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Abstract

We re-think DRAM power modes by modeling and characterizing

inter-arrival times for memory requests to determine the properties

an ideal power mode should have. This analysis indicates that even

the most responsive of today’s power modes are rarely used. Up

to 88% of memory is spent idling in an active mode. This analysis

indicates that power modes must have much shorter exit latencies

than they have today. Wake-up latencies less than 100ns are ideal.

To address these challenges, we present MemBlaze, an architecture

with DRAMs and links that are capable of fast powerup, which

provides more opportunities to powerdown memories. By eliminating

DRAM chip timing circuitry, a key contributor to powerup latency,

and by shifting timing responsibility to the controller, MemBlaze

permits data transfers immediately after wake-up and reduces energy

per transfer by 50% with no performance impact.

Alternatively, in scenarios where DRAM timing circuitry must re-

main, we explore mechanisms to accommodate DRAMs that powerup

with less than perfect interface timing. We present MemCorrect

which detects timing errors while MemDrowsy lowers transfer rates

and widens sampling margins to accommodate timing uncertainty

in situations where the interface circuitry must recalibrate after exit

from powerdown state. Combined, MemCorrect and MemDrowsy

still reduce energy per transfer by 50% but incur modest (e.g., 10%)

performance penalties.

1. Introduction

In an era of big data and datacenter computing, memory efficiency is

imperative. More than 25% of datacenter energy can be attributed to

memory and this fraction will only grow with demands for memory

capacity [13, 24, 28].

Recent efforts to improve efficiency study memory that is active

and transferring data. The resulting architectures focus on reducing

energy per transfer. By tailoring DRAM page width, memory core

energy is made proportional to the amount of data requested [2, 37,

41]. However, none of these architectures address a different source

of inefficiency: idle memories kept in an active power mode.

One approach to address this problem is to use mobile-class

DRAM [27] which have much lower active idle power. But using

LPDDR2 requires a static decision to trade bandwidth for efficiency.

Alternatively, we could use dynamic powerdown modes but con-

trollers have difficulty invoking them. Transfers are separated by idle

periods but they are often too short to justify powerdown.

Indeed, witness the sophistication and complexity of efforts in the

compiler, operating system, and architecture to consolidate memory

activity to a small number of active ranks [14, 15, 23]. By attempting

to lengthen idle periods in other ranks, these approaches acknowledge

the unwieldy nature of today’s power modes and build systems to

accommodate them.

In this paper, we present a fundamentally different approach. In-

stead of shaping memory activity to produce idleness suited to exist-

ing power modes, we re-think the power modes themselves. In an

application-driven approach, we model and characterize inter-arrival

times for memory requests to determine the properties an ideal power

mode should have. This analysis indicates that power modes must

have much shorter exit latencies than they have today.

To architect power modes with fast exits, we identify the key

contributor to powerup latency: DRAM timing circuitry. The most

efficient modes turn off delay-locked loops (DLLs) and clocks. But

turning them on again requires expensive recalibration (e.g., 700+ns).

Few applications have idle periods long enough to justify this latency.

Thus, existing modes offer an unattractive energy-delay trade-off.

We improve this trade-off with a new I/O architecture that shifts

timing circuitry from DRAMs to the controller while preserving

high bandwidth. In this architecture, the first transfer after wake-up

completes in a few nanoseconds. Such responsiveness is orders of

magnitude faster than the exit latency of today’s most efficient power

mode, which must recalibrate timing after wake-up. We make the

following contributions:

• Understanding Power Mode Inefficiency. Even the most respon-

sive of today’s power modes are rarely used. Up to 88% of memory

time is spent idling in an active mode. Addressing limitations in

existing DRAMs could improve energy efficiency by 40-50%.

• Understanding Memory Activity. We study memory activity and

its implications for power mode design. A probabilistic analysis

establishes a clear path from fast wake-up to attractive energy-

delay trade-offs. A workload characterization indicates wake-up

in ≤100ns is ideal.

• Rethinking Power Modes. We present MemBlaze, a DRAM

I/O architecture that is capable of fast wake-up while ensuring

high bandwidth. Alternatively, we propose two new mechanisms:

MemCorrect, which detects timing errors, and MemDrowsy, which

lowers transfer rates to widen timing margins. These architectures

allow memory transfers immediately after wake-up.

• Saving Energy. MemBlaze reduces energy per transfer by up

to 50% with negligible performance penalty since data transfers

begin immediately after wake-up. If timing is less than perfect,

a combination of MemCorrect and MemDrowsy provide similar

energy savings with a 10% performance penalty incurred to correct

timing errors.

2. Background and Motivation

Today’s DRAM interfaces provide performance but dissipate high

idle power. Moreover, these interfaces include power modes which

are disconnected from architectural requirements. To address these

challenges, we architect new DRAM interfaces for fast transitions

between power modes.

2.1. DRAM Systems

Each DRAM device contains two-dimensional arrays of memory

cells. Multiple devices comprise a rank and multiple ranks share a

data bus. Figure 1 illustrates a memory system with four ranks that



Figure 1: DDR3 DRAM Memory System. Figure 2: DDR3 DRAM Timing.

share a x64 channel. The number of channels and the interface’s data

rate determine system bandwidth.

Each channel is attached to a memory controller, which is inte-

grated on the processor die. To activate a row, the controller issues

a row access strobe (RAS) to enable word lines and buffers a row’s

data. To read and write, a column access strobe (CAS) transfers

buffered data to IO interfaces. Prefetching 8 bits across a 64b wide

channel produces 64B to fill a processor cache line.

2.2. DRAM Interfaces

The controller and DRAMs are connected by CA and DQ buses

for control and data signals. To synchronize signals, the controller

generates and forwards a clock (CK) to the DRAMs. Controller

circuitry aligns this clock with command and enable signals. Because

these signals have lower bandwidth and experience the same loading

conditions and discontinuities en route to DRAMs, skew is not an

issue. Thus, commands and writes are synchronized.

