
Rethinking Energy-Performance Trade-Off in Mobile Web
Page Loading

Duc Hoang Bui†, Yunxin Liu*, Hyosu Kim†, Insik Shin†, Feng Zhao*

†KAIST, Daejeon, South Korea, *Microsoft Research, Beijing, China
{ducbuihoang, hyosu.kim, ishin}@kaist.ac.kr, {yunliu, zhao}@microsoft.com

ABSTRACT

Web browsing is a key application on mobile devices. However,
mobile browsers are largely optimized for performance, impos-
ing a significant burden on power-hungry mobile devices. In this
work, we aim to reduce the energy consumed to load web pages
on smartphones, preferably without increasing page load time and
compromising user experience. To this end, we first study the inter-
nals of web page loading on smartphones and identify its energy-
inefficient behaviors. Based on our findings, we then derive general
design principles for energy-efficient web page loading, and apply
these principles to the open-source Chromium browser and imple-
ment our techniques on commercial smartphones. Experimental
results show that our techniques are able to achieve a 24.4% av-
erage system energy saving for Chromium on a latest-generation
big.LITTLE smartphone using WiFi (a 22.5% saving when using
3G), while not increasing average page load time. We also show
that our proposed techniques can bring a 10.5% system energy sav-
ing on average with a small 1.69% increase in page load time for
mobile Firefox web browser. User study results indicate that such
a small increase in page load time is hardly perceivable.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communications Ap-
plications—Information Browser

General Terms

Design; Measurement; Performance

Keywords

Smartphones; Mobile Web Browser; Web Page Loading; Energy
Efficiency

1. INTRODUCTION
Web browsing is one of the core applications on smartphones

and other mobile devices such as tablets. However, web browsing,
particularly web page loading, is of high energy consumption. As

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

MobiCom’15, September 7–11, 2015, Paris, France.

c© 2015 ACM. ISBN 978-1-4503-3619-2/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2789168.2790103.

energy is a paramount concern on smartphones, it is desirable to
improve the energy efficiency of web browsing, particularly web
page loading. In this paper, we seek to reduce the energy consump-
tion of web page loading on smartphones without compromising
user experience. In particular, we aim to not increase page load
time.

To achieve this goal, we study browser internals and system be-
haviors to understand how the energy is spent in loading web pages,
and to identify opportunities to improve the energy efficiency. Al-
though many browser manufacturers have made an effort on im-
proving energy efficiency for mobile devices, our findings indicate
that the current mobile browsers are not yet fully energy optimized
for web page loading. First, the web resource processing is aggres-
sively conducted regardless of network conditions at the risk of en-
ergy inefficiency. Second, the content painting rate is unnecessar-
ily high, consuming a lot energy without bringing user-perceivable
benefits. Finally, the power-saving capability of modern CPUs with
the emerging ARM big.LITTLE architecture [3] is under-utilized.
Fundamentally, the web page loading is overly optimized for per-
formance but not for energy cost.

We argue that the energy-performance trade off must be re-
considered for web page loading on mobile devices. Based on our
findings, we formulate new design principles for energy-efficient
web page loading. Based on these principles, we develop three
new techniques, each one addressing one of the above energy-
inefficiency issues. First, we propose to use the network-aware

resource processing (NRP) technique to effectively trade off per-
formance for energy reduction adapting to changing network con-
ditions. We use adaptive resource buffering to control the speed of
web resource processing dynamically with regard to the speed of
resource download, in order to become energy efficient without in-
creasing page load time. Second, we propose the adaptive content

painting (ACP) technique to avoid unnecessary content paints to re-
duce the energy overhead. We study the trade off between energy
saving and page load time increase to ensure the user experience is
not compromised. Finally, to better leverage the big.LITTLE archi-
tecture, we propose the application-assisted scheduling (AAS) tech-
nique to leverage internal knowledge of the browser to make bet-
ter scheduling decisions. Specifically, we employ adaptive thread
scheduling based on QoS feedback in a way that the browser keeps
threads running on little cores to save energy, as long as their re-
lated QoS requirements are being satisfied.

We have implemented all the three techniques on commercial
smartphones, by revising the Chromium browser. Collectively, these
techniques achieve significant reductions in the energy cost of web
page loading. Experimental evaluations using the Alexa top 100
websites in the U.S. [2] show that, on a big.LITTLE smartphone us-
ing WiFi, our revised Chromium browser is able to achieve 24.4%

14

average system energy saving while decreasing 0.38% page load
time, compared to the default Chromium browser. When using
3G, the average system energy saving is 22.5% and the average
page load time increase is 0.41%. On another smartphone without
big.LITTLE supported, our techniques can still reduce the energy
consumption by 11.7% on average when using WiFi. We have also
conducted a user study to confirm that our techniques do not affect
user perceived experience. Moreover, all participants show their in-
tention (or interest) to use our techniques either all the time (72%)
or when the battery level is low (28%).

