
Rethinking elastic online scheduling of big data streaming

applications over high velocity continuous data streams

Dawei Sun
1, 2

, Hongbin Yan
1
, Shang Gao

3
, Xunyun Liu

2
, and

Rajkumar Buyya
2

Abstract. Online scheduling plays a key role for big data streaming applications in a

big data stream computing environment, as the arrival rate of high velocity continuous

data stream might fluctuate over time. In this paper, an elastic online scheduling
framework for big data streaming applications (E-Stream) is proposed, exhibiting the

following features. (1) Profile mathematical relationships between system response

time, multiple application fairness, and online features of high velocity continuous

stream. (2) Scale out or scale in a data stream graph by quantifying computation and

communication cost, and the vertex semantics for arrival rate of data stream, and

adjust the degree of parallelism of vertices in the graph. Sub-graph is further

constructed to minimize data dependencies among the sub-graphs. (3) Elastically

schedule a graph by a priority based earliest finish time first online scheduling
strategy, and schedule multiple graphs by a max-min fairness strategy. (4) Evaluate

the low system response time and acceptable applications fairness objectives in a real-

world big data stream computing environment. Experimental results conclusively

demonstrate that the proposed E-Stream provides better system response time and

applications fairness compared to the existing Storm framework.

Dawei Sun (Corresponding Author)
sundaweicn@cugb.edu.cn

Hongbin Yan
yanhongbin@cugb.edu.cn

Shang Gao
shang.gao@deakin.edu.au

Xunyun Liu
xunyunliu@gmail.com

Rajkumar Buyya
rbuyya@unimelb.edu.au

1 School of Information Engineering, China University of Geosciences, Beijing, 100083, P.R.

China.
2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and

Information Systems, The University of Melbourne, Australia
3 School of Information Technology, Deakin University, Victoria 3216, Australia

Keywords: elastic scheduling; data stream graph, streaming application; high

velocity stream; big data computing.

1 Introduction

In big data era, big data stream computing helps organizations spot opportunities and

risks from real time big data. It can be employed in many different application

scenarios, such as social networks, trading, emergency response, fraud detection,

system monitoring, smart cities, and to name but a few. More than 30000 gigabytes of

data are created every second and the rate is accelerating [1]. Big data stream has
some distinctive characteristics [2]. A big data stream computing system doesn’t rely

on high-volume storage to achieve extremely low-latency velocities. Nearly all data in

a big data environment streamed. Stream computing has appeared to solve the

dilemma of big data computing by processing data online within real time constraints.

It makes the research on stream computing models a new trend for high-throughput

computing in big data era, with both opportunities and challenges [3] [4].

In a big data stream computing environment, each application is commonly

modeled as a set of sub-tasks interconnected via data dependencies, described by a
corresponding DAG [2] [5] (directed acyclic graph, data stream graph, graph, DAG,

and application are interchangeably used thereafter in this paper). Each DAG is

submitted to a big data stream computing platform, and is scheduled to one or many

computing nodes in data center. A schedule is a process of scheduling inter-dependent

sub-tasks onto available computing nodes so that a DAG is able to complete its

execution within specified constraints such as throughput and deadline. All the

submitted applications are running continuously on the big data stream computing

platform. Each application processes one or many continuous data streams. Arrival
rates of data streams fluctuate over time in an unpredictable manner.

To effectively use resources, a fundamental requirement is elasticity. The majority

of state-of-the-art solutions [6] [7] do not provide a proper elastic online scheduler

that knows how to coordinate the dynamical allocation and release of resources

according to current data stream for multiple applications. Previous work in this area,

focused mostly on the static scheduling. The reason behind this is that the volume of

data stream is not so big, and the magnitude of dynamically changing data steam is

not so high. Many scheduling strategies provide an efficient scheduling in static
stream computing environments. However, they require permanent peak-load re-

source provisioning to remain low latency in face of varying and busty data stream in

big data era, and may cause poor resources utilization, and instability of the system as

a whole. In this sense, an elastic online scheduling is always needed to avoid wasting

resources or failing in delivering correct results on time.

An elastic runtime scaling strategy should be able to determine when and how to

scale and account for data stream fluctuating with time, and to schedule resources

elastically according to the current arrival rate of stream. To achieve that goal, we
need firstly obtain a clear picture of the changed status of a graph of streaming

application and then decide how to optimize it, and which vertices of the graph

needed to be online rescheduled. More importantly, to achieve the scheduling fairness

of multiple applications [8] [9]. Currently, most of the existing research works have

focused on application scheduling. They have not considered requirements of multiple

application scheduling and online features of high velocity continuous streams, nor

have they sufficiently investigated how to minimize system response time and

guarantee applications fairness, and to deal with high performance and response time

trade-off efficiently and effectively [10] [11]. This creates the need for investigation
on an elastic online scheduling framework over high velocity continuous data

streams. To overcome this limitation, we propose an elastic online scheduling

framework for big data streaming applications (E-Stream). It minimizes system

response time, guarantees application fairness, and achieves high elasticity in a big

data stream computing environment.

1.1 Observations

It is the users’ responsibility to design the data stream graph in order to run a

streaming application in Storm platform. However, most of the users do not possess

the expertise of designing a data stream graph that reasonability reflects the

performance requirement and resource consumption of the application. Key

parameters such as operator parallelism and task allocation are hard to determine and

optimize in an online environment where the remaining resources and rates of data
stream are constantly changing over time. Besides, users have limited knowledge

about the runtime behavior of the application prior to the submission, therefore, the

data stream graph statically designed at compile time may eventually lead to resource

over-utilization or under-utilization without delivering satisfactory performance.

