e.g. whether it 

should  have  a  constant  speed  or  if  it  should  move  in  a 

stepwise manner. In this sense, even though the description 

involves a lot of detail, the concepts used are on a higher 

level than is supported by most programming tools. 

If programming is to be conceptualized in a style similar to 

game designs like the one in Figure 2, the basic primitives 

of “programming” may have to take on a different form. 

 

Figure 2. Game designed on paper by two girls in 6th grade.



PROGRAMMING WITH CONTEXTUAL SIGNS

Comic  book artists  use  contextual  signs  to  communicate 

features and actions of characters and objects that can not 

be expressed using a plain static image. Such signs usually 

have no meaning in isolation – rather the meaning becomes 

an  effect  of  what  happens  to  the  object  that  the  sign  is 

visually  referring to. Importantly, such signs are shown in 

the  context  of  objects,  making  the  reading  experience 

visually direct. The dynamics and directness that contextual 

signs bring to comics could also be used for programming. 

Contextual signs in comics are shown as an effect of what 

happens to a character, and in programming similar signs 

could be used to produce an effect. 

The field of semiotics, which is also applicable to computer 

systems  [1],  studies  the  use  and  interpretation  of  signs. 

Three classical types of signs used in semiotic analysis are 

iconic signs, indexical signs, and symbolic signs. An icon is 

a sign that has a similarity or likeness to the signified (e.g. a 

picture of a person). An index is a sign that is contiguous 

with and has a spatial,  temporal  or casual  relationship to 

what it  signifies (e.g. smoke as a sign of fire). Finally, a 

symbol is arbitrary and gets its meaning by convention.

Some contextual signs in comics have indexical and iconic 

properties. Speed lines can be thought of as an abstraction 

of iconic “motion blur”, or as a variation of indexical traces 

like footprints. Other contextual signs are symbolic and are 

learned by convention. However,  within the internal  sign 

system of comics, these signs may take on indexical and 

even iconic qualities  [8].  An onomatopoetic  symbol,  like 

the  letters  Zzzzzz (used  to  signify  that  someone  is 

sleeping),  has indexical  qualities,  because (like smoke) it 

appears in context. In the mind of the reader, seeing this 

symbol is almost like hearing a snoozing sound. McCloud 

writes:  “Within a given culture these symbols will quickly 

spread until everybody knows them at a glance.” [10]. If a 

comic book style of programming would catch on, a similar 

evolution might take place for visual programming.

For  the  purpose  of  visual  programming,  we  define  a 

contextual sign as a sign that appears in direct relation to 

another  sign  (commonly  an  iconic  sign  representing  a 

domain object), and that signifies some property, action, or 

behaviour  of  the  other  sign.  There  are  two  core 

characteristics of contextual signs. 

• First, the sign is shown in the immediate visual context 

of  the  character  or  object  having  the  feature 

represented  by  the  sign.  This  is  not  the  case  in  all 

visual  programming  tools,  where  the  “code”  is 

sometimes  hidden,  for  instance  at  the  “back”  of  the 

objects, or in a dialogue box. 

• Second,  signs  refer  to  perceivable  actions  and 

properties,  not  detailed  actions  at  a  low  abstraction 

level.  Compared  to  lower-level  visual  “programming 

code”, contextual signs refer to  higher-level concepts, 

similar  in  spirit  to  the  symbols  used  in  the  sketch 

provided by the girls in our first example. 

Thus,  an  important  aspect  of  using  contextual  signs  for 

programming  is  to  recognize  that  programming  can  be 

performed on different conceptual levels. Programming in 

ToonTalk  [6]  is  for  instance  essentially  based  around 

animated  robots  that  represent  algorithmic  program 

operations. However, ToonTalk also supports a higher-level 

mode  of  programming  with  behaviours  [14].  Behaviours 

consist of robots packaged in a special way, so that they can 

be added to the back of pictures and other objects to make 

them perform specific actions in a game, for instance, move 

in  a  certain  direction,  play  a  sound,  or  disappear  upon 

collision with other objects. Previous work has shown that 

using libraries of such predefined programming behaviours 

is a useful approach for children to be able to practically 

realise the systems they want to build [14].