Although our implementation is based on Chromium, our pro-
posed techniques can be also be applied to other mobile browsers.
The first two energy-inefficiency issues of Chromium are related
to the general procedure of web content downloading, processing,
and painting. Thus, other mobile browsers are generally subject
to the same issues, though with different levels of significance. Be-
sides Chromium, we also have applied our ACP and AAS techniques
to Firefox, even without a deep understanding of Firefox internals,
and it resulted in a significant energy saving (10.5%) on average
with a marginal increase (1.69%) in page load time, compared to
the default Firefox.

The main contributions of this paper are:

1. We show that web page loading on popular mobile web
browsers, including Chrome, Firefox, Opera Mobile, and
UC Browser, is overly optimized for performance but not
for energy-efficiency, and identify the opportunities to reduce
the energy cost.

2. We derive design principles and propose techniques to im-
prove the energy efficiency of web page loading on smart-
phones.

3. We implement our techniques by revising the Chromium
browser, demonstrating the applicability of our techniques
in real-world mobile browsers. We also implement the pro-
posed ACP and AAS in the Firefox browser, showing that our
findings can be applied to other mobile browsers.

4. We conduct comprehensive experiments and a user study to
show that our techniques effectively reduce energy consump-
tion of mobile web page loading without compromising the
user experience.

The rest of this paper is organized as follows. Section 2 intro-
duces the Chromium browser and the big.LITTLE architecture as
the background. Section 3 reports the energy-inefficiency issues
and derive general guidelines to reduce the energy cost. Section 4
describes our novel techniques. Section 5 shows the implementa-
tion details and Section 6 presents the evaluation results. Section 7
discusses more aspects on the energy-saving techniques and the fu-
ture work, Section 8 surveys the related work, and Section 9 con-
cludes.

2. BACKGROUND
In this section, we introduce the Chromium browser and the

big.LITTLE architecture as the background.

2.1 Chromium Browser Architecture
Figure 1 shows the architecture of the Chromium web browser.

Chromium uses a multi-process architecture of a single Browser

process and multiple Renderer processes. Each Renderer process
runs an instance of the rendering engine (previously WebKit [14]
and now Blink [4]) and the JavaScript engine that parse and exe-
cute web content. Each Renderer process typically corresponds to
one tab in the web browser UI. The Browser process runs the net-
work stack and fetches web resources from the network for all Ren-
derer processes, allowing efficient network resource sharing among

Figure 1: Architecture of the Chromium web browser

all Renderer processes. Renderer processes run in a sandboxed
environment with limited access to the client device and the net-
work, preventing exploits in rendering engine from compromising
the whole web browser.

Each process in Chromium has multiple threads. Table 1 pro-
vides a brief description of the main threads. Processes and threads
are designed to work asynchronously. The Browser process and a
Renderer process communicate with each other through IPC mech-
anisms (e.g., named pipes) and exchange data using shared mem-
ory. The Browser process puts the fetched web resources into the
Shared Resource Buffer from which the Renderer process reads the
data to create graphic layers for the corresponding web page. The
Compositor thread then saves the generated graphic data into the
Command and Texture Buffer for GPU processing in the Browser
process, because the sandboxed Renderer process does not have the
privilege to access the GPU directly. The GPU thread generates the
final screen image into the display frame buffer to be displayed on
the device screen.

The graphic composition and GPU processing are driven by a
callback from Android framework called vertical synchronization
(VSync). Each VSync signal indicates the beginning of a dis-
play frame, so that graphic data should be generated and moved
to the display frame buffer for drawing on the screen before the
next VSync. VSync signals are generated at 60 times per second.
In the Browser process, the VSync Monitor of the Browser Main
thread monitors VSync signals and forwards them to the Composi-
tor thread in a Renderer process.

The architecture shown in Figure 1 also applies to Google Chrome,
Opera Mobile and Android stock browser which are built on top of
Chromium source code [6, 19]. The browsers share the same ren-
dering engine, JavaScript engine, and underlying core modules.