However, there are few techniques available in the middleware level to optimize a

submitted application. When a data stream graph is submitted, its structure is detected

and optimized by the following strategies: vertex separation, fusion, and replicate. If

the load calculation of a vertex is significantly higher than that of other vertices, it
normally indicates that it is difficult to assign appropriate resources to this vertex. If

this is the case, this vertex is separated into two or more vertices. When the traffic

between two directly connected vertices is obviously greater than that of other

communication links, it means that the communication delay of this line will be

greater than other links, two vertices are then fused into one vertex, to eliminate

communication delay of this link. In running phase, the structure of data stream graph

is adjusted through vertex replication or elimination. When the input rate of data

stream becomes higher, it means that latency of some critical vertices increases. One
or more vertices of a group of critical vertices are replicated. When the input rate of

data stream becomes lower, it means that latency of some critical vertices decreases,

and some resource can be released. One or more vertices of a group of critical vertices

are eliminated given those critical vertices have more than one replicas.

In an online scheduling environment, optimize the structure of data stream graph is

always required. Multiple applications are sharing computing nodes in a data center

so that scheduling fairness needs to be guaranteed.

1.2 Key contributions

Our contributions made in this paper are summarized as follows:

(1) Formal definitions of data stream graph, optimizing the structure of a data

stream graph by quantifying and adjusting the degree of parallelism of vertices in the
graph.

(2) Sub-graph is further constructed to minimize data dependencies among the sub-

graphs.

(3) Data stream graph is scheduled with a priority based earliest finish time first

elastic online scheduling strategy to minimize system response time.

(4) Multiple graphs are scheduled with a max-min fairness based multiple DAGs

scheduling strategy to guarantee fairness subject to the constraint of response time.

(5) Prototype implementation and performance evaluation of the proposed E-
Stream, which makes trade-off between low system response time and acceptable

applications fairness objectives efficiently and effectively.

1.3 Paper organization

The rest of this paper is organized as follows: In section 2, the related work on
workflow scheduling in distributed systems, and application scheduling on Storm

platform are reviewed. Section 3 present the data stream graph model, multiple user

model, data center model and multiple data stream graph scheduling model are

presented. Section 4 focuses on the computation and communication cost, vertex

semantics, instance of vertices, sub-graph construction, single DAG scheduling, and

multiple DAG scheduling in the proposed E-Stream framework. Section 5 provides

the experimental environment, parameter setup and performance evaluation of E-

Stream. Finally, conclusions and future work are given in section 6.

2 Related Work

In this section, two broad categories of related work are presented: workflow
scheduling in distributed systems, and application scheduling on Storm platform.

2.1 Workflow scheduling in distributed systems

Workflow scheduling problem in distributed systems is scheduling the dependent

vertices of workflow on the available computing nodes of the distributed systems to
satisfy the user’s specified SLAs constraints such as deadline. Finding an optimal

schedule for precedence constraint based directed acyclic graph is proved to be NP-

hard. It has been studied extensively over the years, and will continue to be the focus

of research due to its theoretical significance and practical importance.

In [12], a cloud-aware scheduling system is designed. The system has two sub-

systems, a sub-system will separate a graph into multi sub-graphs, and another sub-

system will allocate those sub-graphs to a cluster according to load balancing strategy.

In [13], an analytical cost model is constructed. The workflow scheduling problem

is formulated as an optimization problem. A recursive critical path based work-flow

scheduling is proposed, a rigorous workflow analysis is designed, and a layer oriented

programming strategy is developed.

In [14], a dynamic workflow scheduling strategy is proposed. The strategy focused

on scheduling resources for precedence constraints tasks to a datacenter, and the
deadline is one of the major considering factors.

In [15], a budget constrained allocation approach is proposed. The approach can

guarantee the cost in the specified budget, and minimizes the deadline of work-flow.

In [16], an integrated solution for workflow scheduling is proposed. The workflow

scheduling problem is formulated. The integrated solution try to minimize the end-to-

end delay of workflow.

To summarize, the aforementioned solutions provide a valuable insight into the

challenges and potential solutions for application scheduling in big data stream
computing environments. However, in big data era, novel approaches that address the

particular challenges and opportunities of these technologies need to be developed,

and some characteristics specific to big data stream computing environments need to

be considered when developing online scheduling strategies.

2.2 Application scheduling on Storm platform

In big data era, Storm is the most popular big data stream computing platform both in

academia and industry. On Storm platform, the round-robin scheduling is employed.

It is simplistic and un-intelligent, in which many of the basic factors are not

considered, such as, throughput performance, resource availability, or resource

demands and availability. Some works have been done to improve the application

scheduling strategy on Storm platform.

In [1], an adaptive scheduling approach for Storm platform is proposed. The
transfer rate and traffic pattern of data stream are considered in the approach. The

number of required resources can be obtained by the proposed approach, and can also

be adaptively refreshed.

In [7], a dynamic resource scheduling strategy for cloud based data stream system

is proposed. It includes an accurate performance model, and can process application

topologies.

In [8], a resource aware scheduling mechanism is proposed in Storm platform, and

to maximize resource utilization while minimizing network latency. Hard constraints
and soft constraints are considered in the mechanism.

In [17], a stream data computing strategy is designed for Storm platform. The

traffic aware scheduling approach can minimize inter-node and inter-process traffic.

The fine grained control approach can achieve improved system performance.

In [18], an online scheduling strategy for Storm platform is proposed. The topology

structure is analyzed in the offline environment, and the performance monitoring is

employed in the online environment, and is used in the rescheduling stage.

In [19], an elastic scheduling framework named CE-Storm is designed. The
framework can scale-out and scale-in of Continuous Query operators. Data provider

can also design the specifically confidentiality policies.

In [20], a GPU-enabled parallel system is proposed for Storm platform. The system

exposes GPUs to Storm applications.

In [21], a set of improvements to a distributed stream computational model is

provided. The extensions of Storm platform are designed.

Additionally, our past work [2] focused on masking failures of computing nodes

and communication links in streaming computing environments, we proposed a fault
tolerant framework for streaming computing platform to improve the system

reliability. In this paper, we focus on the fairness of multiple graphs scheduling in

streaming computing environments. Another past work [25] of our group focused on

improving system stability in streaming computing environments, and we proposed a

stable online scheduling strategy for forever online applications. In this paper,

however, our primary goal is not stability but elasticity. We propose an elastic online

scheduling framework for multiple online applications, which minimizes system

response time, guarantees application fairness, and achieves high elasticity in big data
stream computing environments.

