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Abstract. Online scheduling plays a key role for big data streaming applications in a 

big data stream computing environment, as the arrival rate of high velocity continuous 

data stream might fluctuate over time. In this paper, an elastic online scheduling 
framework for big data streaming applications (E-Stream) is proposed, exhibiting the 

following features. (1) Profile mathematical relationships between system response 

time, multiple application fairness, and online features of high velocity continuous 

stream. (2) Scale out or scale in a data stream graph by quantifying computation and 

communication cost, and the vertex semantics for arrival rate of data stream, and 

adjust the degree of parallelism of vertices in the graph. Sub-graph is further 

constructed to minimize data dependencies among the sub-graphs. (3) Elastically 

schedule a graph by a priority based earliest finish time first online scheduling 
strategy, and schedule multiple graphs by a max-min fairness strategy. (4) Evaluate 

the low system response time and acceptable applications fairness objectives in a real-

world big data stream computing environment. Experimental results conclusively 

demonstrate that the proposed E-Stream provides better system response time and 

applications fairness compared to the existing Storm framework. 
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1   Introduction 

In big data era, big data stream computing helps organizations spot opportunities and 

risks from real time big data. It can be employed in many different application 

scenarios, such as social networks, trading, emergency response, fraud detection, 

system monitoring, smart cities, and to name but a few. More than 30000 gigabytes of 

data are created every second and the rate is accelerating [1]. Big data stream has 
some distinctive characteristics [2]. A big data stream computing system doesn’t rely 

on high-volume storage to achieve extremely low-latency velocities. Nearly all data in 

a big data environment streamed. Stream computing has appeared to solve the 

dilemma of big data computing by processing data online within real time constraints. 

It makes the research on stream computing models a new trend for high-throughput 

computing in big data era, with both opportunities and challenges [3] [4]. 

In a big data stream computing environment, each application is commonly 

modeled as a set of sub-tasks interconnected via data dependencies, described by a 
corresponding DAG [2] [5] (directed acyclic graph, data stream graph, graph, DAG, 

and application are interchangeably used thereafter in this paper). Each DAG is 

submitted to a big data stream computing platform, and is scheduled to one or many 

computing nodes in data center. A schedule is a process of scheduling inter-dependent 

sub-tasks onto available computing nodes so that a DAG is able to complete its 

execution within specified constraints such as throughput and deadline. All the 

submitted applications are running continuously on the big data stream computing 

platform. Each application processes one or many continuous data streams. Arrival 
rates of data streams fluctuate over time in an unpredictable manner. 

To effectively use resources, a fundamental requirement is elasticity. The majority 

of state-of-the-art solutions [6] [7] do not provide a proper elastic online scheduler 

that knows how to coordinate the dynamical allocation and release of resources 

according to current data stream for multiple applications. Previous work in this area, 

focused mostly on the static scheduling. The reason behind this is that the volume of 

data stream is not so big, and the magnitude of dynamically changing data steam is 

not so high. Many scheduling strategies provide an efficient scheduling in static 
stream computing environments. However, they require permanent peak-load re-

source provisioning to remain low latency in face of varying and busty data stream in 

big data era, and may cause poor resources utilization, and instability of the system as 

a whole. In this sense, an elastic online scheduling is always needed to avoid wasting 

resources or failing in delivering correct results on time. 

An elastic runtime scaling strategy should be able to determine when and how to 

scale and account for data stream fluctuating with time, and to schedule resources 

elastically according to the current arrival rate of stream. To achieve that goal, we 
need firstly obtain a clear picture of the changed status of a graph of streaming 

application and then decide how to optimize it, and which vertices of the graph 

needed to be online rescheduled. More importantly, to achieve the scheduling fairness 



of multiple applications [8] [9]. Currently, most of the existing research works have 

focused on application scheduling. They have not considered requirements of multiple 

application scheduling and online features of high velocity continuous streams, nor 

have they sufficiently investigated how to minimize system response time and 

guarantee applications fairness, and to deal with high performance and response time 

trade-off efficiently and effectively [10] [11]. This creates the need for investigation 
on an elastic online scheduling framework over high velocity continuous data 

streams. To overcome this limitation, we propose an elastic online scheduling 

framework for big data streaming applications (E-Stream). It minimizes system 

response time, guarantees application fairness, and achieves high elasticity in a big 

data stream computing environment. 

1.1   Observations 

It is the users’ responsibility to design the data stream graph in order to run a 

streaming application in Storm platform. However, most of the users do not possess 

the expertise of designing a data stream graph that reasonability reflects the 

performance requirement and resource consumption of the application. Key 

parameters such as operator parallelism and task allocation are hard to determine and 

optimize in an online environment where the remaining resources and rates of data 
stream are constantly changing over time. Besides, users have limited knowledge 

about the runtime behavior of the application prior to the submission, therefore, the 

data stream graph statically designed at compile time may eventually lead to resource 

over-utilization or under-utilization without delivering satisfactory performance. 