2.2 big.LITTLE Architecture and Scheduling
The ARM big.LITTLE architecture [3] combines high perfor-

mance and high power “big" cores together with power efficient but
low performance “little" cores in a single ARM CPU. By running
lightweight tasks on the little cores and heavy tasks on big cores, a
big.LITTLE CPU is able to meet both the need for higher perfor-
mance and the desire for longer battery life on mobile devices. For
example, the Samsung Galaxy S5 SM-G900H smartphone uses a
Samsung Exynos 5422 System-on-Chip (SoC) with 4 Cortex-A15
(big) cores and 4 Cortex-A7 (little) cores. The Exynos 5422 SoC

15

Thread name Description

CrBrowserMain Starts and initializes the browser, monitor VSync callbacks, and renders the user interface

CrRendererMain Runs the rendering engine and the Javascript engine

Chrome_IOThread Communicates with other processes (such as Renderer and GPU processes), and the environment (such
as the network and the disk cache)

Chrome_ChildIOThread* Communicates with other processes using the IPC mechanism

Compositor Generates platform-independent GPU commands to composite the web page layers into the final screen
image

CompositorRasterWorker* Rasterizes the web page layers into graphic textures

Chrome_InProcGpuThread Executes GPU commands issued by the Compositor thread to draw textures of each layer into the frame
buffer for displaying the final web page image on the screen

AsyncTransferThread Uploads textures provided by Compositor to the GPU memory

SimpleCacheWorker* Reads and writes web resources on the browser disk cache

∗ possible multiple thread instances
Table 1: Main threads in the Chromium web browser

Figure 2: Total energy consumption of a little core and a big

core on a Samsung S5 SM-G900H smartphone in running the

same workload with a fixed number of operations

uses Heterogeneous Multi-Processing (HMP) [18], so it can utilize
all the 8 cores simultaneously. The little and big cores can oper-
ate in a frequency range from 500 MHz to 1.3 GHz and from 800
MHz to 1.9 GHz, respectively. Figure 2 shows our measured total
energy consumption of a little core and a big core of the Galaxy
S5 smartphone in running the same workload, at different frequen-
cies with 100% core utilization. The workload is a busy loop for
a fixed number of iterations which emulates the characteristics of
CPU-bound workloads with no periods of idleness. At its highest
frequency of 1.3 GHz, a little core can reduce the energy consump-
tion by a factor of 2 (392 uAh vs. 777 uAh), compared to a big core
at its own highest frequency of 1.9 GHz. The measurement result
is consistent with a previous study [17] and demonstrates the big
potential of big.LITTLE architecture in saving energy.

In the Linux kernel, the task scheduler divides all the cores into
two scheduling domains: one for the little cores and the other for
the big cores [37]. The scheduler may migrate a thread from the big
core cluster to the little core cluster or vice versa, by tracking the
loads of all the threads. Basically, the scheduler will move a thread
from a little core to a big core if the load contribution of a thread is
larger than an up threshold and vice versa with a down threshold.

Commercial big.LITTLE smartphones have become increasingly
popular. Beside Samsung, other mobile processor makers including
Qualcomm, LG, Huawei and MTK have also shipped or announced
their big.LITTLE products.

3. UNDERSTANDING ENERGY COST OF

PAGE LOADING
In this section, we study Chromium browser internals and the

system-scheduling behaviors and identify three energy-inefficient

issues in loading web pages: inefficient web resource processing,
unnecessary content painting, and underutilized little cores. We
also study the behaviors of other mobile browsers and show that
they also have the same energy-inefficient issues. Based on the
findings, we derive general design guidelines for energy-efficient
web page loading.

Unless otherwise specified, all the numbers presented in this sec-
tion are the average experiment results obtained on a Samsung
Galaxy S5 SM-G900H big.LITTLE smartphone, using the Alexa
top 10 websites in the US [2], including Google, Facebook, Youtube,
Yahoo, Amazon, Wikipedia, Linkedin, Ebay, Twitter, and Pinterest.
The websites were loaded on an emulated 3G network (Download
2 Mbps, Upload 1 Mbps, RTT 120 ms) for repeatable experiments.
The total system energy consumption of the smartphone was mea-
sured using a Monsoon power monitor [29].

3.1 Inefficient Web Resource Processing
Web resource processing is one of the main components of brows-

ing, along with resource downloading and content painting. Web
resource processing typically includes HTML and CSS parsing,
image decoding, Javascript execution, and updating DOM tree and
graphic layers. In Chromium, the Renderer process conducts the
above processing whenever it is notified of the data available from
the Browser process. As shown in Figure 1, those two processes
exchange data using a shared resource buffer. The Browser pro-
cess uses the read system call on a socket handler to receive the
resources of a web page from the network. Each read system call
directly writes received data into the resource buffer with a maxi-
mum data size of 32 KB by default. Upon each read system call,
the Browser process immediately notifies the Renderer process to
start to process the received data, no matter how much data is re-
ceived.