To summarize, current application scheduling on Storm platform are limited to one

or other aspects. Up to now, most of the research required permanent peak-load

resource provisioning to maintain low latency in face of varying and busty data

streams, which may cause not only poor resources utilization but also instability of

the system as a whole. In this sense, an elastic online scheduling for big data

streaming applications is always needed. It is necessary to have an elastic online

scheduler, to scale out or scale in the application to avoid wasting resources or failing
to deliver correct results on time.

3 Problem Statement

To precisely reflect elastic online scheduling problem, we present the data stream

graph model, the multiple user model, the datacenter model, and the multiple data

stream graph scheduling model.

3.1 Data stream graph model

A big data stream application is usually described by a data stream graph G ,

composed of vertices set and directed edges set. It has a logical structure and specific

function, and denoted as     ,G V G E G , where    1 2, , , nV G v v v is a

finite set of n vertices.        1,2 1,3 ,, , , n i nE G e e e V G V G   is a finite set of

directed edges. The logical structure of a data stream graph G is usually described

by DAG [22] [23]. Each big data stream application has a deadline associated with it.

A deadline is defined as time limit for the execution of the application [24].

The makespan M of G is the total elapsed time required to execute G . For

simplicity, the makespan M can be set to a value equal to the early finish time
ev

EFT

of the end vertex
ev , and is also equal to the latest finish time

evLFT of the end

vertex
ev , as shown in (1), more details can be found in [25].

.
e ev vM EFT LFT  (1)

3.2 Multiple user model

Elastic online application scheduling system typically consists of multiple users [25].

Let  
1 2
, , ,

m
U u u u be a user set composed of m users,

 
1 2
, , ,

m
Gs Gs Gs Gs be a set of data stream graphs of the user set U . For

simplicity, it is assumed that a user always has only one application (described by a
data stream graph) at any time.

Multiple users share resource in a data center. For each user, the available resource

with elastic strategy is always needed. For all users, fair resource allocation is always

needed.

3.3 Datacenter model

A data center DC is usually described as an undirected graph, composed of a

computing node set and undirected edge set. It has a physical structure and specific

functions, as shown in Figure 1, more details of data center DC can be found in

[25].

…… ……

cn3cn2cn1

cn6cn5cn4

cnkcnk-2cnk-4

……

Fig. 1. A data center

3.4 Multiple data stream graph scheduling model

In an online scheduling environment, we focus on finding an elastic scheduling

strategy to optimize the execution of multiple data stream graphs on a set of shared

computing nodes, and maximize the system fair-ness with makespan guaranteed.

A fair multiple DAG scheduling strategy mean that resources allocation is the same

with that in non-shared allocation environment [24] [26] [27].

For a DAG
ig , total allocated resources  

ig kTar t in [0, tk] is the accumulated

resources, as shown in (2).

   
0

,
k

i i

t

g k gTar t ar t dt 
(2)

where  
igar t is the current allocated resources for DAG

ig at time t.

The total needed allocated resources  
ig kTnr t in [0, tk] is the accumulated

resources, as shown in (3).

   
0

,
k

i i

t

g k gTnr t nr t dt 
(3)

where  
ignr t is the current needed resources for DAG

ig at time t.

The fairness degree  
ig kfd t for DAG

ig at time tk is defined in (4).

 
 
 

 

 
0

0

,

k

ii

i k

i
i

t

gg k

g k t

g k
g

ar t dtTar t
fd t

Tnr t nr t dt
 




 (4)

As total actual allocated resources  
ig kTar t is always no more than total needed

resources  
ig kTnr t , so    0,1

ig kfd t  . If   1
ig kfd t  , it implies the absolute

resource fairness for DAG
ig at time tk, all the needed resources are allocated. If

  0
ig kfd t  , it implies the absolute resource un-fairness for DAG

ig at time tk,

none of the needed resources is allocated. The greater the fairness degree  
ig kfd t

for DAG
ig at time tk, the more fairness the share resources in data center.

For all n DAGs, fairness degree  ng kFd t for n DAGs at time tk is the average of

all n DAGs, is defined in (5).

       
1

1
, 0,1 ,

i i

n

ng k g k g k
i

Fd t fd t fd t
n 

  (5)

For a good fairness strategy, it should be able to maximize  ng kFd t . The

proposed data stream graph scheduling model is defined by Definition 1.

Definition 1: Data stream graph scheduling model. In a big data stream computing

system, let the data stream graph scheduling model Gm be represented by a four-tuple

 , , ,Gm U DC Of  , where  1 2, , , mU u u u is a user set composed of m users,

and each user may request services independently.  
1 2
, , ,

n
DC cn cn cn be a

data center composed of n computing nodes, which are running on virtual machines

or physical machines. For each data stream graph, Of is an objective function to

schedule each data stream graph. It is defined according to (6), and  is an

algorithm which implements optimal strategies to minimize the makespan with

guaranteed system fairness.

           
      

, min ,

. . , 0,1 .

ng k ng k

ng k

Of avg m G Fd t avg m G Fd t

s t avg m G Fd t



 
 (6)

4 E-Stream Overview

In order to provide a bird’s-eye view of the elastic online scheduling framework E-

Stream, in this section, we discuss the overall structure of the E-Stream, which
includes computation and communication cost, vertex semantics, instance of vertices,

sub-graph construction, single DAG scheduling, and multiple DAG scheduling.

4.1 Computation and communication cost

Computation cost [28] ,i jv cnc is the time required to run vertex
iv on computing

node cnj, and is related to the instructions number , iinstr vn of the tasks in vertex
iv ,

and processing ability
jcnp of computing note jcn .

Communication cost [29]
,i jec of directed edge ,i je is the time required to

transmit data tuple from vertex
iv to jv , and is related to the data output

iv
d of

vertex
iv , bandwidth

,i jeb of the directed edge ,i je . Specifically, if
iv and jv run

on the same computing node, then
,

0
i jec  .

We refer to reference [25] for more detailed discussion on the computation and

communication cost.