However, there are few techniques available in the middleware level to optimize a 

submitted application. When a data stream graph is submitted, its structure is detected 

and optimized by the following strategies: vertex separation, fusion, and replicate. If 

the load calculation of a vertex is significantly higher than that of other vertices, it 
normally indicates that it is difficult to assign appropriate resources to this vertex. If 

this is the case, this vertex is separated into two or more vertices. When the traffic 

between two directly connected vertices is obviously greater than that of other 

communication links, it means that the communication delay of this line will be 

greater than other links, two vertices are then fused into one vertex, to eliminate 

communication delay of this link. In running phase, the structure of data stream graph 

is adjusted through vertex replication or elimination. When the input rate of data 

stream becomes higher, it means that latency of some critical vertices increases. One 
or more vertices of a group of critical vertices are replicated. When the input rate of 

data stream becomes lower, it means that latency of some critical vertices decreases, 

and some resource can be released. One or more vertices of a group of critical vertices 

are eliminated given those critical vertices have more than one replicas. 

In an online scheduling environment, optimize the structure of data stream graph is 

always required. Multiple applications are sharing computing nodes in a data center 

so that scheduling fairness needs to be guaranteed. 



1.2   Key contributions 

Our contributions made in this paper are summarized as follows: 

(1) Formal definitions of data stream graph, optimizing the structure of a data 

stream graph by quantifying and adjusting the degree of parallelism of vertices in the 
graph. 

(2) Sub-graph is further constructed to minimize data dependencies among the sub-

graphs. 

(3) Data stream graph is scheduled with a priority based earliest finish time first 

elastic online scheduling strategy to minimize system response time. 

(4) Multiple graphs are scheduled with a max-min fairness based multiple DAGs 

scheduling strategy to guarantee fairness subject to the constraint of response time. 

(5) Prototype implementation and performance evaluation of the proposed E-
Stream, which makes trade-off between low system response time and acceptable 

applications fairness objectives efficiently and effectively. 

1.3   Paper organization 

The rest of this paper is organized as follows: In section 2, the related work on 
workflow scheduling in distributed systems, and application scheduling on Storm 

platform are reviewed. Section 3 present the data stream graph model, multiple user 

model, data center model and multiple data stream graph scheduling model are 

presented. Section 4 focuses on the computation and communication cost, vertex 

semantics, instance of vertices, sub-graph construction, single DAG scheduling, and 

multiple DAG scheduling in the proposed E-Stream framework. Section 5 provides 

the experimental environment, parameter setup and performance evaluation of E-

Stream. Finally, conclusions and future work are given in section 6. 

2   Related Work 

In this section, two broad categories of related work are presented: workflow 
scheduling in distributed systems, and application scheduling on Storm platform. 

2.1   Workflow scheduling in distributed systems 

Workflow scheduling problem in distributed systems is scheduling the dependent 

vertices of workflow on the available computing nodes of the distributed systems to 
satisfy the user’s specified SLAs constraints such as deadline. Finding an optimal 

schedule for precedence constraint based directed acyclic graph is proved to be NP-

hard. It has been studied extensively over the years, and will continue to be the focus 

of research due to its theoretical significance and practical importance. 

In [12], a cloud-aware scheduling system is designed. The system has two sub-

systems, a sub-system will separate a graph into multi sub-graphs, and another sub-

system will allocate those sub-graphs to a cluster according to load balancing strategy. 



In [13], an analytical cost model is constructed. The workflow scheduling problem 

is formulated as an optimization problem. A recursive critical path based work-flow 

scheduling is proposed, a rigorous workflow analysis is designed, and a layer oriented 

programming strategy is developed. 

In [14], a dynamic workflow scheduling strategy is proposed. The strategy focused 

on scheduling resources for precedence constraints tasks to a datacenter, and the 
deadline is one of the major considering factors. 

In [15], a budget constrained allocation approach is proposed. The approach can 

guarantee the cost in the specified budget, and minimizes the deadline of work-flow. 

In [16], an integrated solution for workflow scheduling is proposed. The workflow 

scheduling problem is formulated. The integrated solution try to minimize the end-to-

end delay of workflow. 

To summarize, the aforementioned solutions provide a valuable insight into the 

challenges and potential solutions for application scheduling in big data stream 
computing environments. However, in big data era, novel approaches that address the 

particular challenges and opportunities of these technologies need to be developed, 

and some characteristics specific to big data stream computing environments need to 

be considered when developing online scheduling strategies. 

2.2   Application scheduling on Storm platform 

In big data era, Storm is the most popular big data stream computing platform both in 

academia and industry. On Storm platform, the round-robin scheduling is employed. 