Although immediately processing the received data is natural
and minimizes the page load time, it is not energy efficient. The
reason is that many read system calls return a small amount of
data and thus lead to a large number of IPCs between the Browser
process and the Renderer process. In loading the 10 websites, 99%
of the read calls return a data chunk less than 3 KB and the aver-
age data size returned per read is only 1.3 KB. On average there
are 319 read calls (62 per second) in loading one web page. Each
read may cause multiple IPCs between the Browser process and
the Renderer process. On average the total number of IPCs per
web page is 871 (176 per second). Each IPC has a fixed overhead.
Moreover, there are also other overheads in web resource process-
ing. Each time when processing a data chunk, even if the data
chunk is small, the Renderer process has to go through the whole
data rendering pipeline. In particular, for image data, many graphic

16

Figure 3: Visible screen update in loading instagram.com

activities are involved in the Compositor, Raster Worker and Async
Transfer threads. As a result, the accumulated overheads are high
and thus waste much energy, more than 10% of the total system
energy cost as we will show in Section 6.

3.2 Unnecessary Content Painting
When loading a web page, Chromium processes the web re-

sources progressively and keeps updating the partially rendered dis-
play results onto the screen. As shown in Figure 1, the screen up-
dates are driven by VSync signals. Upon receiving a VSync signal,
the Compositor thread ships the current rendered graphic data to the
GPU thread of the Browser process through the shared command
and texture buffer. The GPU thread then executes platform-specific
graphic commands on the GPU to composite all the textures into
the final graphic result to be displayed on the screen. This graphic
pipeline of data rendering and screen updating is called content

painting. Many content paints may occur in loading a web page.
For example, in loading instagram.com, a popular photo-sharing
website, the browser does 359 paints (23.1 per second) even the
web page does not have any animation.

However, we have observed that most of the times, content paint-
ing generates a very small or even zero visible change on the screen.
To demonstrate this observation, we log the visual progress of each
content painting using Telemetry [11], the performance testing frame-
work of Google Chrome. The tool collects the Paint events from
the rendering engine and calculates how many visible pixels of the
screen are changed by each Paint event. Figure 3 shows the re-
sults in loading instagram.com, including both the histogram and
the CDF. Among all the 359 paints, 321 (89%) of them generate a
zero visible change on the screen. For the top 10 websites, there are
also many paints with a zero or very small visible screen change:
56% of the paints do not generate any visible screen change, and
62% of the paints generate a visible screen change of less than 5%.
These paints with a zero or very small visible screen change do not
help improve the user experience. However, they cause overheads
in the whole graphic processing pipeline and the IPCs between the
two processes, and thus lead to unnecessary energy cost. This de-
sign of high-rate content painting is overly optimized for perfor-
mance, not energy efficient, and must be re-considered on mobile
devices.

3.3 Underutilized Little Cores
Although big.LITTLE is designed to save energy, we find that

the energy-saving potential of big.LITTLE is not fully exploited in
the case of Chromium. Specifically, we find that the little cores are
underutilized. For example, Figure 4 shows the average execution
time of Chromium threads in loading instagram.com. Most of the
times, the threads are executed on the big cores. 89% of the total ex-
ecution time is on the big cores but only 11% of the total execution
time is on the little cores. Some threads, such as the Compositor

Figure 4: Execution time of Chromium threads on the big and

little cores in loading instagram.com

Raster Worker and Async Transfer thread, are almost completely
(more than 95%) executed on the big cores.

The reason of low little-core utilization is that the OS schedules
threads based on a load-driven approach that favors performance
more than energy saving. The scheduler tries to finish a thread
sooner rather than saving more energy. On symmetric multi-core
architectures, since all the CPU cores are equal, this load-driven
approach is energy efficient. If a thread can finish its task faster,
the CPU can go to sleep sooner to save energy [16]. However, on
heterogeneous multi-core architectures like big.LITTLE, finishing
a thread sooner may not reduce the energy cost. As shown in Fig-
ure 2, a little core has a lower energy per instruction cost than a big
core. As a result, it takes longer but consumes less energy to run a
thread on a little core than on a big core. Thus, a thread should run
on a little core as long as it can tolerate a resulting delay. However,
the OS cannot know how much delay a thread can tolerate, and thus
cannot decide whether to run the thread on a little core for better
energy efficiency or not.