4.2 Vertex semantics

The semantic of vertex
iv [30] [31] in data stream graph G indicates

relationships between input stream
iv

I and output stream
iv

O of vertex
iv , which

is  
i i iv v vO F I . The semantic of vertex

iv can be further classified into 4 types, as

shown in Figure 2.

(1) 1:1 type

In the 1:1 type, as shown in Figure 2(a), there are one input stream I and one

output stream O of vertex
iv ,

iv
ir is the rate of input stream I ,

ivor is the rate

of output stream O .
iv

ir and
ivor are related with time complex degree of the tasks

in vertex
iv and processing ability

jcnp of the computing node cnj, which are

constants. For simplicity, the relationship of
iv

ir and
ivor can be described as (7).

 , , 0, ,
i iv I v I I Ior ir        (7)

where
I ,

I are the scaling factors describing the scaling out or scaling in of
iv

ir

and
ivor , determined by the function of vertex

iv , and available computing power of

computer node running vertex
iv .

…

viI O

(a) 1:1

vi O

(b) n:1

…

viI

(c) 1:m

vi

(d) n:m

……

Fig. 2. Vertex semantics

(2) n:1 type

In the n:1 type, as shown in Figure 2(b), there are n input streams
,1 ,2 ,, , ,

i i iv v v nI I I ,

and one output stream O of vertex
iv .

1, ,2 ,, , ,
i i iv v v nir ir ir are the rates of input

streams ,1 ,2 ,, , ,
i i iv v v nI I I , respectively.

ivor is the rate of output stream O . The

relationship between
1, ,2 ,, , ,

i i iv v v nir ir ir and
ivor can be described as (8).

   ,
1

, , 0, ,
i k i k k k

n

v I v k I I I
k

or ir   


     (8)

where  , , 1,
k kI I k n   are the scaling factors describing the scaling out or scaling

in of ,i kvir and
ivor .

(3) 1:m type

In the 1:m type, as shown in Figure 2(c), there are one input stream I and m

output streams ,1 ,2 ,, , ,
i i iv v v mO O O of vertex

iv .
iv

ir is the rate of input stream I ,

,1 ,2 ,, , ,
i i iv v v mor or or are the rates of output streams ,1 ,2 ,, , ,

i i iv v v mO O O , respectively.

The relationship between
iv

ir and ,1 ,2 ,, , ,
i i iv v v mor or or can be described as (9).

 

 

 

1 1 1 1

2 2 2 2

,1

,2

,

, , 0, ,

, , 0, ,

, , 0, ,

i i

i i

i m i m m m

v I v I I I

v I v I I I

v m I v I I I

or ir

or ir

or ir

   

   

   

    


    


     

 (9)

where  , , 1,
j jI I j m   are the scaling factors describing the scaling out or scaling

in of
iv

ir and
,iv jor .

(4) n:m type

In the n:m type, as shown in Figure 2(d), there are n input streams

,1 ,2 ,, , ,
i i iv v v nI I I and m output streams

,1 ,2 ,, , ,
i i iv v v mO O O of vertex

iv .

1, ,2 ,, , ,
i i iv v v nir ir ir are the rates of input streams

,1 ,2 ,, , ,
i i iv v v nI I I , respectively,

,1 ,2 ,, , ,
i i iv v v mor or or are the rates of output streams

,1 ,2 ,, , ,
i i iv v v mO O O , respectively.

The relationship between
1, ,2 ,, , ,

i i iv v v nir ir ir and
,1 ,2 ,, , ,

i i iv v v mor or or can be described

as (10).

   

   

   

,1 ,1 ,1 ,1

,2 ,2 ,2 ,2

, , , ,

,1 ,
1

,2 ,
1

, ,
1

, , 0, ,

, , 0, ,

, , 0, ,

i k i k k k

i k i k k k

i k m i k m k m k m

n

v I v k I I I
k

n

v I v k I I I
k

n

v m I v k I I I
k

or ir

or ir

or ir

   

   

   








    




    





    








 (10)

where    
, ,
, , 1, , 1,

k j k jI I k n j m    are the scaling factors describing the scaling out

or scaling in of ,iv kir and ,iv jor .

Theorem 1. In a big data stream computing environment, rate of data stream input

to computing platform is r. For a vertex vn in data stream graph G, the output data rate

nv
or of vertex

nv has a linear relationship with the input data rate r.

Proof. For a path from vertex
1v to vertex vn,

.
n nv n v nor ir   

If
iv

ir is the input data rate of vertex
iv ,

1iv
or


 is the output data rate of vertex

1iv 
 on that path from vertex

1v to vertex vn, , 1i i  is weight of data stream from

vertex
1iv 
 to vertex

iv on that path from vertex
1v to vertex vn.

That is,

1, 1i iv i i vir or
 

So,

 

 

       

1

1

1

1,

1, 1 1
2

1, 1, 1
1 2 2

 .

n n

n

k

v n v n

n n n v n

n

n n n k v k n
k

n n n n n

k k k v k k k h n
k k h k h k h

or ir

or

ir

ir

 

  

    

     







  


  
    

  

   

 
      

 

 
       

 



    

If there are m paths from vertex
1v to vertex vn in data stream graph G, then,

       
1

,
1

1, 1, 1
1 1 2 1 2

 .

n n

vi

k

v n v n

id

n k i v n
k

m n n m n n n

k k k v k k k h n
p k k p h k h k h

or ir

or

ir

 

  

     



  
      

  

 
     

 

    
          

    



      

If,

   1,
1 1 2

.
n nm

k k k
p k k

   
  

 
  

 
  

   1, 1
1 2

.
n nm n

k k k h n
p h k h k h

     
   

  
     

  
   

Then,

1
.

nv vor ir   

As
1v

ir r , so,

.
nv

or r   

Similarly, the relationship between end vertex
ev of data stream graph G and the

input data rate r is also linear.

4.3 Instance of vertices

Replication of vertex in a data stream graph can improve throughput. Each vertex

iv can create n different independent instances  , 1,2, ,ijv j n . Instances run on

different machines, and work in parallel.