Figure 3 and 4 illustrate the difference between rule-based 

programming and contextual signs, using graphical rewrite 

rules as a frame of reference. Programming with graphical 

rewrite rules (also called visual before-after rules) is based 

on  specifying  how  a  part  of  a  grid-based  visual  world 

should change when a visual precondition is fulfilled [13]. 

When programming using this model,  e.g. for making an 

object move left, the child has to transform her conceptual 

thinking into a rule, specifying the correct precondition (“if 

the  square  to  the  left  is  blank”)  and  the  corresponding 

action  (“then  move  to  that  square”).  Figure  3  gives  an 

example of how such a rule may look. Even if this model 

may be understandable for many children, specifying every 

aspect  of  a  dynamic game on this  level  of  detail  can be 

quite inefficient. Moreover, defining actions in such detail 

is a big step from the design considerations that the children 

are primarily concerned with, as shown for instance in the 

balloon-game in Figure 2. 

Behaviours, in our case expressed as contextual signs, are 

different in that they may abstract away algorithmic details, 

Figure  3.  A  graphical  rewrite  rule  for  a  ”move  left” 

behaviour.

Figure 4. Alternatives for the move left behaviour expressed 

through three different contextual signs: a basic sign of an 

arrow pointing to the left,  a ”ghost image” motion marker, 

and comic-book style speed lines.



such as explicit conditionals. For example, a behaviour for 

moving  to  the  left,  would  when  applied  upon  an  object 

make  it  move  left,  without  any  need  for  specifying  a 

precondition and an action. Figure 4 gives three examples 

of how different contextual signs can be used to express a 

basic move left behaviour. Note how the use of comic book 

signs  like  ghost  images  and  speed  lines  adds  a  certain 

directness to the representation.

EXAMPLE SYSTEMS

Below we present three different programming systems that 

have  been developed  by  the  authors to  exemplify  how 

contextual signs can be used for programming. Note that 

these  should  be  seen  as  examples,  and  that  many  other 

approaches  to  using  contextual  signs  for  programming 

could be imagined.

MagicWords

MagicWords  is  an  experimental  educational  toy  where 

children can practice reading and explore the meaning of 

words. Children use words and phrases to give behaviours 

to characters. Figure 5 shows a screenshot of the system. 

Words for characters and objects are in the menu on the 

left.  Words for behaviours are on the right.  Backgrounds 

are at the bottom. Each word has a small speaker icon, and 

by clicking it one can hear the word spoken. Children play 

with the program by dragging words into the play area. 

Character  words are  transformed into a  picture  (with the 

word visible beneath the picture) when dropped on the play 

area. Behaviour words can be dropped on a character, and 

the  character  will  get  the  corresponding  behaviour.  The 

example in Figure 5 shows two objects. The first is a “Dog” 

with the behaviour “Steer with A D” (used to move the dog 

horizontally with the keyboard keys A and D). The second 

object  is  a  “Spaceship”  with  the  behaviours  “Left”  and 

“Bounce” (the “Left” word represents the motion and will 

change to “Right” when the spaceship bounces off the left 

edge of the play area and changes direction). 

The following are examples of behaviours we experiment 

with:  Left,  Right,  Up,  Down  (motion  words),  Bounce 

(makes an object bounce against walls and other objects), 

Steer (use arrow keys to steer an object), Bigger, Smaller 

(size changing words), Remove (deletes the object), Nice 

(attracts  other  objects),  Scary (makes other  objects  move 

away),  Dangerous  (make  other  objects  be  deleted  when 

touching them). Many more words and behaviours could be 

imagined. It would also be straightforward to use phrases, 

like  “Move  left”  or  “I  move  left”,  and  “Eat  other 

characters” or “I eat other characters”. Phrases could also 

have variable parameters, for example “Eat X” or “I eat X” 

where X would be a name of a character selected from a 

menu. The user can chose to hide words to make the scene 

less cluttered, and can also pause the animation to make it 

easier to add and remove behaviours.