3.4 Guidelines for Improvements
The above energy-inefficient issues are not Chromium-specific.

Even without analyzing source codes, we observe the behaviors of
several other mobile browsers when they load the same set of web
pages. After monitoring the number of screen updates and thread
scheduling behaviors, we conclude that those mobile browsers ba-
sically share the same energy-inefficiency issues with Chromium:
they also do aggressive content processing and screen updating, and
rely on the OS for passive thread-scheduling.

We monitor the screen update by dumping information from An-
droid SurfaceFlinger. For example, when loading instagram.com,
Firefox updates its SurfaceView 614 times in 17.1 sec or 35.9
frames/s. Similar behavior is also observed on Opera Mobile web
browser which is based upon Chromium. Another popular web
browser, UC Browser, even keeps updating at a fixed 60 times per
second even there is no change on the content. Thereby, even when
the content does not change, UC Browser has 1755 mW average
power consumption while other browsers (Chromium, Firefox and
Opera) have only 475-542 mW average power consumption. More-
over, Firefox for Android puts its major threads onto big cores:
84% of its Gecko rendering engine thread and 60% of its Compos-
itor thread on big cores.

Based on these findings, we make the following guidelines for
reducing the energy cost in web page loading: 1) the web resource
processing should adapt to download speed to become energy effi-
cient; 2) the content painting should adapt to visible changes on the
screen to save energy; and 3) the OS scheduler should be aware of
QoS of threads to make energy-friendly scheduling decisions. Next
we show how we develop techniques for energy-efficient web page
loading according to these design guidelines.

17

4. ENERGY-EFFICIENT PAGE LOADING
In this section, we describe the three techniques aiming to better

balance the energy cost and performance in mobile web page load-
ing. We carefully design the techniques to control their impact on
the page loading time.

4.1 Network-Aware Web Resource Processing
The choice of how often to conduct web resource processing

influences performance and energy efficiency. Frequent resource
processing may come with energy inefficiency, since it can yield
marginal progress while consuming a significant amount of energy.
As shown in 3.1, the Renderer process may conduct the web re-
source processing over each small amount of data (e.g., less than 3
KB in 2 Mbps download speed). This entails the need to perform
batch processing of web resources to become more cost-effective.
However, this may delay the processing of web resources and in-
crease the page loading time. For example, an HTML resource
typically contains links to other web resources such as images and
JavaScript libraries. While the Renderer process delays the pro-
cessing of the HTML resource, the Browser process cannot pro-
ceed to download the embedded resources from the network. So it
calls for a good strategy to coalesce resources for energy-efficient
resource processing yet without increasing the page loading time.

To this end, we propose to design the web resource processing
adaptive to the speed of downloading web resources, which we re-
fer to as Network-aware Resource Processing (NRP). A basic un-
derlying principle is that the faster downloading, the larger batch
size for better energy-efficiency should be. That is, we have a
smaller batch size for slower downloading so as not to introduce ex-
cessive delays in web resource processing. We enforce the Browser
process to buffer the data received from the network and notify the
Renderer process only if the buffered data amount is larger than
a threshold. This way, we can reduce the times of web resource
processing as well as the number of IPCs involved, and thus can
reduce the energy cost.

To balance the trade-off between resource processing de-
lay and energy efficiency, we design the buffer threshold
buf_threshold and the total buffer size buf_size to adapt

to the resource downloading speed net_goodput as follows.

buf_threshold = α ∗ net_goodput

buf_size = β ∗ buf_threshold,

where net_goodput is estimated using the exponentially
weighted moving average (EWMA), a linear history-based estima-
tor, with a smoothing factor of 0.3, as described in [25, 32]. The
parameter α indicates the maximum latency that a piece of data can
experience in the buffer and is set to 0.5 second, at which we find
a balance between energy saving and resource processing delay.
The parameter β controls the total buffer size. It is increased when
the buffer is overused and decreased when underused. When the
buffer is full, it is increased linearly and decreased when average
buffer usage of the last 20 samples is less than 50%. We cap the
maximum buffer size to 2 MB.

The additional parameter buf_size is designed to minimize
the total memory usage. To process each web resource, it requires
allocating a dedicated buffer of size buf_size. As there may
be many web resources in loading a web page, the total memory
usage may be high if the buffer size is large. With our approach,
we design the buf_size to be small while big enough to allow
the downloading to keep up with the processing of resources.