However, synchronizing reads is more difficult. During a read,

data signals are generated by DRAMs (DQ) while clock signals

are generated by the controller (CK). Originating on different dies,

these signals are subject to different loading conditions and variations

in process, voltage, and temperature. Under these conditions, the

controller has difficulty using CK edges to sample DQ for arriving

read data, especially at high frequencies and narrow data windows.

To facilitate read synchronization, DRAMs explicitly communicate

data timing to the controller with a data strobe signal (DQS) that

is aligned with the clock (CK) and bus data (DQ). The controller

samples DQ on DQS edges as illustrated in Figure 2. Data is available

some latency after receiving a read command (RD on CA produces

Q on DQ after tRL).

DQS edges and data windows must align with the controller-

generated clock. DRAMs ensure alignment in two ways. First,

during initialization, DQS and CK are calibrated to eliminate any

skew due to wire length while the controller specifies worst-case

tolerance for timing differences (tDQSCK). Second, during opera-

tion, delay-locked loops (DLLs) dynamically adjust the DRAM clock

delays to compensate for voltage and temperature variations and keep

the position of the DQS at the controller constant to reduce timing

uncertainty when sampling data at high frequencies.

2.3. DRAM Power Mode Limitations

Consider two scenarios in which DLLs affect efficiency. In the first,

the DRAM is idling in an active power mode. In such an ’active-idle’

Power Mode DIMM Idle Exit Latency Mechanism

Power (W) (ns)

Active idle 5.36 0 none

Precharge-idle 4.66 14 pages closed

Active powerdown 3.28 6 clock, I/O buffers,

decode logic off

Fast exit powerdown 2.79 19.75 active powerdown

+ pages closed

Slow exit powerdown 1.60 24 fast exit powerdown

+ DLL frozen

Self Refresh 0.92 768 fast exit powerdown

+ DLL, CK off

Self Refresh 0.56 6700 self refresh

+ registers off + register PLLs off

Disabled 0 disk latency DIMMs off

Table 1: Power Modes for a 4GB DDR3-x4-1333 RDIMM [5, 30]

state, the DLL and clocking power are a large fraction of the total

power. For example, DDR3 active-idle current is 2× that of LPDDR2

and much of this difference is attributed to the interface [27].

In a second scenario, which we call ’idle-idle’, the DRAM is in

a powerdown mode. More efficient modes have higher powerup

latencies (e.g., self-refresh in Table 1). While this state seems energy-

efficient, the next reference pays the cost as the DRAM spends

tDLLK=512 active memory cycles (768ns) powering up the inter-

face. This is a lot of energy. In addition, applications slow down, as

indicated in Figure 3(a). Thus, existing DRAM interfaces impose

unattractive performance and power tradeoffs.

Static mechanisms to reduce interface power fare no better. We

can configure the memory mode registers (MR) in the BIOS [30],

eliminating DLLs but this imposes performance penalties. First,

the peak data rate is halved as channel frequency must be lowered

to ensure signal integrity. Furthermore, without DLLs, timing is

less certain and controllers must assume worst-case margins (i.e.,

tDQSCK=10ns [30]). Conservative timing increases critical word

latency, affecting application performance as shown in (Figure 3(b)).

Due to these punishing trade-offs, memory controllers invoke

power modes conservatively. Modern controllers recommend a pow-

erdown threshold no lower than 15 idle memory cycles [17]. Figure

4(a) shows the percent of time the DRAMs stay in each power state

for this aggressive threshold (A), a moderate (M) threshold 10×

larger, and a conservative (C) threshold 100 × larger. With such

thresholds, up to 88% of memory time is in active-idle.

Potential for Efficiency. Suppose we were to address limitations

in today’s interfaces and power modes so that the most efficient
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Figure 3: Performance sensitivity to (a) dynamic power down modes
at different exit latencies and (b) static BIOS programming
to disable DLLs.

Figure 4: (a) Memory time breakdown with aggressive (A), moderate
(M), and conservative (C) thresholds; (b) Potential efficiency
from new power modes.

Figure 5: Probabilistic energy-delay trade-offs when powerup latency is exposed. E-D plots with different lines for different (a) memory request
inter-arrival times and (b) varying powerup times. Each line’s points sweep powerdown fraction f .

modes could be exploited. We would enter these modes aggressively

(A) and leave them instantaneously upon the next access. Efficiency

could improve by 40-50% (Figure 4(b)). Moreover, performance

penalties would be negligible.

In this paper, we re-think energy-delay trade-offs with new DRAM

architectures. We consider a high-performance system that requires

sustained bandwidth; we cannot simply eliminate DLLs and operate

at lower data rates. We present architectures that reduce power mode

exit latencies and interface power by replacing DLLs with another

synchronization mechanism or using existing DLLs differently.

3. Understanding Memory Activity

The precise benefits of fast exit power modes depend on the interac-

tion between memory activity and the exit latency, which we study in

two ways. First, we probabilistically model memory requests in order

to understand fundamental energy-delay trends. Then, we precisely

capture memory request inter-arrival times from emerging big data

applications.

3.1. Probabilistic Energy-Delay Analysis

We model a stream of memory requests as a Poisson process. This

analysis assumes that the time between requests follow an exponential

distribution and these inter-arrival times are statistically independent,

which roughly match our data. Histograms for memory inter-arrival

times resemble exponential probability densities and the autocorrela-

tion between inter-arrival times is nearly zero.

Let Ti be an exponentially distributed random variable for the idle

time between two memory requests. The exponential distribution

is parameterized by 1/Ta where Ta is the average inter-arrival time.