The use of textual word pads in MagicWords is somewhat 

similar to the use of “tiles” in e.g. Squeak eToys [5]. The 

difference is that pads in MagicWords are placed directly 

on the graphical objects, and that they represent high-level 

behaviours rather than algorithmic program code.

BehaviorCards

BehaviorCards [12] is an experimental visual programming 

system that uses graphical signs to represent behaviours. In 

BehaviorCards, the signs are displayed on a “card” next to 

the character being programmed. The screenshot in Figure 

6 shows an example from the game the girls designed in 

Figure 2, which was programmed in BehaviorCards as part 

of this research. The behaviour card that is visible describes 

what should happen when the balloon meets a bird. The text 

reads “IF I meet a [picture of a bird] THEN I transform to a 

[picture of a broken balloon]”. 

BehaviorCards  uses  a  concept  similar  to  classes.  The 

objects being programmed (the “classes”) are in the gallery 

to  the  left.  Instances  of  these  objects  are  created  by 

dragging them into the play area. An alternative approach 

would be to display the behaviour symbols directly on the 

instances on the play area, as contextual signs. Figure 11 

shows an experimental design that illustrates this concept. 

Figure 5.  Screenshot from MagicWords. Note that words are 

in Swedish. See text for translations and additional details.

Figure  6.  Example  of  graphical  signs  used  to  specify 

behaviours in BehaviorCards. 



Both MagicWords and BehaviorCards are implemented in 

the Smalltalk-system Squeak [5].

The Tangible Programming Space

Our third system (see Figure 7) differs from the other two 

since it does not only use contextual signs displayed on the 

computer screen, but also physical blocks and cards that are 

used for the interaction with the system [3,4]. The system is 

designed explicitly for groups of children to create dynamic 

simulations, games, and interactive play worlds that are run 

on-screen. Programs are made by positioning blocks on a 

mat on the floor. The blocks are indicated as squares on the 

screen (see screenshot in Figure 8). By placing plastic cards 

on the blocks, the users add pictures of objects to the screen 

and give  them properties  and  behaviours.  Cards  are  also 

used  for  playing,  stopping,  and  saving  a  game  or 

simulation. 

Currently,  the system is used at  the Swedish Museum of 

Natural History in Stockholm, with a library of behaviours 

for building dynamic food-web simulations. The museum 

setting implies that the children will only get approximately 

one  hour  to  complete  a  simulation,  hence  the  library  of 

behaviours  and  the  set  of  pictures  has  been  tailored 

especially  for  this  use  context,  with  focus  on  eating, 

starving, and moving. For use in other settings other sets of 

behaviours would be provided.

Figure 8 shows how contextual signs are used to indicate 

which behaviours and properties that are attached to each of 

the objects on the screen. Figure 9 shows a detailed image 

of one of the animals in the simulation. The animal itself is 

colourised  in  a  red  shade  (indicating  the  colour-property 

“red”),  and  the  three  “PacMan”  symbols  show  that  the 

animal  will  “eat”  anything  that  is  either  green,  blue  or 

yellow.  Thus  the  colour  property  works  to  specify 

interactions between objects. The arrow at the bottom left 

represents the motion behaviour that has been attached to 

the  animal.  When  the  program  is  executed,  all  the 

programming signs are hidden, and the objects start to act 

according to the behaviours given to them. Contextual signs 

as  well  as  textual  labels  are  used  also  on  the  cards  to 

illustrate  actions  in  ways  that  are  richer  than  can  be 

captured in the graphical symbols on the screen. Figure 10 

shows the design of two such cards. 

The  Tangible  Programming Space  was  built  using  RFID 

technology and Macromedia Director.

DESIGN ASPECTS

Based on our experiences with the design of the systems 

described above, we discuss some of the design options we 

consider  relevant  for  developing construction tools based 

on the idea of programming with contextual signs.

Layout of Signs

The  basic  property  of  contextual  signs  is  that  they  are 

placed in  the immediate visual  context of  the object  that 

they refer to. This helps showing which object is controlled 

by a sign, and can give a direct visual impression of the 

resulting behaviour of the program. For example, the signs 

displayed on the elk in Figure 9 provide a way to “read” the 

basic runtime properties of the elk.