Ideally, NRP should adapt directly to the user-perceived content
changes on the screen. That is, the buffering should be adaptive to
how fast the web content is displayed on the screen. However, de-

tecting the changes of the displayed content from the received data
is difficult and imposes high overhead because of dynamic content
like JavaScript. Therefore, we choose the network throughput (the
rate of receiving data) as an indirect but low-overhead indicator
of the changes of the displayed content. By controlling the buffer
threshold according to the throughput, we balance the energy cost
and the latency of the web-resource processing.

To further reduce the impact of NRP on page loading time, we
do not apply the buffering to critical resources that may delay the
downloading of other resources. Such critical resources include the
top level HTML resources (called main resources in Chromium) of
the main frame and the sub-frames or iframes of a web page. Those
resources are processed immediately after they are received from
the network. Furthermore, we do not buffer the last chunk of a web
resource even if the chunk size is smaller than buf_threshold,
to prevent a small last data chunk from staying in the resource
buffer for a long time. This is achieved by detecting if the response
completed or not, which is performed by a network stream parser in
the browser. Therefore, it is applicable to dynamic content as well.
If the response completed, we notify the Renderer process starts
to process all the received data immediately instead of waiting for
reaching buf_threshold.

4.2 Adaptive Content Painting
Content painting comes with a trade-off between user experience

and energy overhead. Although a high frame rate can provide very
smooth user experience, it can incur a high overhead to GPU and
CPU to render web pages and, when combined with high resolu-
tion, consume a lot of energy [33]. As shown in Section 3.2, each
individual content paint may introduce a different degree of change
on the screen. As the majority of content paints generate a zero
or very small visible screen change, multiple content paints can be
aggregated together to save energy without compromising user ex-
perience. Motivated by this, we design the content painting to be
adaptive to the visible changes on the screen, which we refer to as
Adaptive Content Painting (ACP), as follows.

We introduce a new parameter, called paint_rate, that lim-
its the rate of content painting and dynamically adapts to the con-
tent changing speed so that we can aggregate content painting to
save energy while preserving user experience. For a given value
of paint_rate, ACP enforces that the actual content painting
rate will never exceed the value of paint_rate (the actual rate
can be lower than paint_rate). The paint_rate parame-
ter ranges from a minimum painting rate to a maximum one. The
initial value of paint_rate is set to the minimum value. The
paint_rate parameter increases when the content changes fast
and vice versa. After the Compositor thread paints the changed
content to the screen, if the web page continues changing and needs
to update the screen to reflect the change, we increase the parame-
ter linearly by one to the maximum value. On the other hand, we
decrease the parameter to the minimum value when the content of
web page display stops changing after the Compositor delivers all
the changes to the screen. In Section 5 we describe how we detect
the speed of the content changes in Chromium.

We cap the maximum painting rate to 10 frames/s to balance the
energy cost and the smoothness of content display. We argue that
10 frames/s should be smooth enough because 1) during page load-
ing time, the web content is only partially displayed and thus the
impact on user experience is small (especially on smartphones with
small screens); and 2) the rate of content changes on the screen
is often low as shown in Section 3.2. Furthermore, existing re-
search [39] shows that a delay of up to 100 ms is typically not
perceivable. Therefore, we believe that 10 frames/s (i.e., 100 ms

18

per frame) provides a good trade-off between user experience and
energy saving. We set the minimum painting rate to 2 frames/s to
save more energy when the content changes slowly.

Ideally, ACP technique should quantify the visual changes be-
tween painted frames to adapt with the degree of changes of con-
tent. However, doing so requires comparing consecutive frames
pixel by pixel, which imposes heavy computation and thus a high
energy cost. Therefore, we use a light-weight approach of linearly
increasing the paint_rate parameter, without any extra com-
putation cost.

Furthermore, the content painting should be aware of user inter-
actions. A high painting rate should be used when the user touches
the screen, to ensure smooth user experience. Therefore, in our
implementation, we also detect user inputs and stop rate throttling
when the user touches the screen.

The two techniques of NRP and ACP are not completely inde-
pendent. NRP batches the processing of resources and thus also
slows down the content painting. Similar to NRP, ACP also reduces
the number of IPCs between the Browser process and a Renderer
process to save energy.

4.3 Application-Assisted Scheduling
To better leverage big.LITTLE architecture to save energy, we

propose to leverage internal knowledge of browsers for energy-
efficient scheduling. Instead of letting the OS task scheduler make
all the scheduling decisions by passively observing the load of
threads, we allow browsers to decide whether a thread should run
on a big or little core. Browsers know much more information
about their threads than the OS scheduler, e.g., what type of tasks
the threads do, how important the threads are, how long finishing
time a thread can tolerate, the semantics of the threads, and the
relationship among them. Therefore, browsers may make better
decisions on assigning threads to big or little cores. We call this
kind of technique Application-Assisted Scheduling (AAS).