Let Pd and Pu denote power dissipated in powerdown and powerup

modes. The memory powers-down if idleness exceeds a threshold Tt .

And it incurs a latency Tu when powering-up again.

Power-down is invoked with probability f = P(Ti > Tt) = e−Tt/Ta .

In this scenario, DRAM dissipates Pd for Ti −Tt time while powered-

down and dissipates Pu for (Tt +Tu) time while powered-up. Ti is the

only random variable; E[Ti] = Ta.

E[E] = f×E [Pd(Ti −Tt)+PuTt +PuTu]+ (1− f )×E [PuTi]

= f× [Pd(Ta −Tt)+PuTt +PuTu]+ (1− f )× [PuTa]

= Pd [ f (Ta −Tt)]+Pu [ f (Tt +Tu)+(1− f )Ta]

With this probabilistic formulation, the expectation for memory

energy is given by E[E]. And the expected impact on delay is

E[∆D] = f Tu, which conservatively assumes that powerup latency is

exposed on the critical path.

Clearly, we would prefer to frequently use an efficient powerdown

mode (i.e., large f and Pd << Pu). Energy falls as inter-arrival

time increases beyond the threshold. Conversely, energy increases if

powerup latency is large.

Energy-Delay Trade-offs. The relationship between E[E] and

E[∆D] depends on average inter-arrival times (Ta), powerdown thresh-

old (Tt ), and powerup latency (Tu).

First, consider various inter-arrival times and powerdown thresh-

olds. Each curve in Figure 5(a) plots trade-offs for a particular

inter-arrival time Ta at Tu = 1000ns and points along a curve repre-

sent varying thresholds Tt . Short inter-arrival times (Ta = 1000ns)

mean that the added energy costs to power back up are expensive

than the savings by invoking powerdown. Thus both the energy and
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Figure 6: Activity graphs for (a-b) memcached at value sizes of 100B and 10KB. (c) SPECjbb2005 and YCSB.

delay increase with the powerdown fraction f . As inter-arrival times

increase (Ta→2000ns), the energy saving in powerdown offsets the

overhead of wakeups.

But by implementing different thresholds for powerdown, mem-

ory controllers can explore steep and interesting trade-offs between

energy and delay. Each curve in Figure 5(b) plots trade-offs for a par-

ticular powerup latency and clearly shows the cost of slow wakeups.

At one end of the spectrum, zero latency powerup reduces energy

with no delay penalty (Tu = 0ns). Waiting to go to powerdown only

costs more energy, as the energies are higher for low values of f . In

contrast, today’s approach to disabling DLLs and clocks is expensive,

producing a horizontal trend line (Tu = 1000ns).

Ideally, power modes reduce energy with little delay impact. This

scenario would manifest as instantaneous powerup and produce verti-

cal lines in Figure 5(b). In practice, today’s efficient power modes re-

quire nearly 1000ns to powerup, producing nearly horizontal energy-

delay trends in these figures. To close the gap between the ideal and

practice, we re-think memory architecture to reduce powerup latency

and accommodate practical inter-arrival statistics in real applications.

3.2. Characterizing Emerging Applications

The nature of computing has changed significantly in the last decade

[11] and many emerging datacenter applications have memory behav-

ior that is not well understood. While a prior study quantifies memory

idleness in websearch [29], it does so for coarse, 100ms, time peri-

ods. At this granularity, which is many orders of magnitude larger

than device access times (e.g., 100ns), understanding application

requirements for power modes is difficult.

To study memory behavior at fine granularity, we use a custom

simulation infrastructure with x86 instrumentation and a built-in

scheduler [33] to benchmark a spectrum of real applications. From

the spectrum of emerging data driven workloads, we characterize

three representative workloads: memcached for distributed memory

caching, Yahoo! Cloud Serving Benchmark (YCSB) for OLTP and

data serving, and SPECjbb2005 for conventional enterprise comput-

ing.

Applications. Distributed memory caching is used by many pop-

ular websites (e.g., Facebook and Twitter) to improve query times

while OLTP applications are popular in cloud computing. On the

other hand, Java-based middleware servers are still popular in many

enterprises.

Memcached is a popular open source distributed key-value store

that caches data in DRAM for fast retrieval [32]. As the cache fills,

evictions occur according to an LRU policy. Memcached hashes keys

to distribute load and data. Memcached activity is a function of data

popularity and query rate. We model popularity with a zipf distribu-

tion and use a large α parameter to create a long tail. We model query

inter-arrival times with an exponential distribution. Such models are

consistent with observed memcached queries in datacenters [34].

Yahoo! Cloud Serving Benchmark (YCSB) is a benchmark for

online transaction processing that interfaces to cloud databases, such

as Cassandra, BigTable, and HBase [4]. To characterize YCSB, we

first populate a 6.2GB database. Next, we use the YCSB client

model to generate a zipf distribution with operations that have a 95:5

read to write ratio, which is representative of modern, read-heavy

applications.

SPEC Java Server Benchmark emulates a three-tier client/server

system with an emphasis on the middle tier. SPECjbb performs work

that is representative of business logic and object manipulation to

simulate the middle tier. It exercises the Java Virtual Machine, Just-

In-Time compiler, garbage collection, threads and some aspects of

the OS [35].

Memory Activity. To help understand how applications will in-

teract with low power modes, we use rank-level activity graphs to

visualize memory behavior [29]. These graphs characterize bus activ-

ity using windows that define a period of time. We sweep a window

over the timeline of application execution and count the number of

completely idle windows for varying different window sizes. If ap-

plicable, this measurement is also taken across various application

loads, which is measured in queries per second (QPS) relative to the

system’s peak load (denoted as %QPS).

At small value sizes (100B), memcached is CPU-bound as the

CPU must cope with many small, incoming packets. At large value

sizes (10KB), memcached saturates the network connection. With

limited network bandwidth (e.g., 10Gb/s), memcached rarely stresses

memory bandwidth (e.g., 80Gb/s).