Another  example  is  given  in  Figure  11,  which  shows  a 

design  based  on  BehaviorCards  where  the  behaviour 

symbols are placed directly on the objects on the play area, 

as contextual signs. The birds and the piece of glass have 

Figure 7. Children in the Tangible Programming Space.

Figure 8. Screenshot from a simulation built with the Tangible 

Programming Space.

Figure 9. Detail of the 

elk  in  Figure  8.  Note 

the  signs  for  “eating” 

and moving.

Figure  10.  Two  cards  used  for 

adding  “Jump  Around”  and 

“Eat  Green”  behaviours  to 

objects. 



motion behaviours.  The two bags have delete behaviours 

that make them disappear when touching the balloon. There 

are parameters for specifying this behaviour on a card that 

can be opened for the sign. The balloon has a behaviour for 

moving  it  with  the  arrow  keys,  and  a  behaviour  that 

changes its picture when colliding with other objects. This 

behaviour has a quite complex behaviour card, and handles 

both “picking up” bags and the destruction of the balloon in 

case it collides with a bird or piece of glass (this is the card 

shown in Figure 6). This example hints at how the game the 

girls designed in Figure 2 could be programmed in the style 

we propose.

There are different ways to layout contextual signs. When 

adding  several  signs  or  labels  to  the  same  object,  a 

consequence may be that they obscure the object, so that it 

is difficult to clearly see the object that the signs refer to. 

Moreover, the signs could themselves overlap and obscure 

each  other.  This  is  a  serious  issue  that  needs  to  be 

considered when designing systems based on this paradigm 

of programming. 

As  a  way  of  dealing  with  these  issues,  the  Tangible 

Programming Space uses a structured layout, meaning that 

all signs have a predefined position in relation to the object 

they refer to. This is possible due to the specialised scope of 

the system with a limited number of behaviours, meaning 

that an object can have all available behaviours attached to 

it without any of the behaviour signs obstructing another. 

In BehaviorCards, the signs for an object are shown in a 

panel displayed to the right of the object, and thus no sign 

obscure  the  object  and  signs  do  not  obscure  each  other. 

However, the user can rearrange the order of the signs in 

the panel. MagicWords uses a free layout, meaning that the 

user may arrange the signs the way she likes. A free layout 

can  become cluttered,  but  freedom to layout  signs  could 

also improve readability (and be fun). Thus,  a user-made 

layout can be both an advantage and a source of confusion 

(similar to badly formatted textual program code).

A problem with placing contextual signs directly on objects 

on the runtime stage is that it can be undesirable to see the 

signs when a program is running, e.g. when playing a game. 

In MagicWords there is a button for hiding and showing the 

signs, in BehaviorCards the sign panels can be hidden, and 

in  the  Tangible  Programming  Space  the  signs  are 

automatically hidden when a program is started.

Visual Expressiveness and Generality

In comics, contextual signs closely interplay with characters 

and objects. Characters in comics commonly display facial 

expressions and body postures that convey the action in the 

story,  and  the  signs  are  carefully  crafted  for  a  specific 

character  drawing.  Such  drawings  communicate  very 

effectively, but this level of graphical expressiveness can be 

difficult  to  achieve  in  a  general  programming  tool.  The 

examples we have created are not very comic book like. 

Additional  work  is  needed  to  explore  how  it  may  be 

possible  to  create  visually  effective  signs  for  program 

behaviours. 

The problem with a programming tool, especially when the 

programmer  makes  her  own  drawings,  is  that  it  is  not 

possible  to  tailor  the  design  of  the  signs  to  a  specific 

character  or  object.  The  signs  need  to  be  designed  in  a 

generic  fashion,  which  can  make  the  visual  presentation 

less  striking  and  effective  compared  to  comic  books.  In 

addition,  if  the layout  uses  a  free format,  it  is  up to  the 

programmer to position the signs. 

Behaviour Parameters and Conditional Triggers

Behaviours can have different levels of complexity. Some 

high-level  behaviours  can  be  used  without  need  for 

specifying parameters. “Move with arrow keys” is such an 

example. But even for this simple behaviour there could be 

a need to specify additional parameters, for example how 

fast should the object move, should it move one step at each 

key press, or should it start moving in a specific direction? 