It is simplistic and un-intelligent, in which many of the basic factors are not 

considered, such as, throughput performance, resource availability, or resource 

demands and availability. Some works have been done to improve the application 

scheduling strategy on Storm platform. 

In [1], an adaptive scheduling approach for Storm platform is proposed. The 
transfer rate and traffic pattern of data stream are considered in the approach. The 

number of required resources can be obtained by the proposed approach, and can also 

be adaptively refreshed. 

In [7], a dynamic resource scheduling strategy for cloud based data stream system 

is proposed. It includes an accurate performance model, and can process application 

topologies. 

In [8], a resource aware scheduling mechanism is proposed in Storm platform, and 

to maximize resource utilization while minimizing network latency. Hard constraints 
and soft constraints are considered in the mechanism. 

In [17], a stream data computing strategy is designed for Storm platform. The 

traffic aware scheduling approach can minimize inter-node and inter-process traffic. 

The fine grained control approach can achieve improved system performance. 

In [18], an online scheduling strategy for Storm platform is proposed. The topology 

structure is analyzed in the offline environment, and the performance monitoring is 

employed in the online environment, and is used in the rescheduling stage. 

In [19], an elastic scheduling framework named CE-Storm is designed. The 
framework can scale-out and scale-in of Continuous Query operators. Data provider 

can also design the specifically confidentiality policies. 



In [20], a GPU-enabled parallel system is proposed for Storm platform. The system 

exposes GPUs to Storm applications. 

In [21], a set of improvements to a distributed stream computational model is 

provided. The extensions of Storm platform are designed. 

Additionally, our past work [2] focused on masking failures of computing nodes 

and communication links in streaming computing environments, we proposed a fault 
tolerant framework for streaming computing platform to improve the system 

reliability. In this paper, we focus on the fairness of multiple graphs scheduling in 

streaming computing environments. Another past work [25] of our group focused on 

improving system stability in streaming computing environments, and we proposed a 

stable online scheduling strategy for forever online applications. In this paper, 

however, our primary goal is not stability but elasticity. We propose an elastic online 

scheduling framework for multiple online applications, which minimizes system 

response time, guarantees application fairness, and achieves high elasticity in big data 
stream computing environments. 

To summarize, current application scheduling on Storm platform are limited to one 

or other aspects. Up to now, most of the research required permanent peak-load 

resource provisioning to maintain low latency in face of varying and busty data 

streams, which may cause not only poor resources utilization but also instability of 

the system as a whole. In this sense, an elastic online scheduling for big data 

streaming applications is always needed. It is necessary to have an elastic online 

scheduler, to scale out or scale in the application to avoid wasting resources or failing 
to deliver correct results on time. 

3   Problem Statement 

To precisely reflect elastic online scheduling problem, we present the data stream 

graph model, the multiple user model, the datacenter model, and the multiple data 

stream graph scheduling model. 

3.1   Data stream graph model 

A big data stream application is usually described by a data stream graph G , 

composed of vertices set and directed edges set. It has a logical structure and specific 

function, and denoted as     ,G V G E G , where    1 2, , , nV G v v v  is a 

finite set of n vertices.        1,2 1,3 ,, , , n i nE G e e e V G V G    is a finite set of 

directed edges. The logical structure of a data stream graph G  is usually described 

by DAG [22] [23]. Each big data stream application has a deadline associated with it. 

A deadline is defined as time limit for the execution of the application [24]. 

The makespan M of G  is the total elapsed time required to execute G . For 

simplicity, the makespan M can be set to a value equal to the early finish time 
ev

EFT  



of the end vertex 
ev , and is also equal to the latest finish time 

evLFT  of the end 

vertex 
ev , as shown in (1), more details can be found in [25]. 

.
e ev vM EFT LFT   (1) 

3.2   Multiple user model 

Elastic online application scheduling system typically consists of multiple users [25]. 

Let  
1 2
, , ,

m
U u u u  be a user set composed of m users, 

 
1 2
, , ,

m
Gs Gs Gs Gs  be a set of data stream graphs of the user set U . For 

simplicity, it is assumed that a user always has only one application (described by a 
data stream graph) at any time. 

Multiple users share resource in a data center. For each user, the available resource 

with elastic strategy is always needed. For all users, fair resource allocation is always 

needed. 

3.3   Datacenter model 

A data center DC  is usually described as an undirected graph, composed of a 

computing node set and undirected edge set. It has a physical structure and specific 

functions, as shown in Figure 1, more details of data center DC  can be found in 

[25]. 

…… ……
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Fig. 1. A data center 

3.4   Multiple data stream graph scheduling model 

In an online scheduling environment, we focus on finding an elastic scheduling 

strategy to optimize the execution of multiple data stream graphs on a set of shared 

computing nodes, and maximize the system fair-ness with makespan guaranteed. 