Although memcached does not saturate memory bandwidth, we

must determine whether the memory channel has uniformly low

utilization or has bursty traffic with many periods of idleness. The

former would make power mode design difficult but the latter would

benefit from many existing DRAM power modes, and even full-

system power modes.

Figure 6(a-b) shows rank-level activity graphs for memcached

configured at 100B and 10KB. A large percentage of short windows

(e.g., 100ns) are idle. At typical loads between 10-50%, 95% of the

windows encounter completely idle memory. Moreover, these idle

periods are long. Even as we increase window size towards microsec-

ond granularities, 80-90% of these windows encounter idle memory.

However, idleness is difficult to find as application load increases to

90-100% or when windows widen beyond µs granularities.

While memcached exhibits such idleness, conventional datacenter

workloads in data serving and online-transaction processing have

even fewer opportunities to exploit existing power-modes when run
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at 100% QPS. Figure 6(c) illustrates few idle windows for SPECjbb

and YCSB even at small windows. At lower utilizations that are

typical in datacenters [29], the idle fractions could be higher but the

opportunities are scarce beyond 1µs.

Clearly, with idle windows at the order of 1µs or less for emerging

workloads, power modes that can transition in the order of 100ns are

necessary. However, today’s modes are insufficient to take advantage

of the memory idle times in many workloads like memcached. They

either have wakeup times of a few ns with consequently small energy

savings, or they require nearly a µs to wakeup. Such power modes

are not applicable to these applications and new modes are needed.

4. Architecting Effective Power Modes

Probabilistic analysis and workload characterization highlight the

importance of fast wake-up for memory efficiency. We review high-

speed interfaces to explain today’s long wake-up times. Then, we

propose several architectures with much shorter idle to active tran-

sitions but differ in how conservatively they enforce timing after

wake-up.

4.1. High-Speed Interfaces

A reliable, high-speed interface performs two critical tasks. First, the

interface converts a sequence of bits into a voltage waveform. Then,

it drives that waveform on a wire with enough margin so that the

receiver can distinguish between the voltages that represent ones and

zeros. For high data rates, we engineer the wires as transmission lines

and use termination to avoid reflections. Even so, loss in the wires

and process variations cause high and low voltage levels to become

distorted and mixed when they arrive at the receiver. Equalization

cleans up the waveforms.

But getting the signal to the receiver is only half the battle. The

other half is knowing when to sample the signal to get the correct

value of the bit. At a data rate of 1.6Gb/s, the time window for each

bit is only 625ps, and this time includes transitions from the previous

bit and to the next bit. To build a reliable link, the interface needs to

sample the bit in the middle of the stable region.

Analog circuits drive and receive the bits, and align the clock so

that bits are sampled at the right time. These circuits use voltage and

current references for their operation, and often use feedback to learn

the right corrections (e.g. sample time or equalization) that optimize

link operation.

Because they are turned off during powerdown, these circuits must

re-learn their connection settings before the link can be operated

again. Worse, this re-learning cannot begin until voltage and current

references stabilize after powerup. Because analog circuits have

lower bandwidth than digital ones, yet demand precision, µs settling

latencies are typical.

One of the critical circuits in high-speed links is a delay locked

loop (DLL), which uses feedback to align the phase (timing) of two

clocks. In links, DLLs align the sample clock to data, or align data

and strobes to the system clock. DLLs compensate for changes in

timing that would otherwise occur from variations in process, voltage,

and temperature (PVT). Since voltage and temperature are dynamic,

DLLs continue to run after initial calibration to track and remove

their effect [3, 21].

Interfaces that rapidly transition from idle to active mode apply

several strategies, such as digitally storing “analog” feedback state,

using simpler analog circuits that power off quickly, and designing

bias networks that power off and on quickly. Applying these strategies

allows DRAMs to wake-up quickly.

4.2. Fast Wake-up DRAMs

Existing link interfaces are generally symmetric: circuitry on both

sides of the link need to be the same. But, symmetry is not optimal

in a memory system that has a large number of DRAMs but usu-

ally a small number of controllers. Furthermore, because DRAM

process technology is optimized for density, the speed of its tran-

sistors is much worse than that of transistors in a comparable logic

process. Thus, we would rather shift link circuitry from DRAMs to

the controller.

MemBlaze DRAMs. We present a post-DDR4 DRAM archi-

tecture with an asymmetric link interface that removes clock delay

circuitry from DRAMs and places them on the memory controller. Be-

cause such circuitry determines wake-up latency in today’s DRAMs,

the system is capable of much faster power mode transitions. The

controller and memory interfaces, which we have implemented in

silicon, are shown in Figure 7.

Synchronization. In this architecture, DRAMs no longer have

DLLs for timing adjustment. For arriving commands and writes,

DRAMs simply sample inputs at the rising edge of link clocks, CK

and DCK received from the controller. But synchronizing reads (i.e.,

data from DRAM to controller) requires special treatment. DRAMs

no longer send data strobes along with data, which raises two new

issues. The first is how the controller can learn the correct timing,

and the second is that this timing may be different for each rank.

To address these challenges, the controller uses a clock and data

recovery (CDR) circuit to update its clock, and thus update its sam-

ple points for data reads, based on a timing reference signal (TRS)

received from DRAMs. The DRAMs time-multiplex the TRS on a

pin used for error detection and correction (EDC). For every read

and write, DRAMs calculate and transmit an 8-bit EDC to the con-

troller. The remainder of the 32-bit EDC burst transmits DRAM

clock information.

Thus, during normal rank operation, the EDC pin transmits correc-

tion codes interleaved with a toggling pattern that guarantees some

minimum edge density. The controller tracks timing variations for

each DRAM in a rank as long as that rank sees activity and commu-

nicates edges across the EDC pin. Activity on one rank provides no

timing for other ranks.