The user interface of the programming tool could provide 

pop-up  menus  or  dialogue  boxes  to  specify  behaviour 

parameters.  This  approach  is  used  in  BehaviorCards,  see 

Figure  6.  BehaviorCards  also  uses  the  size  of  signs  to 

specify  parameters  such  as  speed,  making  it  possible  to 

directly set the speed by resizing a motion sign. 

Behaviours  often  implicitly  include  preconditions,  e.g. 

“Pressing the left arrow key makes me move left”, but the 

user  does  not  necessarily  have  to  think  in  terms  of 

executing  low  level  algorithmic  operations.  Behaviours 

have the potential of adopting the tool to match the thinking 

of  children  in  the  process  of  building  a  dynamic  game, 

rather  than  requiring  them to  adopt  their  thinking  to  the 

function of the programming tool. 

There are however several kinds of behaviours that require 

specification of conditional triggers, for instance behaviours 

that  involve  preconditions  related  to  interaction  between 

Figure 11.  Design sketch based on BehaviorCards that uses 

contextual  signs.  Note  that  the  behaviour  signs  are  placed 

directly on the objects in the play area. The behaviours can be 

opened  to  show  a  card  where  the  behaviour  can  be 

configured, similar to the behaviour card shown in Figure 6.



objects.  In  the  Tangible  Programming  Space,  the  use  of 

conditional  statements  is  replaced by the  ability  to  make 

your own classes or  groups of  objects,  using the colour-

property.  Assigning  a  logical  “colour”  to  an  object  is 

primarily used to define interaction with other objects. The 

“eat”  and  “chase”  behaviours  are  examples  of  how  this 

works (see illustrations in  Figures 8  to  10).  It  should be 

noted though, that this adds an extra layer of complexity, 

which some of the younger children we have worked with 

found confusing at first.

Another kind of behaviour we have observed in our work is 

that children want an object to change its appearance when 

colliding  with  another  object.  For  instance,  making  the 

picture of  a  person change from “sad” to  “happy” when 

touching an ice cream. Another example is that an object 

should  be  deleted  when  touching  another  object,  for 

example deleting the ice cream to show that it is “eaten”. 

In  systems  like  Stagecast  Creator  [13]  and  ComiKit  [9], 

characters can have several pictures and the current picture 

can be used in the precondition for a rule or event. When 

placing a behaviour sign directly on an object, the current 

picture of the object could automatically become part of the 

precondition, allowing for expressing similar constructs as 

with  graphical  rewrite  rules.  This  is  also  how 

BehaviorCards  works,  the  behaviour  for  the  balloon  in 

Figure  6,  for  example,  is  conditional  on  the  currently 

selected picture of the balloon in the gallery on the left.

A sketch of how contextual signs for picture-changing and 

delete behaviours can be designed is given in Figure 12. In 

this example, the behaviours are conditional on the picture 

of  the  character  the signs  are placed on.  One could also 

design a setting for  generalising the behaviour,  so that  it 

would trigger regardless of the current picture of the object.

Note that it is not always clear on which object a behaviour 

should be placed. This can be illustrated by the “who eats 

who” example, meaning that the delete behaviour in Figure 

12 could go on the character (“I delete X”) as well as on the 

ice cream (“X deletes me”). All the three systems that we 

have  discussed  use  different  ways  of  dealing  with  this 

specific issue, and there are probably many more options. 

Other  examples  of  behaviours  with  conditional  triggers 

include  time-based  actions  (e.g.  “Move  left  every  3 

seconds”),  and keyboard actions (e.g.  “Delete when D is 

pressed”). By displaying menus “inside” a contextual sign, 

the programmer may specify the trigger for an action in a 

way that is both flexible and visually direct. This style of 

programming  would  be  somewhat  similar  to  graphical 

rewrite rules, but the connection between the program signs 

and the objects influenced takes on a different perspective, 

and is visually quite differently represented. 