A fair multiple DAG scheduling strategy mean that resources allocation is the same 

with that in non-shared allocation environment [24] [26] [27]. 



For a DAG 
ig , total allocated resources  

ig kTar t  in [0, tk] is the accumulated 

resources, as shown in (2). 

   
0

,
k

i i

t

g k gTar t ar t dt   
(2) 

where  
igar t  is the current allocated resources for DAG 

ig  at time t. 

The total needed allocated resources  
ig kTnr t  in [0, tk] is the accumulated 

resources, as shown in (3). 

   
0

,
k

i i

t

g k gTnr t nr t dt   
(3) 

where  
ignr t  is the current needed resources for DAG 

ig  at time t. 

The fairness degree  
ig kfd t  for DAG 

ig  at time tk is defined in (4). 
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As total actual allocated resources  
ig kTar t  is always no more than total needed 

resources  
ig kTnr t , so    0,1

ig kfd t  . If   1
ig kfd t  , it implies the absolute 

resource fairness for DAG 
ig  at time tk, all the needed resources are allocated. If 

  0
ig kfd t  , it implies the absolute resource un-fairness for DAG 

ig  at time tk, 

none of the needed resources is allocated. The greater the fairness degree  
ig kfd t  

for DAG 
ig  at time tk, the more fairness the share resources in data center. 

For all n DAGs, fairness degree  ng kFd t  for n DAGs at time tk is the average of 

all n DAGs, is defined in (5). 

       
1

1
, 0,1 ,

i i

n

ng k g k g k
i

Fd t fd t fd t
n 

   (5) 

For a good fairness strategy, it should be able to maximize  ng kFd t . The 

proposed data stream graph scheduling model is defined by Definition 1. 

Definition 1: Data stream graph scheduling model. In a big data stream computing 

system, let the data stream graph scheduling model Gm be represented by a four-tuple 

 , , ,Gm U DC Of  , where  1 2, , , mU u u u  is a user set composed of m users, 

and each user may request services independently.  
1 2
, , ,

n
DC cn cn cn  be a 

data center composed of n computing nodes, which are running on virtual machines 

or physical machines. For each data stream graph, Of is an objective function to 

schedule each data stream graph. It is defined according to (6), and   is an 



algorithm which implements optimal strategies to minimize the makespan with 

guaranteed system fairness. 

           
      

, min ,

. . , 0,1 .

ng k ng k

ng k

Of avg m G Fd t avg m G Fd t

s t avg m G Fd t



 
 (6) 

4   E-Stream Overview 

In order to provide a bird’s-eye view of the elastic online scheduling framework E-

Stream, in this section, we discuss the overall structure of the E-Stream, which 
includes computation and communication cost, vertex semantics, instance of vertices, 

sub-graph construction, single DAG scheduling, and multiple DAG scheduling. 

4.1   Computation and communication cost 

Computation cost [28] ,i jv cnc  is the time required to run vertex 
iv  on computing 

node cnj, and is related to the instructions number , iinstr vn of the tasks in vertex 
iv , 

and processing ability 
jcnp  of computing note jcn . 

Communication cost [29] 
,i jec  of directed edge ,i je  is the time required to 

transmit data tuple from vertex 
iv  to jv , and is related to the data output 

iv
d  of 

vertex 
iv , bandwidth 

,i jeb  of the directed edge ,i je . Specifically, if 
iv  and jv  run 

on the same computing node, then
,

0
i jec  . 

We refer to reference [25] for more detailed discussion on the computation and 

communication cost. 

4.2   Vertex semantics 

The semantic of vertex 
iv  [30] [31] in data stream graph G  indicates 

relationships between input stream 
iv

I  and output stream 
iv

O  of vertex 
iv , which 

is  
i i iv v vO F I . The semantic of vertex 

iv  can be further classified into 4 types, as 

shown in Figure 2. 

(1) 1:1 type 

In the 1:1 type, as shown in Figure 2(a), there are one input stream I  and one 

output stream O  of vertex 
iv , 

iv
ir  is the rate of input stream I , 

ivor  is the rate 

of output stream O . 
iv

ir  and 
ivor  are related with time complex degree of the tasks 



in vertex 
iv  and processing ability 

jcnp of the computing node cnj, which are 

constants. For simplicity, the relationship of 
iv

ir  and 
ivor  can be described as (7). 

 , , 0, ,
i iv I v I I Ior ir         (7) 

where 
I , 

I  are the scaling factors describing the scaling out or scaling in of 
iv

ir  

and 
ivor , determined by the function of vertex 

iv , and available computing power of 

computer node running vertex 
iv . 

…

viI O

(a) 1:1

vi O

(b) n:1

…

viI

(c) 1:m

vi

(d) n:m

……

 

Fig. 2. Vertex semantics 

(2) n:1 type 

In the n:1 type, as shown in Figure 2(b), there are n input streams 
,1 ,2 ,, , ,

i i iv v v nI I I , 

and one output stream O  of vertex 
iv . 