We design the AAS technique adaptive to Quality of Service
(QoS), as QoS is important to user experience. The QoS is esti-
mated by the frame rate of the browser. The QoS requirement is
dynamically adjusted to the changing value of paint_rate. If
ACP is not working, then the requirement is fixed as the maximum
limit on painting rate (i.e., 10 frames/s). AAS first allocates a set
of threads related to the QoS on little cores and monitors the cur-
rent frame rate. When the current frame rate is lagging behind the
QoS requirement, AAS considers it the violation of QoS. For ex-
ample, if the value of paint_rate is 5, the QoS is defined as
painting each frame within 200 ms. If the browser fails to paint
each frame within 200 ms, AAS decides that the QoS is violated
and thus migrates the threads related on big cores. When the cur-
rent frame rate becomes exceeding the QoS requirement in a stable
manner, AAS brings those threads back to little cores. AAS makes
such a decision when it finds the cumulative gap between the cur-
rent frame rate and the QoS requirement over a window is no less
than a threshold. Thus, while the QoS is being satisfied, its corre-
sponding threads keep remaining on the little cores to save energy
without compromising user experience.

To better utilize little cores to save more energy, we design AAS

to move a thread from a little core to a big core in a conservative
way of using a time window of three seconds, and move a thread
from a big core back to a little core using a smaller time window of
one second.

ACP adjusts paint_rate limit while AAS only monitors the
actual frame rate (frame painting time) and schedules threads to
satisfy the limit. Since the paint_rate sets only the maximum

painting rate rather than a fixed painting rate, there is no strict cir-
cular dependency between the AAS technique and the frame rate.

Thread migration between little cores and big cores in AAS is
generic to all applications. The AAS technique dynamically changes
the affinity of the QoS-related threads, and thus does not require
hard assignments of specific threads to cores. However, which
threads should be managed by AAS and how to define the QoS
are application specific. In Section 5 we show to which threads
of Chromium we apply the AAS technique.

5. IMPLEMENTATION
We have implemented the three techniques on Android by modi-

fying the source code of Chromium version 38, the latest stable ver-
sion of Chromium when we conducted the work of this paper. We
use the Content module (ContentShell.apk build target) that has the
core code upon which Android Google Chrome browser is built [5].
Compared to Content Shell, Chrome has additional features such as
auto fill, translation, and account setting synchronization.

In total, we add about 1,200 lines of code into various modules of
the Chromium web browser. No rooting or modification to websites
and OS kernel are needed. As we focus on page load time, we
enable the techniques only during loading a web page, we disable
the techniques after the web page loading is finished.

Network-aware Resource Processing. We implemented adap-
tive resource buffering by modifying the BufferedResourceHandler

class in the Resource Handler chain in the Browser process. We
revise the resource handler so that it keeps buffering until the re-
ceived data size reaches the buffer threshold or the web-resource
fetching has completed. In addition, the revised handler decides
the resource type embedded in the HTTP requests. For top-level
HTML resources and nested frames, it does not perform resource
buffering to avoid delaying the loading of the web resources em-
bedded in the HTML pages.

The Buffered Resource Handler can be paused when the render-
ing engine has not finished processing the resource and there is no
space left in the resource buffer. When it resumes, it continues re-
ceiving data.

Adaptive Content Painting. We control content painting rate
by controlling the rate of VSync callbacks. To do it, we wrote a
shim layer on the WindowAndroid class which represents an An-
droid activity window and holds a VSync monitor. This shim layer
intercepts actual VSync callback from the VSync monitor and de-
lays them by multiple of VSync periods before sending to the Com-
positor thread.

The content changing speed is determined by looking at the VSync
request from the Compositor thread. If the rendering engine needs
to update the layer tree and thus the Compositor thread still needs a
VSync to perform a paint after all the changes have been painted, it
indicates that the content have been changed since the last time. On
the other hand, when the Compositor thread stops needing VSyncs
to perform another paint, this indicates that the content does not
change further. At this point, we stops requesting VSync from An-
droid and decrease the frame rate limit to the minimum value.

Throttling the content painting rate may cause apparent lags when
the user touches the screen. To solve this problem, we detect the
user inputs to enable and disable content painting rate dynamically.
We do this by instrumenting the ContentViewCore class which rep-
resents the view of a web page. Thereby, user will not feel any
animation lagging when he interacts with the screen during page
loading.