The Use of Textual Labels

Certain behaviours are difficult to illustrate using graphics 

only, and a picture that is ambiguous can be made easier to 

make  sense  of  when used  in  combination  with  a  textual 

label  (cf.  [11]).  The  Tangible  Programming  Space,  for 

instance,  has  a  behaviour  called  “Jump  Around”,  which 

through only its visual representation could be interpreted 

in  many  different  ways.  However,  the  words  “Jump 

Around”  on  the  physical  card  make  it  easy  to  make  a 

connection  between  the  graphical  sign  and  its 

corresponding  behaviour.  (Note  the  difference  between 

creating text and recognising text; while programming by 

typing text requires “knowledge in the head”, programming 

by using menus of textual “tiles”, as in e.g. Squeak eToys 

[5], provides “knowledge in the world”.)

An argument against relying on text for understanding signs 

is  that  many  younger  children  are  not  able  to  read. 

However,  we believe that  children who can not read are 

usually fully capable of learning and remembering textual 

symbols,  as  well  as  graphical  ones.  Furthermore,  as  is 

illustrated  by  MagicWords,  this  could  be  a  way  to  help 

learning how to read. In addition, it  should be noted that 

comics is a multi-modal medium in that it  uses both text 

and concrete and abstract images.

The  issue  of  using  words  and/or  graphical  symbols  to 

represent behaviours is also related to the visual appearance 

of contextual signs. Text can be less ambiguous and more 

self-explanatory  (like  a  program  comment).  Graphical 

symbols on the other hand consume less space, you do not 

have  to  be  able  to  read,  and  they  may  be  quicker  to 

recognise.  We  believe  that  different  behaviours  require 

different  designs.  For  some  behaviours  a  graphical 

representation may be most natural, such as speed lines for 

moving, and for other ones, a textual or mixed textual and 

graphical  representation  will  be  more  appropriate.  The 

nature of the system and its users are of course the most 

important factors when considering design options.

We have not yet explored the topic of how the meaning of a 

textual label changes depending on the exact wordings used 

to  express  the  same  computational  action.  When  using 

textual  labels  to  describe  behaviours,  there  are  several 

possible  ways  to  phrase  the  texts.  Depending  on  the 

perspective taken by the programmer, the phrasing of the 

same  computational  action  take  on  different  forms.  For 

example, one option is to use first person statements like 

“I”  and  “Me”,  which  may  help  children  take  on  the 

perspective  of  the  objects  in  order  to  understand  their 

behaviour (e.g. “I delete Ice cream”) (cf. [11]). 

     

Figure  12.  Two  design  sketches  of  contextual  signs  with 

behaviours for becoming happy when touching an ice cream 

and for deleting it so that it gets ”eaten”. The rightmost sketch 

uses textual labels to clarify the meaning of the signs.



Since rephrasing of contextual labels does not change the 

computational  logic,  it  is  well  worth  considering  how 

children themselves tend to describe similar actions. In the 

sketch provided by the girls  in  Figure 2,  the perspective 

used is for instance consistently that of the imagined player 

of the game. It is then inherent in the design style that one 

of the objects (the balloon) is “you”, and accordingly, labels 

such  as  “catch”  and  “avoid”  become unmistakable.  We 

believe that such examples can be valuable for the design of 

programming resources for children.

CONCLUSION

We have illustrated  how programming tools  for  children 

can benefit from actively exploring the visual sign language 

of  comics.  More  specifically,  we  have  shown  how 

contextual signs could be used for representing programs in 

a way that is similar to how we have observed children to 

sketch games on paper. 

Contextual signs have two important properties. First, the 

signs are displayed in the  immediate visual context of the 

objects that they refer to, which adds a characteristic “visual 

directness” to the representation. Second, such signs depict 

perceivable  actions  and  properties  of  objects,  implying 

programming at a higher level than in algorithmic and rule-

based models of programming. These characteristics could 

make it possible to perceive how objects in a program are 

meant  to  be  working,  just  by  looking  at  the  visual 

appearance of the objects and their surrounding signs. 