The number of instances of each vertex can be determined by the number of

instructions that each vertex has. More details of our vertex instance model can be

found in [25].

4.4 Sub-graph construction

In a DAG, the communication cost between some vertices may be significantly

longer than that of other vertices, and greatly increases the response time of the DAG.

In order to reduce such kind of communication cost, a sub-graph is constructed on the
related vertices. A sub-graph is defined as Definition 2.

Definition 2: sub-graph. A sub-graph sub-G of data stream graph G is the sub

graph consisting of a subset of the vertices with the edges in between. For any

vertices
iv and jv in the sub-graph sub-G and any vertex v in data stream graph

G , v must also be in the sub-G if v is on a directed path from
iv to jv , that is

 , -i jv v V sub G  ,  v V G  , if   ,i jv V p v v , then   -Gv V p sub .

A sub-graph sub-G can be substituted by a logically equivalent vertex.

Construction of a sub-graph can reduce the communication cost between related

vertices, and reduce the response time of the DAG. A sub-graph will be treated as a

“vertex” in the DAG scheduling phase.

For a directed edge ,i je from vertex
iv to jv , the communication to

computation ratio
,i jv vccr of vertex

iv and jv can be calculated by (11).

 
   

,

, .
i j

i j

i j

e

v v

v v

avg c
ccr

avg c avg c



 (11)

where  
iv

avg c is the average computation cost of vertex
iv , and  

,i jeavg c is the

average communication cost from vertex
iv to jv .

If the communication to computation ratio ,i jv vccr of vertex
iv and jv meet

condition (12), a sub-graph need to be constructed.

, ,
i jv vccr  (12)

where  is the adjust parameter, which can be set according to needs of different

stream computing environments. Such as,  can be set as 1, which means the

computation cost of vertex
iv and jv equal to the communication cost of directed

edge ,i je .

4.5 Single DAG scheduling

For a DAG, a priority based earliest finish time first scheduling strategy is

employed [32].

In a DAG, each vertex can be set with a priority according to its location in the

DAG. The priority of vertex
iv is defined by (13).

 
 

    
,

max ,
i k i

k childre i
i k e v

v set v
p v p v c avg c

 
   (13)

where
kv is one of children of vertex

iv ,  children iset v is children set of vertex
iv ,

and  
iv

avg c is the average computation cost of vertex
iv .

The priority of the end vertex
ev is defined by (14).

   
ee vp v avg c (14)

The priority of a vertex determines the order in which the resources are allocated.

The source vertex
sv always has the highest priority among all vertices in the DAG,

and it is always first scheduled to a computing node. At the beginning, all vertices in

the DAG are added to a non-schedule vertices set in topological order. When a vertex

is scheduled to a node, the vertex is removed from the non-schedule vertices set, and
added to schedule set. A vertex is always scheduled to a computing node on which the

earliest completion time is guaranteed.

The earliest finish time
,s jv cnEFT of vertex

iv running on computing node jcn

is shown in (15).

, , , .
s j i j i j

idle

v cn v cn v cnEFT t c  (15)

The earliest finish time
sv

EFT is the finish time of source vertex
sv on

computing node pbestcn with minimum total time of available time and computing

time, as shown in (16).

 
 , , ,min .

s p i j i jbest
j i

idle

v cn v cn v cn
cn ava v

EFT t c


  (16)

where  iava v is the set of available computing nodes for vertex
iv .

For other vertices in G , to calculate ,i jv cnEST , all immediate predecessor vertices

of
iv must have been scheduled, and added to the schedule set.

 
  ,, ,max , max ,

i j i j pred pred i
pred i

idle

v cn v cn v e
v pred v

EST t EFT c


  (17)

where ,i j

idle

v cnt is the earliest time at which computing node jcn is ready for
iv use,

and  ipred v is the set of immediate predecessor vertices of vertex
iv .

The earliest finish time ,i jv cnEFT of vertex
iv running on computing node jcn

can be calculated by (18).

, , , .
i j i j i jv cn v cn v cnEFT EST c  (18)

The earliest finish time
iv

EFT is the finish time of vertex
iv on the computing

node pbestcn with minimum total time of available time and computing time, as

shown in (19).

 
 , ,min .

i p i jbest
j i

v cn v cn
cn ava v

EFT EFT


 (19)

where  iava v is the set of available computing nodes for vertex
iv .

The following three rules are also employed in scheduling a DAG.

Rule 1: each instance of a vertex is scheduled to a different computing node.
If a vertex has multiple instances, each instance of the vertex is scheduled to a

different computing node, to improve the efficiency of node usages. If two or more

instances are schedule to the same node, it is not only unhelpful to improve the

efficiency, but also increases the workload of the node.

Rule 2: the computing node with the maximum available computing power is

always employed.

If a vertex can be scheduled to multiple nodes, given the same earliest finish time,

the node with the maximum available computing power is always employed. As the
available computing power of a node keeps changing, the most remaining available

“powerful” node is not always the same. This rule helps achieve a fairer use of all

available resources.

Rule 3: minimize number of vertices in the elastic online rescheduling stage.

When a DAG is scheduled on computing platform, it is running forever. If the

arrival rate of data stream or the number of available computing nodes is changed, the

DAG is to be rescheduled during this stage, the scheduling strategy is the same as the

strategy for single DAG. However, the current allocation status is to be considered.
The vertex to be scheduled on the same node will not be further rescheduled to

minimize the number of vertices to be rescheduled.

4.6 Multiple DAG scheduling

For a n-DAGs scheduling scenario, a max-min fairness based multiple DAGs
scheduling strategy is employed [33], and described as Algorithm 1.

Algorithm 1: Max-min fairness based multiple DAGs scheduling algorithm.

1. Input: multiple DAGs, current available capacity ability matrix
n mvC


 of

computing nodes in data centers, input rate of data stream.

2. Output: Max-min fairness based multiple DAGs scheduling algorithm

with makespan guaranteed.