1, ,2 ,, , ,
i i iv v v nir ir ir  are the rates of input 

streams ,1 ,2 ,, , ,
i i iv v v nI I I , respectively. 

ivor  is the rate of output stream O . The 

relationship between 
1, ,2 ,, , ,

i i iv v v nir ir ir  and 
ivor can be described as (8). 

   ,
1

, , 0, ,
i k i k k k

n

v I v k I I I
k

or ir   


      (8) 

where  , , 1,
k kI I k n    are the scaling factors describing the scaling out or scaling 

in of ,i kvir  and 
ivor . 

(3) 1:m type 

In the 1:m type, as shown in Figure 2(c), there are one input stream I  and m 

output streams ,1 ,2 ,, , ,
i i iv v v mO O O  of vertex 

iv . 
iv

ir  is the rate of input stream I , 

,1 ,2 ,, , ,
i i iv v v mor or or  are the rates of output streams ,1 ,2 ,, , ,

i i iv v v mO O O , respectively. 

The relationship between 
iv

ir  and ,1 ,2 ,, , ,
i i iv v v mor or or  can be described as (9). 



 

 

 

1 1 1 1

2 2 2 2

,1

,2

,

, , 0, ,

, , 0, ,

, , 0, ,

i i

i i

i m i m m m

v I v I I I

v I v I I I

v m I v I I I

or ir

or ir

or ir

   

   

   

    


    


     

 (9) 

where  , , 1,
j jI I j m    are the scaling factors describing the scaling out or scaling 

in of 
iv

ir  and 
,iv jor . 

(4) n:m type 

In the n:m type, as shown in Figure 2(d), there are n input streams 

,1 ,2 ,, , ,
i i iv v v nI I I  and m output streams 

,1 ,2 ,, , ,
i i iv v v mO O O  of vertex 

iv . 

1, ,2 ,, , ,
i i iv v v nir ir ir  are the rates of input streams 

,1 ,2 ,, , ,
i i iv v v nI I I , respectively, 

,1 ,2 ,, , ,
i i iv v v mor or or  are the rates of output streams 

,1 ,2 ,, , ,
i i iv v v mO O O , respectively. 

The relationship between 
1, ,2 ,, , ,

i i iv v v nir ir ir  and 
,1 ,2 ,, , ,

i i iv v v mor or or can be described 

as (10). 
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v I v k I I I
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k
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 (10) 

where    
, ,
, , 1, , 1,

k j k jI I k n j m     are the scaling factors describing the scaling out 

or scaling in of ,iv kir  and ,iv jor . 

Theorem 1. In a big data stream computing environment, rate of data stream input 

to computing platform is r. For a vertex vn in data stream graph G, the output data rate 

nv
or  of vertex 

nv  has a linear relationship with the input data rate r. 

Proof. For a path from vertex 
1v  to vertex vn, 

.
n nv n v nor ir     

If 
iv

ir  is the input data rate of vertex 
iv , 

1iv
or


 is the output data rate of vertex 

1iv 
 on that path from vertex 

1v  to vertex vn, , 1i i   is weight of data stream from 

vertex 
1iv 
 to vertex 

iv  on that path from vertex 
1v  to vertex vn. 

That is, 

1, 1i iv i i vir or
   

So, 
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If there are m paths from vertex 
1v  to vertex vn in data stream graph G, then, 

       
1

,
1

1, 1, 1
1 1 2 1 2

      

      .

n n
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k

v n v n
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n k i v n
k
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   1,
1 1 2

.
n nm

k k k
p k k

   
  

 
  

 
    

   1, 1
1 2

.
n nm n

k k k h n
p h k h k h

     
   

  
     

  
     

Then, 

1
.

nv vor ir     

As 
1v

ir r , so, 

.
nv

or r     

 

Similarly, the relationship between end vertex 
ev  of data stream graph G and the 

input data rate r is also linear. 

4.3   Instance of vertices 

Replication of vertex in a data stream graph can improve throughput. Each vertex 

iv  can create n different independent instances  , 1,2, ,ijv j n . Instances run on 

different machines, and work in parallel. 

The number of instances of each vertex can be determined by the number of 

instructions that each vertex has. More details of our vertex instance model can be 

found in [25]. 



4.4   Sub-graph construction 

In a DAG, the communication cost between some vertices may be significantly 

longer than that of other vertices, and greatly increases the response time of the DAG. 

In order to reduce such kind of communication cost, a sub-graph is constructed on the 
related vertices. A sub-graph is defined as Definition 2. 