Accommodating Idle Ranks. With regular accesses to a rank, the

controller tracks rank timing. But gaps in activity produce gaps in

phase updates. Because our interfaces rely on these updates, DRAMs

specify the maximum amount between rank accesses. Ranks with

longer idle periods incur a recalibration latency before further data

transfers.

Alternatively, data-less pings can maintain timing when data is not

needed from the memory core but toggling patterns are needed on

the EDC pin for phase updates. The ping furnishes a toggling pattern

without page activation or column access strobe. In this scenario, the

system uses EDC signals for timing and ignores DQ signals.

Recalibration or data-less pings are small overheads that are rarely

incurred. But when pings do occur, they coincide with periods of low

channel utilization and thus do not interfere with normal traffic.

Fast Wake-up Protocol. Because MemBlaze DRAMs do not

have DLLs, the critical latency during wake-up shifts from clock

delay circuitry to the datapath. MemBlaze defines an extra control

pin (DCKE) to enable the data clock domain, quickly powering the

datapath, data clock buffering, and data I/O circuitry (shaded blocks

in Figure 7). DCKE observes timing constraints to avoid a latency

penalty.
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Figure 7: Proposed architecture introduces clock data recovery (CDR) circuitry to the controller, which uses the timing reference signal (TRS)
transmitted across error detection and correction (EDC) pins.

Figure 8: Timing diagram illustrates separate power management for command (CA) and data (DQ) paths.
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Figure 9: MemCorrect Error Detection with Digitally Controlled Delay
Lines (DCDL) to sample CKext using delayed versions of
nominal CKint .

Figure 8 illustrates operation in a two-rank MemBlaze system.

Initially, data and clock enables (DCKE, CKE) for both ranks are

de-asserted, which powers-down command and data blocks. At cycle

1, CKE0 for rank 0 is asserted and the command block powers-up;

the data block remains powered-down. Command receivers (CA) are

awake in time to receive a read for rank 0. At cycle 3, DCKE0 is

asserted and the data block powers-up to transmit read data. Exit

latency for command and data blocks are tXP and tXPD.

Similarly, the second rank exits command standby at cycle 10

and exits data standby at cycle 12. Reads arrive at cycles 13 and

17, satisfying constraints on consecutive reads, which is denoted by

tCC. Power-up does not affect read latency as long as DCKE is as-

serted early enough (i.e., tXPD before first read data). By separating

command and data block enable signals, the DQ interface circuitry

can remain powered-down even as precharge and refresh commands

arrive.

Hiding Datapath Wake-up Latency. By default, datapath wake-

up requires approximately 10ns. MemBlaze defines the DCKE pin

to enable the data block early enough to avoid affecting latency and

completely hide it under column access (CAS). Thus, we can quickly

power the datapath only when needed and separate the powerups for

command and data blocks. For fast DRAM interface wake-up, Mem-

Blaze exploits a number of circuit innovations including common-

mode logic (CML) clock trees and fast-bias circuitry to powerup

links quickly. Further, if we leverage more insights from a recently

implemented serial link interface that transitions from idle to active

well under 10ns [40], we could simply use read or write commands

to trigger datapath powerup eliminating the need for DCKE.

Timing, Datarate and Power. Both the MemBlaze Memory Con-

troller and DRAM PHYs were taped out in a 28nm process and

the chip was rigorously tested for functionality, correctness and

the proposed fast wakeup speed in an industry-strength, serial-links

laboratory[19]. In lieu of a DRAM core, the test chip pairs the new

PHY blocks with test pattern generation and checking logic for emu-

lating memory read and write transactions. The laboratory operation

of the timing is demonstrated in Appendix §A.

The transmit eye diagram at the DQ pins had clear eyes with

sufficient timing and voltage margins at 6.4Gbps. The architecture

also reduces power in both active-standby and precharge-standby

power modes. Compared to today’s power modes, this provides the

performance of fast-exit powerdown with the DLL-off efficiency.

Specifically, this matches deep power down mode’s power at a

reduced exit latency of 10ns making it useful for many different

applications including emerging ones that have short idle periods.

The power difference between the active idle mode and the most

efficient powerdown mode is attributed to DLLs, clock tree, and

Figure 10: MemDrowsy Architecture.

command pins. By powering down these components, MemBlaze

lowers power in all other states except during active reads/writes.

Although standby efficiency improves, dynamic burst power is

largely unchanged. During bursts, DLL power savings are offset

by new power costs in current-mode clock circuitry and injection

locked-oscillator power costs.

4.3. Imperfect Wake-up Timing

MemBlaze provides an ideal solution and perfect timing upon power-

mode wake-up. Alternatively, we propose two new mechanisms in

which DRAMs retain their DLLs and turn them on/off very aggres-

sively. Systems that would prefer not to modify the device interface

(as MemBlaze does) and can tolerate modest performance degra-

dation will benefit from such techniques. But such DRAMs face

synchronization challenges, and we propose mechanisms to mitigate

or avoid timing errors. Without changing the controller-device link

interface and operating speed these systems retain the DDRx memory

links. However, they greatly reduce DRAM idle power by simply

changing the sampling rate/decision inside the controller using a few

flops.

Reactive Memory Interfaces (MemCorrect). For interfaces that

track timing less precisely, we introduce speculative DRAM data

transfers immediately after waking up from deep powerdown modes.

To guarantee that each memory transaction completes correctly, we

architect error detectors. Our fast wake-up memory interface imple-

ments this error check on each transaction (Figure 9), which ensures

that the clock transition is within a window (±∆) of its nominal lo-

cation. This check handles cases when variations and drift during

powerdown affect link operation. The error is communicated to the

controller through a dedicated pin, Correct. If an error occurs, it is

because the controller has issued a command too soon after powerup.