3. if DAG G or computing nodes is null then

4. Return null.

5. end if
6. Monitor the real-time rate of data stream in the input interface and

response time of each DAG.
7. while some DAGs need more resources do

8. Sort resources needed DAGs in ascending order by the number of

resources needed.

9. while set of resources needed DAGs is not null do

10. Select a DAG gi needing the least resources.

11. if available resources in data center is greater than required then

12. Allocate resources for DAG gi by priority based earliest

finish time first strategy.
13. Update available capacity of the affected nodes.

14. end if

15. Update current available capacity matrix
n mvC


 of nodes in data

centers.

16. Update the set of resources needed DAGs.

17. end while
18. Monitor the real-time rate of data stream in the input interface and

response time of each DAG.

19. Update the set of resources needed DAGs

20. end while
21. return Max-min fairness based multiple DAGs scheduling sequence with

makespan guarantee.

The input of this algorithm is multiple DAGs, current available capacity matrix

n mvC


 of computing nodes, and input rate of data stream. The output is max-min

fairness based multiple DAGs scheduling sequence with makespan guaranteed. Step 7

to step 20 monitor those DAGs requiring more resources, and reschedule all those

DAGs by priority based earliest finish time first strategy. The makespan is maximized

with system fairness degree guaranteed.

5 Performance Evaluation

To evaluate the performance of the proposed E-Stream system, we created the

experimental environment and conducted experiments as discussed below.

5.1 Experimental environment and parameter setup

Storm platform [17] [34] [35] is one of the most popular big data stream computing

platforms in industry today. It is a parallel, distributed, and fault-tolerant system,

designed to provide a platform that supports real-time data stream computing on

clusters of horizontally scalable commodity machines.

The proposed E-Stream system is developed based on Storm 0.10.2, and installed

on top of Linux Ubuntu Server 13.04. Real data experiments are performed on a
computing cluster located at computer architecture laboratory in China University of

Geosciences, Beijing. The computing cluster consists of 35 machines, with one

designated as master node, running Storm Nimbus, two designated as Zookeeper node,

and the rest 32 machines working as worker nodes. Each machine runs Linux Ubuntu

Server 13.04 with dual 4-core, Intel Core (TM) i7-4790, 3.6GHz, 4 GB Memory, and

1Gbps network interface cards.

Moreover, an instance graph of TOP_N (see Figure 3), and an instance graph of

WordCount (see Figure 4), are submitted to the data center.

va1
vb2

vc2

vb3

vb1

va2

vc1

vc3

vd

vb4

Spout

Bolt

Bolt

Bolt

p=2

p=4
p=3

p=1

Fig. 3. Instance graph of TOP_N in Storm.

Spout

Bolt

Bolt

p=2

va1

p=4
p=5

va2

vb1

vb2

vb3

vb4

vc1

vc2

vc3

vc4

vc5

Fig. 4. Instance graph of WordCount in Storm.

5.2 Performance results

The experimental setting contains two evaluation parameters: the response time RT,

and the fairness degree FD.

(1) Response time. The response time RT or makespan of a DAG is determined by

the critical path of that DAG. RT can be calculated by EFT of the end vertex
ev . It

can also be obtained from Storm UI.

Fig. 5. Average response time of instance graph of TOP_N with different number of DAGs.

Given the rate of data stream is stable, with the increase of number of DAGs, the

average response time also increases. As shown in Figure 5, when the rate of data

stream set at 1000 tuples/s, and 2000 tuples/s, the average response times of instance

graph of TOP_N are increasing with the number of DAGs accordingly. However,

even when the number of DAGs of TOP_N is 50, the rate of data stream set at 1000

tuples/s, and 2000 tuples/s, the average response time of instance graph of TOP_N is

21.35 ms, and 39.32ms, respectively, which is reasonably acceptable in an online
stream computing environment.

Fig. 6. Average response time of instance graph of WordCount with different number of DAGs.

Given the rate of data stream is stable, with the increase of number of DAGs, the

response time of DAG also increases. As shown in Figure 6, when the rate of data

stream set at 1000 tuples/s, and 2000 tuples/s, the average response times of instance

graph of WordCount are also increasing with the number of DAGs accordingly.

However, even when the number of DAGs of WordCount is 50, when the rate of data
stream set at 1000 tuples/s, and 2000 tuples/s, the average response time of instance

graph of WordCount is 4.35 ms, and 6.32ms, respectively, which are reasonably

acceptable in an online stream computing environment.

Fig. 7. Average response time of instance graph of TOP_N with data rates 1000 tuples/s.

Given the rate of data stream is stable, E-Stream has a better average response time

compared with the default, round-robin strategy of Storm platform. As shown in

Figure 7, with the rate set at 1000 tuples/s, the average response time of instance

graph of TOP_N by E-Stream is greatly shorter than that of the default Storm strategy

under the same situation. The larger number of DAGs, the higher improvement of the

average response time by E-Stream.

Fig. 8. Average response time of instance graph of WordCount with data rates 1000 tuples/s.

Given the rate of data stream is stable, E-Stream also has a better average response

time, compared with the default round-robin strategy on Storm platform. As shown in

Figure 8, with the rate set at 1000 tuples/s, the average response time of instance

graph of WordCount by E-Stream is greatly shorter than that of the default Storm
strategy under the same situation. The larger number of DAGs, the higher

improvement of the average response time by E-Stream.

(2) Fairness degree. Fairness degree FD reflects fairness of all related DAGs in a

data center. Fairness degree  ng kFd t for n DAGs at time tk is the average of all n

DAGs, as defined in (5). If   1ng kFd t  , it implies the absolute resource fairness for

n DAGs at time tk. If   0
ig kfd t  , it implies the absolute resource un-fairness for n

DAGs at time tk. The greater the fairness degree  ng kFd t for n DAGs at time tk, the

more fairness the sharing resources in data center.

Fig. 9. Average fairness degree of instance graph of TOP_N with different number of DAGs.