Definition 2: sub-graph. A sub-graph sub-G of data stream graph G  is the sub 

graph consisting of a subset of the vertices with the edges in between. For any 

vertices 
iv  and jv  in the sub-graph sub-G and any vertex v in data stream graph 

G , v  must also be in the sub-G if v  is on a directed path from 
iv  to jv , that is 

 , -i jv v V sub G  ,  v V G  , if   ,i jv V p v v , then   -Gv V p sub . 

A sub-graph sub-G can be substituted by a logically equivalent vertex. 

Construction of a sub-graph can reduce the communication cost between related 

vertices, and reduce the response time of the DAG. A sub-graph will be treated as a 

“vertex” in the DAG scheduling phase. 

For a directed edge ,i je  from vertex 
iv  to jv , the communication to 

computation ratio 
,i jv vccr  of vertex 

iv  and jv  can be calculated by (11). 

 
   

,

, .
i j

i j

i j

e

v v

v v

avg c
ccr

avg c avg c



 (11) 

where  
iv

avg c  is the average computation cost of vertex 
iv , and  

,i jeavg c  is the 

average communication cost from vertex 
iv  to jv . 

If the communication to computation ratio ,i jv vccr  of vertex 
iv  and jv  meet 

condition (12), a sub-graph need to be constructed. 

, ,
i jv vccr   (12) 

where   is the adjust parameter, which can be set according to needs of different 

stream computing environments. Such as,   can be set as 1, which means the 

computation cost of vertex 
iv  and jv  equal to the communication cost of directed 

edge ,i je . 

4.5   Single DAG scheduling 

For a DAG, a priority based earliest finish time first scheduling strategy is 

employed [32]. 

In a DAG, each vertex can be set with a priority according to its location in the 

DAG. The priority of vertex 
iv  is defined by (13). 



 
 

    
,

max ,
i k i

k childre i
i k e v

v set v
p v p v c avg c

 
    (13) 

where 
kv  is one of children of vertex 

iv ,  children iset v  is children set of vertex 
iv , 

and  
iv

avg c  is the average computation cost of vertex 
iv . 

The priority of the end vertex 
ev  is defined by (14). 

   
ee vp v avg c  (14) 

The priority of a vertex determines the order in which the resources are allocated. 

The source vertex 
sv  always has the highest priority among all vertices in the DAG, 

and it is always first scheduled to a computing node. At the beginning, all vertices in 

the DAG are added to a non-schedule vertices set in topological order. When a vertex 

is scheduled to a node, the vertex is removed from the non-schedule vertices set, and 
added to schedule set. A vertex is always scheduled to a computing node on which the 

earliest completion time is guaranteed. 

The earliest finish time 
,s jv cnEFT  of vertex 

iv  running on computing node jcn  

is shown in (15). 

, , , .
s j i j i j

idle

v cn v cn v cnEFT t c   (15) 

The earliest finish time 
sv

EFT  is the finish time of source vertex 
sv  on 

computing node pbestcn  with minimum total time of available time and computing 

time, as shown in (16). 

 
 , , ,min .

s p i j i jbest
j i

idle

v cn v cn v cn
cn ava v

EFT t c


   (16) 

where  iava v  is the set of available computing nodes for vertex 
iv . 

For other vertices in G , to calculate ,i jv cnEST , all immediate predecessor vertices 

of 
iv  must have been scheduled, and added to the schedule set. 

 
  ,, ,max , max ,

i j i j pred pred i
pred i

idle

v cn v cn v e
v pred v

EST t EFT c


   (17) 

where ,i j

idle

v cnt  is the earliest time at which computing node jcn  is ready for 
iv  use, 

and  ipred v  is the set of immediate predecessor vertices of vertex 
iv . 

The earliest finish time ,i jv cnEFT  of vertex 
iv  running on computing node jcn  

can be calculated by (18). 

, , , .
i j i j i jv cn v cn v cnEFT EST c   (18) 



The earliest finish time 
iv

EFT  is the finish time of vertex 
iv  on the computing 

node pbestcn  with minimum total time of available time and computing time, as 

shown in (19). 

 
 , ,min .

i p i jbest
j i

v cn v cn
cn ava v

EFT EFT


  (19) 

where  iava v  is the set of available computing nodes for vertex 
iv . 

The following three rules are also employed in scheduling a DAG. 

Rule 1: each instance of a vertex is scheduled to a different computing node. 
If a vertex has multiple instances, each instance of the vertex is scheduled to a 

different computing node, to improve the efficiency of node usages. If two or more 

instances are schedule to the same node, it is not only unhelpful to improve the 

efficiency, but also increases the workload of the node. 

Rule 2: the computing node with the maximum available computing power is 

always employed. 

If a vertex can be scheduled to multiple nodes, given the same earliest finish time, 

the node with the maximum available computing power is always employed. As the 
available computing power of a node keeps changing, the most remaining available 

“powerful” node is not always the same. This rule helps achieve a fairer use of all 

available resources. 

Rule 3: minimize number of vertices in the elastic online rescheduling stage. 