The controller could simply wait a longer period of time before re-

trying the command or could send a timing calibrate command to

expedite wake-up.

Errors are unlikely in systems with modest voltage and temperature

variations. Most memory systems fit this description since boards are

designed for tolerance against voltage fluctuations and temperatures

vary slowly. Moreover, these variations have a modest effect on

timing margins if ranks powerdown for short periods as drift is less

likely to have accumulated to affect timing margins.

Drowsy Memory Interfaces (MemDrowsy). Rather than wait

for calibration, a controller might begin transfers immediately but

mitigate timing errors by halving the data rate for a certain period

of time (Y) after wake-up. This slower rate more than doubles the

timing margin of the link, greatly improving tolerance to small timing

errors induced by VT variations.

Thus, MemDrowsy reduces the effective data rate and relaxes tim-

ing precision after wake-up, for reads that need a locked DLL. The
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Figure 11: MemDrowsy Timing Diagram.

clock speed is still maintained at the full rate but the link effectively

transmits each bit twice. This enables transmitting data while recali-

brating and results in lengthening the valid data window. Of course,

the controller must also shift the point at which data is sampled. After

recalibration, the link operates at nominal data rates.

Figure 10 illustrates extensions to the memory controller. A rank

is powered-down simply by disabling the clock (CKE low). Upon

powerup, the clock is enabled (CKE high) and a timer starts. The

clock operates at the nominal frequency f , providing a sufficient den-

sity of clock edges needed to facilitate timing feedback and recovery.

However, given timing uncertainty after wake-up, we use a fre-

quency divider to reduce the rate at which we sample the incoming

data; the drowsy rate is f/Z. A multiplexer chooses between sam-

pling at the nominal clock rate or at a divided rate. During drowsy

mode, the valid read window is lengthened by a factor of Z as illus-

trated in Figure 11.

Since the drowsy sampling period is an integral multiple of nomi-

nal sampling period, the controller clock is unchanged; it is simply

sampled every Z-th cycle.1 Sampling returns to the nominal fre-

quency only after timing recalibration.

5. Evaluation

We evaluate system implications from two types of memory archi-

tectures. The first type, MemBlaze, provides perfect timing and

synchronization after wake-up by eliminating expensive interface

circuitry from the DRAMs. The second type, exemplified by Mem-

Correct and MemDrowsy, provides imperfect timing and requires

corrective mechanisms.

MemBlaze provides the efficiency of powerdown without perfor-

mance trade-offs. But MemCorrect and MemDrowsy’s mechanisms

to ensure correct timing can negatively affect performance. We quan-

tify these effects.

5.1. Experimental Methodology

Simulators. We use an x86_64 execution-driven processor simulator

based on a Pin front-end [26, 33]. We use eight out-of-order (OOO)

cores at 3GHz matched with Intel’s Nehalem microarchitecture and

cache latencies as shown in Table 2.

The memory simulator is extended to model three architectures:

MemBlaze, MemCorrect, and MemDrowsy. MemBlaze is imple-

mented in silicon and chip measurements are used to configure the

1MemDrowsy clock rates are unchanged, differentiating it from work in channel

frequency scaling [5].

Processor Eight 3GHz x86 Out-of-Order cores

L1 cache private, 8-way 32KB, cycle time = 1, 64B cache-lines

L2 cache private, 8-way 256KB, cycle time = 7, 64B cache-lines

L3 cache shared, 16-way 16MB, cycle time = 27, 64B cache-lines

Memory controller Fast powerdown with threshold timer = 15 mem-cycles [17]

Closed-page, FCFS scheduling

Main memory 32GB capacity, 2Gb x4 1333MT/s parts,

single ranked 4GB-RDIMMs, four channels,

2DIMMs/channel [5, 16]

Table 2: Baseline System Simulation Parameters.

Classification Multi-Programmed (MP) Benchmarks

High B/W 433.milc, 436.cactusADM, 450.soplex, 459.GemsFDTD,

(MP-HB) 462.libquantum, 470.lbm, 471.omnetpp, 482.sphinx3

Med. B/W 401.bzip2, 403.gcc, 434.zeusmp,

(MP-MB) 454.calculix, 464.h264ref 473.astar

Low B/W 435.gromacs, 444.namd, 445.gobmk, 447.dealll,

(MP-LB) 456.hmmer, 458.sjeng, 465.tonto

Classification Multi-Threaded (MT) Benchmarks

High B/W (MT-HB) applu, art, canneal, streamcluster, swim, mgrid

Med. B/W (MT-MB) apsi, blackscholes, equake

Low B/W (MT-LB) ammp, fluidanimate, wupwise

Table 3: Benchmark Classification.

simulator. For the other memory architectures, the simulator draws

timing estimates from JEDEC specifications and energy estimates

from Intel’s analyses [5, 16]. In general, DDR3 systems dissipate

about 1-1.5W/GB on average [30] and about 2.5W/GB at peak [12].

We validate that our experiments produce numbers in this range.

Other memory simulator parameters are described in Table 2.

Workloads. We evaluate memory activity and the proposed ar-

chitectures on datacenter workloads like memcached. 2 During

evaluation, we fast-forward initialization phases and perform accu-

rate simulations during the measurement phase by running for fixed

number of instructions across power modes.

In addition, we evaluate a variety of multi-programmed (MP)

SPEC CPU2006 as well as multi-threaded (MT) SPEC OMP2001

and PARSEC benchmarks, following prior memory studies [2, 37, 22,

7, 18]. Each core runs a copy of the program/thread depending on the

benchmark and the number of application threads or processes are

matched to the cores. We fast-forward 10 to 20 billion instructions to

skip warm-up and initialization stages and focus on memory behavior

in steady state for weighted IPC calculations. We classify MP and

MT applications into 3 groups (HB, MB, LB) as shown in Table 3.