Given the rate of data stream is stable, with the increase of number of DAGs, the

fairness degree of all DAGs decreases. As shown in Figure 9, when the rate of data

stream set at 1000 tuples/s and 2000 tuples/s, the average fairness degree of instance

graph of TOP_N is decreasing with the number of DAGs. However, even when the

number of DAGs of TOP_N is 50, the rate of data stream is 1000 tuples/s, and 2000
tuples/s, tk =100s, the average fairness degree of instance graph of TOP_N is 0.83,

and 0.79, respectively, which are reasonably acceptable in an online stream

computing environment.

Fig. 10. Average fairness degree of instance graph of TOP_N with data rates 1000 tuples/s.

Given the rate of data stream is stable, E-Stream has a better average fairness

degree, compared with the default round-robin strategy on Storm platform. As shown

in Figure 10, with the rate set at 1000 tuples/s, the average fairness degree of instance

graph of TOP_N by E-Stream is greatly better than that of the default strategy by

Storm under the same situation. The larger number of DAGs, the higher improvement

of the average fairness degree by E-Stream.

6 Conclusions and Future Work

Elastic online scheduling over high velocity continuous data streams is one of the

major obstacles for opening up the new era of big data stream computing. In a big

data stream computing environment, each DAG is submitted to a big data stream

computing platform, and scheduled on one or many computing nodes in data center.
All the submitted applications are running continuously. An elastic online scheduling

is always needed to improve resource usage.

An elastic runtime scaling strategy is the key part of elastic online scheduling

framework, which determines when and how to scale, and accounts for data stream

fluctuating with time. A clear picture of the changed status of a graph of streaming

application is firstly obtained. It is then decided how to optimize the graph of

application, and which vertices of the graph need to be online rescheduled. More

importantly, the scheduling fairness of multiple applications is achieved. It is
investigated as to understand how to minimize system response time and guarantee

applications fairness.

Our contributions made in this paper are summarized as follows:

(1) Formal definitions of data stream graph, optimizing the structure of a data

stream graph by quantifying and adjusting the degree of parallelism of vertices in the

graph.

(2) Sub-graph is further constructed to minimize data dependencies among them.

(3) Elastic scheduling of a graph by a priority based earliest finish time first
strategy, and elastic scheduling of multiple graphs by a max-min fairness based

strategy.

(4) Prototype implementation, experimental, and performance evaluation of the

proposed E-Stream.

Our future work will be focusing on the following directions:

(1) Developing a complete elastic online scheduling framework based on E-Stream

as a part of big data stream computing services to satisfy the low response time and

high applications fairness objectives.
(2) Deploying the E-Stream on real big data stream computing environments.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under

Grant No.61602428; the Fundamental Research Funds for the Central Universities

under Grant No. 2652015338; and Melbourne-Chindia Cloud Computing (MC3)

Research Network. We are grateful to Prof. Satish Srirama for his comments on

improving the paper.

References

1. Eskandari, L., Huang, Z., Eyers D.: P-Scheduler: adaptive hierarchical scheduling in
apache storm. Proc. the Australasian Computer Science Week Multiconference, ACSW
2016, No. 26. ACM Press, New York (2016)

2. Sun, D. W., Zhang, G. Y., Wu, C. W., Li, K. Q., Zheng, W. M.: Building a fault tolerant
framework with deadline guarantee in big data stream computing environments. Journal of
Computer and System Sciences, vol. 89, pp. 4-23. (2017)

3. Dayarathna, M., and Toyotaro, S.: Automatic optimization of stream programs via source

program operator graph transformations. Distributed and Parallel Databases, vol. 31(4), pp.
543-599. (2013)

4. Alexandrov, A., Salzmann, A., Krastev, G., Katsifodimos, A., Markl V.: Emma in Action:
Declarative Dataflows for Scalable Data Analysis. Proc. the 2016 International
Conference on Management of Data, SIGMOD 2016, pp. 2073-2076. ACM Press, New
York (2016)

5. Convolbo, M. W., Chou, J.: Cost-aware DAG scheduling algorithms for minimizing
execution cost on cloud resources. The Journal of Supercomputing, vol. 72(3), pp. 985-
1012. (2016)

6. Kanoun, K., Tekin, C., Atienza, D., and Shaar, M.: Big-Data Streaming Applications
Scheduling Based on Staged Multi-armed Bandits. IEEE Transactions on Computers, vol.

65(12), pp. 3591-3605. (2016)
7. Fu, T. Z. J., Ding, J., Ma, R. T. B., Winslett, M., Yang, Y., Yin, Z.; Zhang, Z.: DRS:

Dynamic Resource Scheduling for Real-Time Analytics over Fast Streams. Proc. 2015
IEEE 35th International Conference on Distributed Computing Systems, ICDCS 2015, pp.
411-420. IEEE Press, New York (2015)

8. Peng, B., Hosseini, M., Hong, Z., Farivar, R., and Campbell, R.: R-Storm: resource-aware
scheduling in Storm. Proc. the 16th Annual Middleware Conference, Middleware 2015,
pp. 149-161. ACM Press, New York (2015)

9. Choi, Y., Chang, S., Kim, Y., Lee, H., Son, W., Jin, S.: Detecting and monitoring game
bots based on large-scale user-behavior log data analysis in multiplayer online games. The
Journal of Supercomputing, vol. 72(9), pp. 3572-3587. (2016)

10. Lohrmann, B., Janacik, P., Kao, O.: Elastic Stream Processing with Latency Guarantees.

Proc. 2015 IEEE 35th International Conference on Distributed Computing Systems,
ICDCS 2015, pp. 399-410. IEEE Press, New York (2015)

11. Ahmad, S. G., Liew, C. S., Rafique, M. M., Munir, E. U., Khan, S. U.: Data-intensive
workflow optimization based on application task graph partitioning in heterogeneous
computing systems. Proc. 4th IEEE International Conference on Big Data and Cloud
Computing, BDCloud 2014, pp. 129-136. IEEE Press, New York (2014)

12. Ghafarian, T., and Javadi, B.: Cloud-aware data intensive workflow scheduling on
volunteer computing systems. Future Generation Computer Systems, vol. 51, pp. 87-97.
(2015)

13. Gu, Y., and Wu, C. Q.: Performance analysis and optimization of distributed workflows in
heterogeneous network environments. IEEE Transactions on Computers, vol. 65(4), pp.