When a DAG is scheduled on computing platform, it is running forever. If the 

arrival rate of data stream or the number of available computing nodes is changed, the 

DAG is to be rescheduled during this stage, the scheduling strategy is the same as the 

strategy for single DAG. However, the current allocation status is to be considered. 
The vertex to be scheduled on the same node will not be further rescheduled to 

minimize the number of vertices to be rescheduled. 

4.6   Multiple DAG scheduling 

For a n-DAGs scheduling scenario, a max-min fairness based multiple DAGs 
scheduling strategy is employed [33], and described as Algorithm 1. 

Algorithm 1: Max-min fairness based multiple DAGs scheduling algorithm. 

1. Input: multiple DAGs, current available capacity ability matrix 
n mvC


 of 

computing nodes in data centers, input rate of data stream. 

2. Output: Max-min fairness based multiple DAGs scheduling algorithm 

with makespan guaranteed. 

3. if DAG G or computing nodes is null then 

4.     Return null. 

5. end if 
6. Monitor the real-time rate of data stream in the input interface and 

response time of each DAG. 
7. while some DAGs need more resources do 

8.     Sort resources needed DAGs in ascending order by the number of 



resources needed. 

9.     while set of resources needed DAGs is not null do 

10.         Select a DAG gi needing the least resources. 

11.         if available resources in data center is greater than required then 

12.             Allocate resources for DAG gi by priority based earliest 

finish time first strategy. 
13.             Update available capacity of the affected nodes. 

14.         end if 

15.         Update current available capacity matrix 
n mvC


 of nodes in data 

centers. 

16.         Update the set of resources needed DAGs. 

17.     end while 
18.     Monitor the real-time rate of data stream in the input interface and 

response time of each DAG. 

19.     Update the set of resources needed DAGs 

20. end while 
21. return Max-min fairness based multiple DAGs scheduling sequence with 

makespan guarantee. 

The input of this algorithm is multiple DAGs, current available capacity matrix 

n mvC


 of computing nodes, and input rate of data stream. The output is max-min 

fairness based multiple DAGs scheduling sequence with makespan guaranteed. Step 7 

to step 20 monitor those DAGs requiring more resources, and reschedule all those 

DAGs by priority based earliest finish time first strategy. The makespan is maximized 

with system fairness degree guaranteed. 

5   Performance Evaluation 

To evaluate the performance of the proposed E-Stream system, we created the 

experimental environment and conducted experiments as discussed below. 

5.1   Experimental environment and parameter setup 

Storm platform [17] [34] [35] is one of the most popular big data stream computing 

platforms in industry today. It is a parallel, distributed, and fault-tolerant system, 

designed to provide a platform that supports real-time data stream computing on 

clusters of horizontally scalable commodity machines. 

The proposed E-Stream system is developed based on Storm 0.10.2, and installed 

on top of Linux Ubuntu Server 13.04. Real data experiments are performed on a 
computing cluster located at computer architecture laboratory in China University of 

Geosciences, Beijing. The computing cluster consists of 35 machines, with one 

designated as master node, running Storm Nimbus, two designated as Zookeeper node, 

and the rest 32 machines working as worker nodes. Each machine runs Linux Ubuntu 

Server 13.04 with dual 4-core, Intel Core (TM) i7-4790, 3.6GHz, 4 GB Memory, and 

1Gbps network interface cards. 



Moreover, an instance graph of TOP_N (see Figure 3), and an instance graph of 

WordCount (see Figure 4), are submitted to the data center. 
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Fig. 3. Instance graph of TOP_N in Storm. 
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Fig. 4. Instance graph of WordCount in Storm. 

5.2   Performance results 

The experimental setting contains two evaluation parameters: the response time RT, 

and the fairness degree FD. 

(1) Response time. The response time RT or makespan of a DAG is determined by 

the critical path of that DAG. RT can be calculated by EFT  of the end vertex 
ev . It 

can also be obtained from Storm UI. 



 

Fig. 5. Average response time of instance graph of TOP_N with different number of DAGs. 

Given the rate of data stream is stable, with the increase of number of DAGs, the 

average response time also increases. As shown in Figure 5, when the rate of data 

stream set at 1000 tuples/s, and 2000 tuples/s, the average response times of instance 

graph of TOP_N are increasing with the number of DAGs accordingly. However, 

even when the number of DAGs of TOP_N is 50, the rate of data stream set at 1000 

tuples/s, and 2000 tuples/s, the average response time of instance graph of TOP_N is 

21.35 ms, and 39.32ms, respectively, which is reasonably acceptable in an online 
stream computing environment. 

 

Fig. 6. Average response time of instance graph of WordCount with different number of DAGs. 