Metrics. For each memory architecture, we plot efficiency and

performance. Efficiency is measured in energy per bit (mW/Gbps).

In this metric, static and background power are amortized over useful

data transfers. Performance penalties measure the impact on cycles

2100b value denoted by a and 10KB by b
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Figure 12: MemBlaze (fast-lock) energy savings relative to DDR3
DRAM baseline (fast-powerdown) and compared against
DDR3 DRAM baseline (slow-powerdown).

per instruction (CPI). In each workload group, worst case perfor-

mance penalty and best case energy savings are plotted on the top of

each bar.

Energy savings are measured relative to baseline DDR3 DRAM

that aggressively exploits fast-powerdown whenever encountering

15 idle memory cycles [17]. This low threshold gives an optimistic

baseline. Realistic, high-performance systems would set the threshold

an order of magnitude higher, which would only magnify both active-

idle energy costs and our architectures’ advantages.

5.2. MemBlaze

MemBlaze efficiency arises from two key features. First, it elimi-

nates DRAMs’ DLLs and clocks, thus eliminating long-latency DLL

recalibration, which is on the critical path for today’s mode exits.

Capable of fast exits, MemBlaze can spend more time in powerdown

and less time in active-idle.

Second, for any remaining time spent in active idle (i.e., neither

bursting data nor in powerdown), MemBlaze consumes very little

energy. With MemBlaze links that are capable of fast wake-up,

DRAMs’ data blocks are powered-on by DCKE precisely when they

are needed and no earlier. Only the command blocks remain active,

consuming a small fraction of the original active-idle power.

Given these advantages, MemBlaze energy savings are substan-

tial. Even though silicon results indicated feasibility at much larger

datarates, we conservatively use DDR3-1333 transfer rate in our sim-

ulations to make the comparison fair. Figure 12 compares savings

from MemBlaze (fast-lock) and the most efficient power-mode in

today’s DRAMs (slow-powerdown). When DLLs in today’s DRAMs

are kept in a quiescent state, slow-power down improves efficiency

by 22%. But this efficiency requires a performance trade-off. Exit

latency is 24ns, which affects the critical word latency.

MemBlaze fast-lock improves efficiency by 43%. Even memory-

intensive applications, like 433.milc and 471.omnetpp, dissipate 25-

36% less energy. Applications that demand little bandwidth (LB)

like 444.namd consume 63% less energy. With compared against a

baseline that uses power-modes more conservatively, these savings

would increase by 2×.

Moreover, efficiency comes with better performance than the base-

line since MemBlaze power mode exit latency is comparable to that

of fast-powerdown in today’s DRAMs; neither incur DLL-related

wake-up latencies. Fast links powerup the datapath in 10ns. Because

this latency is hidden by the command access, we reduce energy with

no performance impact.

With attractive energy savings and no delay trade-off, MemBlaze is

an order of magnitude better than approaches that aggressively power-

off DLLs at run-time or modify the BIOS to disable DLLs at boot-

time. These mechanisms all require large performance trade-offs

since today’s high-performance DRAMs rely on DLLs for timing.

5.3. MemCorrect

While MemBlaze provides perfect timing, other interfaces (including

today’s DRAMs with DLLs) may be susceptible to timing errors

when aggressively exploiting power modes. MemCorrect provides

circuitry to detect timing errors, allowing the system to speculate that

the timing was correct. We assess performance and energy relative to

the DDR3 DRAM baseline in Figure 13.

We evaluate MemCorrect based on the probability p of correct

timing. In the best-case, p=100% and timing is never affected when

using power-modes. And p=0% is the worst-case in which every

wake-up requires a long-latency recalibration. Smaller values for p

degrade performance. When p=50%, performance degrades by as

much as 100%.

In practice, systems are more likely to encounter correct timing.

Boards can be designed with decoupling capacitors to tolerate voltage

fluctuations and thermal effects have long time constants. If timing is

correct for 99% or 90% of transfers immediately following a wake-up,

we incur modest performance penalties of 1% and 10%, respectively.

In exchange for the occasional delay, MemCorrect can exploit

power-modes more aggressively. DRAMs with DLLs might bypass

recalibration, start transfers immediately after wake-up, and detect

errors as they occur. In such a system, MemCorrect energy savings

are 38% and 30% when timing is correct for p =99% and p =90%

of the transfers. However, if errors are too common, workloads

encounter large penalties and low, or even negative, energy savings.

To increase the likelihood of correct timing, we might characterize

phase sensitivity to temperature (T) and voltage (V) while the part

is operating. During powerdown, we could store the current phase,

voltage, and temperature. And changes in T and V during powerdown

could be used to calculate a small correction to the last phase. Upon

powerup, this correction is added to the phase. We draw lessons from

processors in which canaries predict critical path delay across PVT

corners and find frequencies that meet timing constraints [9].

5.4. MemDrowsy

If correct timing cannot be ensured at nominal data sampling rates, the

system could operate in drowsy mode and reduce its sampling rate by

a factor of Z for Y=768ns (tDLLk). In practice Z depends on timing

margins at the DRAM interface. Z = 2 is realistic because existing

LPDDR2 systems eliminate DLLs and transfer at half the data rate

to ensure timing. We also assess sensitivity to more conservative

margins (Z = 4, Z = 8).

Reducing the data sample rate more aggressively produces larger

penalties in Figure 14(a); latency-sensitive streamcluster sees a 32%

penalty when Z = 8. Less drowsy transfers have far more modest

penalties, ranging from 1-4%.

MemDrowsy is also parameterized by how long the DRAM must

operate in drowsy mode. In practice, this parameter is defined by the

nominal wake-up latency. In other words, transfers are drowsy until

the interface can ensure correct timing (e.g., current DRAM DLLs

require 768ns). Performance is insensitive to the duration of drowsy

operation as only the first few transfers after wake-up are slowed.