1266-1282. (2016)
14. Chen, T. W., Lee, Y. C., Fekete, A., and Zomay, A. Y.: Adaptive multiple-workflow

scheduling with task rearrangement. Journal of Supercomputing, vol. 71(4), pp. 1297-1317.
(2015)

15. Arabnejad, H., and Barbosa, J. G.: A budget constrained scheduling algorithm for
workflow applications. Journal of Grid Computing, vol. 12(4), pp. 665-679. (2014)

16. Yun, D., Wu, C. Q., and Gu, Y.: An integrated approach to workflow mapping and task
scheduling for delay minimization in distributed environments. Journal of Parallel and
Distributed Computing, vol. 84, pp. 51-64. (2015)

17. Xu, J., Chen, Z., Tang, J. and Su, S.: T-Storm: traffic-aware online scheduling in Storm.
Proc. 2014 IEEE 34th Internatoin Conference on Distributed Computing Systems, ICDCS
2014, pp. 535-544. IEEE Press, New York (2014)

18. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in Storm. Proc. the 7th

ACM International Conference on Distributed Event-Based Systems, DEBS 2013, pp.
207-218. ACM Press, New York (2013)

19. Katsipoulakis, N. R., Thoma, C., Gratta, E. A., Labrinidis, A., Lee, A. J., Chrysanthis, P.
K.: CE-Storm: confidential elastic processing of data streams. Proc. the 2015 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2015, pp. 859-864.
ACM Press, New York (2015)

20. Chen, Z., Xu, J., Tang, J., Kwiat, K., and Kamhoua, C.: G-Storm: GPU-enabled high-
throughput online data processing in Storm. Proc. the 2015 IEEE International Conference
on Big Data, Big Data 2015, pp. 307-312. IEEE Press, New York (2015)

21. Basanta-Val, P., Fernández-García, N., Wellings, A. J., and Audsley, N. C.: Improving the
predictability of distributed stream processors. Future Generation Computer Systems, vol.
52, pp. 22-36. (2015)

22. Verma, A., and Kaushal, S.: Cost-time efficient scheduling plan for execution workflows
in the cloud. Journal of grid computing, vol. 13(4), pp. 495-506. (2015)

23. Gu, L., Zeng, D., Guo, S., Xiang, Y., and Hu, J.: A general communication cost
optimization framework for big data stream processing in geo-distributed data centers.
IEEE Transactions on Computers, vol. 65(1), pp. 19-29. (2016)

24. Tang, S., Lee, B. S., and He, B.: Fair resource allocation for data-intensive computing in
the cloud. IEEE Transactions on Services Computing, doi:10.1109/TSC.2016.2531698.
(2017)

25. Sun, D. W., and Huang, R.: A stable online scheduling strategy for real-time stream
computing over fluctuating big data streams. IEEE Access, vol. 4, pp. 8593-8607. (2016)

26. Hu, M., Luo, J., Wang, Y., Lukasiewycz, M., and Zeng, Z.: Holistic scheduling of real-

time applications in time-triggered in-vehicle networks. IEEE Transactions on Industrial
Informatics, vol. 10(3), pp. 1817-1828. (2014)

27. Alkhanak, E. N., Lee, S. P., Rezaei, R., and Parizi, R. M.: Cost optimization approaches
for scientific workflow scheduling in cloud and grid computing: A review, classifications,
and open issues. Journal of Systems and Software, vol. 113, pp. 1-26. (2016)

28. Hu, M., Luo, J., Wang, Y., Veeravalli, B.: Adaptive scheduling of task graphs with
dynamic resilience. IEEE Transactions on Computers, vol. 66(1), pp. 17-23. (2017)

29. Matei, Z., Dhruba, B., Joydeep, S. S., Khaled, E., Scott, S., and Ion, S.: Delay scheduling:
a simple technique for achieving locality and fairness in cluster scheduling. Proc. 5th
European confer ence on Computer systems, EuroSys 2010, pp. 265-278. ACM Press,
New York (2010)

30. Bala, A., and Chana, I.: Intelligent failure prediction models for scientific workflows.
Expert Systems with Applications, vol. 42(3), pp. 980-989. (2015)

31. Zeng, L., Veeravalli, B., and Zomaya, A. Y.: An integrated task computation and data
management scheduling strategy for workflow applications in cloud environments. Journal
of Network and Computer Applications, vol. 50, pp. 39-48. (2015)

32. Shi, J., Luo, J., Dong, F., Zhang, J., and Zhang, J.: Elastic resource provisioning for
scientific workflow scheduling in cloud under budget and deadline constraints. Cluster
Computing, vol. 19(1), pp. 167-182. (2016)

33. Zhu, Z., Zhang, G., Li, M., and Liu, X.: Evolutionary multi-objective workflow scheduling
in cloud. IEEE Transactions on Parallel and Distributed Systems, vol. 27(5), pp. 1344-
1357. (2016)

34. Gu, Y., and Wu, C. Q.: Performance analysis and optimization of distributed workflows in

heterogeneous network environments. IEEE Transactions on Computers, vol. 65(4), pp.
1266-1282. (2016)

35. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S., Jackson,
J., Gade, K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D., “Storm@twitter,”
Proc. 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD
2014, pp. 147-156. ACM Press, New York (2014)

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Sun, D;Yan, H;Gao, S;Liu, X;Buyya, R

Title:
Rethinking elastic online scheduling of big data streaming applications over high-velocity
continuous data streams

Date:
2018-02-01

Citation:
Sun, D., Yan, H., Gao, S., Liu, X. & Buyya, R. (2018). Rethinking elastic online scheduling of
big data streaming applications over high-velocity continuous data streams. JOURNAL OF
SUPERCOMPUTING, 74 (2), pp.615-636. https://doi.org/10.1007/s11227-017-2151-2.

Persistent Link:
http://hdl.handle.net/11343/282749

http://hdl.handle.net/11343/282749