A  limitation  of  the  approach  is  that  the  details  of  more 

complex behaviours are difficult to represent in the format 

of  contextual  signs.  It  can  be  problematic  to  specify 

parameters and options for behaviours in a way that is easy 

to use. For more general and algorithmic programming at a 

more detailed level, a complementary lower-level language 

would be needed. Such a language could be based on any 

existing approach for textual, visual, animated, or tangible 

programming. 

Nevertheless, we believe that a simplistic programming tool 

that  is  limited  to  predefined  behaviours  is  sufficient  for 

children in several use contexts, and that this approach can 

make children able to create simple games and simulations 

in  shorter  time  and  with  less  trouble  compared  to 

programming  in  a  lower-level  style.  Examples  of 

appropriate  contexts  are  schools  and  public  settings  like 

museums, settings where time is a limiting factor and the 

focus is on creating and exploring dynamic content, rather 

than on learning “how to think with algorithms”.

The  systems  we  have  presented  are  examples  of  how 

comics can inspire the design of programming tools,  and 

many more systems  based on similar approaches could be 

imagined. As systems that use this style of programming 

become  more widely used, designers and researchers can 

learn  from children  using  them,  and  children  could  also 

participate in inventing new kinds of contextual signs and 

programming constructs.

ACKNOWLEDGMENTS

We would like to thank Jakob Tholander who has taken part 

in this research, and all the children who have participated 

in  our  projects.  We  would  also  like  to  thank  Koray 

Duhbaci, who was closely involved in designing the visual 

symbols used in the Tangible Programming Space.

REFERENCES

1. Andersen, Peter Bøgh. A Theory of Computer Semiotics. 

Cambridge University Press, 1997.

2. Cohn,  N.  Early  Writings  on Visual  Language.  Emaki 

Productions, 2003. http://www.emaki.net/ewovl.html

3. Fernaeus, Y., Tholander, J. Looking at the computer but 

doing it  on land: Children’s  interactions in  a  tangible 

programming space. HCI 2005, Edinburgh, 2005.

4. Fernaeus, Y., Tholander, J. Finding Design Qualities in 

a  Tangible  Programming  Space.  Proc. CHI  2006, 

Montreal, Canada.

5. Guzdial,  M.,  Rose,  K.  Squeak  –  Open  Personal  

Computing and Multimedia. Prentice Hall, 2002.

6. Kahn,  Ken.  ToonTalk  –  An  Animated  Programming 

Environment for Children. Journal of Visual Languages 

and Computing, vol. 7, no. 2, 1996, pp. 197-217.

7. Kelleher,  C.,  Pausch,  R.  Lowering  the  Barriers  to 

Programming:  A  Taxonomy  of  Programming 

Environments and Languages for Novice Programmers. 

ACM Computing Surveys, vol. 37, no. 2, June 2005, pp. 

83–137.

8. Kindborg,  M.  Concurrent  Comics  -  Programming  of 

social agents by children. Ph.D. Dissertation, Linköping 

University, 2003.

9. Kindborg,  M.,  McGee,  K.  Comic  Strip  Programs: 

Beyond Graphical Rewrite Rules. Proc. VLC 05, Banff, 

Canada, 2005.

10. McCloud,  S.  Understanding  Comics. New  York: 

HarperCollins Publishers, 1993.

11. Rader, C., Cherry, G., Brand, C., Repenning, A., Lewis, 

C. Principles to Scaffold Mixed Textual and Iconic End-

User  Programming  Languages.  Proc.  1998  IEEE 

Symposium of Visual Languages. Nova Scotia, Canada.

12. Scholz,  R.  Behavior  Cards.  Master's  Thesis  LIU-

KOGVET-D—05/13--SE. Linköping University,  2005. 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-66  

(in Swedish)

13. Smith,  D.  C.,  Cypher,  A.,  Tesler,  L.  Novice 

Programming Comes of  Age.  Communications  of  the 

ACM, vol. 43 no. 3, March 2000, pp. 75-81.

14. Tholander,  J.,  Kahn,  K.,  Jansson,  C.-G.  Real 

Programming of an Adventure Game by an 8 year old. 

Proc.  ICLS  2002.  Lawrence  Erlbaum  Associates,  pp. 

473-480. 