9



Figure 13: MemCorrect (a) performance as measured in Cycles per Instruction (CPI) and (b) energy relative to DDR3 DRAM baseline. The
probability p of correct timing for transfer immediately after wakeup is varied. Plotted for MP, MT, datacenter benchmarks. Error bars
represent ranges over mean value in the group.

Figure 14: MemDrowsy (a) performance as measured in Cycles per Instruction (CPI) and (b) energy relative to DDR3 DRAM baseline. The
drowsy rate reduction factor Z for transfer is varied by using Y=768ns. Plotted for MP, MT, datacenter benchmarks. Error bars
represent ranges over mean value in the group.

Figure 15: MemCorrect+MemDrowsy (a) performance as measured in Cycles per Instruction (CPI) and (b) energy relative to DDR3 DRAM base-
line. The probability p of correct timing for transfer immediately after wakeup with Z = 4 is varied. Plotted for MP, MT, datacenter
benchmarks. Error bars represent ranges over mean value in the group.
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For these modest penalties, MemDrowsy achieves significant en-

ergy savings in Figure 14(b). Drowsy transfers allow applications to

enter power modes more often with fewer penalties. Clearly, appli-

cations that demand memory bandwidth (HB) are more sensitive to

drowsy operation. Indeed, average energy per transfer might increase

due to larger termination energy from higher bus utilization and also

the idle power during the extra cycles.

5.5. MemCorrect and MemDrowsy

Suppose MemCorrect detects a timing error for a transfer immediately

following a wake-up. Instead of delaying the transfer for the nominal

wake-up latency, the system invokes MemDrowsy and begins the

transfer immediately at a slower rate. Clearly, performance and

efficiency in MemCorrect+MemDrowsy will be better than either

approach applied individually. Immediately after wake-up, transfers

begin immediately either at the nominal or reduced data rate.

With MemCorrect+MemDrowsy, exploiting power modes and

transferring data immediately after wake-up has performance penal-

ties between 10-20%, as shown in Figure 15(a). In exchange, power

modes are more often exploited and energy savings are more consis-

tent.

When implemented alone, MemCorrect energy savings are very

sensitive to the probability of correct timing after wake-up. In combi-

nation, however, MemCorrect+MemDrowsy is insensitive to timing

risk, as shown in Figure 15(b). As MemDrowsy improves mem-

ory channel utilization, background power is amortized over more

transfers.

MemBlaze promises large energy savings with an architecture that

provides perfect timing information. Without such timing guarantees,

however, MemCorrect+MemDrowsy provide the next best thing:

comparable efficiency and modest (<10%) performance degradation

for many applications.

6. Related Work

Much prior work reduces power in conventional server memory.

Memory systems can statically set voltage and frequency at boot

time, typically in the BIOS [7]. Frequency scaling reduces power

but since the static power is amortized over few accesses at low

utilizations, the energy per memory access is still expensive. The

energy per access could also increase due to higher bus utilization

from scaling [5].

Malladi et al. studied LPDDR2 in servers to trade bandwidth

for reduced active-idle power [27]. In the current paper, we con-

vert DDR3 active-idle time to time in efficient powerdown without

affecting bandwidth. Lim et al. consider various grades of DDR

memory [25, 24] while Kgil et al. consider memory-processor stack-

ing [20]. In contrast, we propose changes to power-hungry DRAM

interfaces.

Prior work also manages DRAM data placement, increasing ac-

cess locality and creating opportunities to transition between power

states [10, 23, 36, 8, 31, 1]. Prior work studies compiler strategies

for cluster accesses by inserting NOPs or reordering to coalesce re-

quests [6]. Also, pages might be redirected to particular DRAM ranks

to create hot and cold memory spaces [14]. Memory controllers can

throttle requests to manage power [15]. In contrast, our work im-

proves powermode efficiency as multiple studies highlight increasing

difficulty of finding usable idle times [7, 29].

We build upon detailed studies of Meisner et al. about subsys-

tem characterization [29], and Ferdman et al. insights on scale out

workloads [11]. We study memory bus activity at finer granularities,

enabling the analysis and design of DRAM power modes.

Given wide accesses internal to DRAM, chips have been proposed

to reduce the number of parts activated. One approach reduces access

granularity through separately controlled parts (e.g.,chips, ranks,

banks, etc.) to create smaller, independent memory spaces [2, 37, 39,

41]. However, reducing the size of the DRAM activated increases the

number of peripheral circuits and degrades density [38].

7. Conclusion

In server memory, idle power can comprise 60-70% of the total. Mem-

ory ranks spend 45-60% of their time idle. The spectrum of memory

architectures presented in this paper demonstrate new interfaces and

architectures that address this problem. By eliminating or mitigat-

ing long-latency DLL wake-ups, these systems aggressively uses

efficient powerdown states during short idle periods with negligible

performance penalty.

Benefits are particularly pronounced for high-capacity, multi-rank

systems with frequent idleness. We demonstrate energy savings of up

to 68% in a four-rank memory system. While MemBlaze reduces idle

power with no performance impact on the system, MemDrowsy and

MemCorrect accomplish similar power savings with low penalties.

A MemBlaze test chip has also been fabricated and demonstrated to

function at a high datarate of 6.4Gbps while the exit latencies and idle

power are verified with hardware measurements. Overall, we demon-

strate possible techniques to build scalable, energy-proportional mem-

ory systems for the future.
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A. Laboratory Measurements

The fabricated test chip has been tested extensively and Figure 16

demonstrates the timing operation of the powermodes.

Figure 16: Timing operation for the MemBlaze test chip’s fast lock
link demonstrating DQ operation within 10ns from power-
mode wakeup.
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