Given the rate of data stream is stable, with the increase of number of DAGs, the 

response time of DAG also increases. As shown in Figure 6, when the rate of data 

stream set at 1000 tuples/s, and 2000 tuples/s, the average response times of instance 

graph of WordCount are also increasing with the number of DAGs accordingly. 

However, even when the number of DAGs of WordCount is 50, when the rate of data 
stream set at 1000 tuples/s, and 2000 tuples/s, the average response time of instance 

graph of WordCount is 4.35 ms, and 6.32ms, respectively, which are reasonably 

acceptable in an online stream computing environment. 



 

Fig. 7. Average response time of instance graph of TOP_N with data rates 1000 tuples/s. 

Given the rate of data stream is stable, E-Stream has a better average response time 

compared with the default, round-robin strategy of Storm platform. As shown in 

Figure 7, with the rate set at 1000 tuples/s, the average response time of instance 

graph of TOP_N by E-Stream is greatly shorter than that of the default Storm strategy 

under the same situation. The larger number of DAGs, the higher improvement of the 

average response time by E-Stream. 

 

Fig. 8. Average response time of instance graph of WordCount with data rates 1000 tuples/s. 

Given the rate of data stream is stable, E-Stream also has a better average response 

time, compared with the default round-robin strategy on Storm platform. As shown in 

Figure 8, with the rate set at 1000 tuples/s, the average response time of instance 

graph of WordCount by E-Stream is greatly shorter than that of the default Storm 
strategy under the same situation. The larger number of DAGs, the higher 

improvement of the average response time by E-Stream. 

(2) Fairness degree. Fairness degree FD reflects fairness of all related DAGs in a 

data center. Fairness degree  ng kFd t  for n DAGs at time tk is the average of all n 

DAGs, as defined in (5). If   1ng kFd t  , it implies the absolute resource fairness for 



n DAGs at time tk. If   0
ig kfd t  , it implies the absolute resource un-fairness for n 

DAGs at time tk. The greater the fairness degree  ng kFd t  for n DAGs at time tk, the 

more fairness the sharing resources in data center. 

 

Fig. 9. Average fairness degree of instance graph of TOP_N with different number of DAGs. 

Given the rate of data stream is stable, with the increase of number of DAGs, the 

fairness degree of all DAGs decreases. As shown in Figure 9, when the rate of data 

stream set at 1000 tuples/s and 2000 tuples/s, the average fairness degree of instance 

graph of TOP_N is decreasing with the number of DAGs. However, even when the 

number of DAGs of TOP_N is 50, the rate of data stream is 1000 tuples/s, and 2000 
tuples/s, tk =100s, the average fairness degree of instance graph of TOP_N is 0.83, 

and 0.79, respectively, which are reasonably acceptable in an online stream 

computing environment. 

 

Fig. 10. Average fairness degree of instance graph of TOP_N with data rates 1000 tuples/s. 

Given the rate of data stream is stable, E-Stream has a better average fairness 

degree, compared with the default round-robin strategy on Storm platform. As shown 

in Figure 10, with the rate set at 1000 tuples/s, the average fairness degree of instance 



graph of TOP_N by E-Stream is greatly better than that of the default strategy by 

Storm under the same situation. The larger number of DAGs, the higher improvement 

of the average fairness degree by E-Stream. 

6   Conclusions and Future Work 

Elastic online scheduling over high velocity continuous data streams is one of the 

major obstacles for opening up the new era of big data stream computing. In a big 

data stream computing environment, each DAG is submitted to a big data stream 

computing platform, and scheduled on one or many computing nodes in data center. 
All the submitted applications are running continuously. An elastic online scheduling 

is always needed to improve resource usage. 

An elastic runtime scaling strategy is the key part of elastic online scheduling 

framework, which determines when and how to scale, and accounts for data stream 

fluctuating with time. A clear picture of the changed status of a graph of streaming 

application is firstly obtained. It is then decided how to optimize the graph of 

application, and which vertices of the graph need to be online rescheduled. More 

importantly, the scheduling fairness of multiple applications is achieved. It is 
investigated as to understand how to minimize system response time and guarantee 

applications fairness. 

Our contributions made in this paper are summarized as follows: 

(1) Formal definitions of data stream graph, optimizing the structure of a data 

stream graph by quantifying and adjusting the degree of parallelism of vertices in the 

graph. 

(2) Sub-graph is further constructed to minimize data dependencies among them. 

(3) Elastic scheduling of a graph by a priority based earliest finish time first 
strategy, and elastic scheduling of multiple graphs by a max-min fairness based 

strategy. 

(4) Prototype implementation, experimental, and performance evaluation of the 

proposed E-Stream. 

Our future work will be focusing on the following directions: 

(1) Developing a complete elastic online scheduling framework based on E-Stream 

as a part of big data stream computing services to satisfy the low response time and 

high applications fairness objectives. 
(2) Deploying the E-Stream on real big data stream computing environments. 
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