Application-Assisted Scheduling. We implement AAS by ex-
tending current Chromium threading management module to sup-
port changing thread CPU affinity dynamically and systematically.

19

On Android OS, thread CPU affinity is altered by system call
sched_setaffinity, which does not require root privilege. Since de-
fault bionic C library level 19 on Android 4.4 does not provide
native sched_setaffinity API, we directly invokes its assembly lan-
guage interface by using syscall function together with its system
call number and a CPU core list. We monitor the frame rate by us-
ing the layer tree debugging feature in Chromium which provides
frame rate counter and paint time.

According to the analysis of the web browser architecture in Sec-
tion 2, AAS schedules the Compositor Raster Worker and Async
Transfer Thread. These threads affect the rate of frames painted to
the screen by the graphic pipeline so directly relate to the user ex-
perience. They also have high CPU workload so scheduling them
to little core will have high reduction to energy consumption of the
browser.

6. EVALUATION
In this section, we evaluate our implementation by answering the

following questions: 1) how much total energy we can save; 2) how
much energy is saved by each of the three techniques; and 3) how
much the techniques affect page load time and user experience.

6.1 Experiment Setup
Devices. We conduct experiments on two variants of the Sam-

sung Galaxy S5 smartphones: S5-E and S5-S. S5-E is the SM-
G900H model that uses Samsung Exynos 5422 SoC with 4 Cortex-
A15 big cores and 4 Cortex-A7 little cores and Linux kernel 3.10.
S5-S is the SM-G900K model that uses a quad-core Qualcomm
Snapdragon 801 SoC and Linux kernel 3.4. Both smartphones run
Android Kitkat 4.4.2 and Chromium version 38. We use a Mon-
soon Power Monitor tool [29] to measure the total system energy
consumption of the smartphones.

To minimize measurement noise, we remove all unnecessary ap-
plications and background services, disable irrelevant hardware com-
ponents such as camera, GPS and other sensors, and turn off all
wireless network interfaces except WiFi. The screen brightness is
set to the lowest level.

Testbed and network conditions. For repeatable experiments
and to avoid the noises of unstable cellular network and unpre-
dictable response of web servers, we build a testbed to load web-
sites from a local emulated server. The Linux server records and
replays responses of websites using the Web Page Replay [13] tool.
The smartphones load the web pages from the server through a lo-
cal WiFi network. The server emulates a 3G cellular network using
the dummynet network emulator [7]. Based on previous measure-
ment studies [40, 26, 1, 27] on 3G cellular networks, we use the fol-
lowing parameters to emulate typical cellular network conditions:
2 Mbps downlink bandwidth, 1 Mbps uplink bandwidth, and a 120
ms round-trip time (RTT).

Data set. We evaluate our techniques using the top 100 websites
in the U.S. according to Alexa [2] in May 2014. The 100 websites
include diverse websites including sophisticated ones with many
images and simple ones with mostly textual contents. Among them,
88 websites have a mobile-friendly design. By default, we use the
homepage of the websites in our experiments. For the websites
requiring a user login, we record and replay the response of the
website after logging in, or choose a representative public web page
from the website. For the websites with a so trivial homepage (such
as search engine ask.com), we choose a non-trivial, representative,
second-level web page.

Automation tool. We develop a tool to automate the experi-
ments and data collection. The tool has two modules, one running
on a smartphone and the other running on a Windows PC that runs

the Monsoon Power Monitor software to collect energy consump-
tion data. On the smartphone, the tool is a module on the content
shell layer (e.g., ShellManager class) of Chromium. It takes a list
of URLs and controls Chromium to visit the URLs one by one. Be-
fore visiting each URL, it clears the cache of Chromium. During
loading a web page, it collects the data about the page loading such
as the page load time. After the experiments are finished, it trans-
fers all the collected data to the PC. On the PC, the tool controls
the Monsoon software to record the energy consumption data. The
tool also precisely synchronizes the time of the smartphone and the
PC using a synthetic falling edge on the power trace. Therefore,
we can align the power trace data collected on the PC to the page
loading data on the smartphone.

Page load time. Page Load Time (PLT) measures the time since
a web page starts loading, i.e., the Navigation Start event, until the
page finishes loading, i.e., the Load Event End event [24, 23, 22].
We revise Chromium to record the timestamps of the Navigation
Start event and Load Event End event, and thus our automation tool
can calculate the PLT of each single web page. We measure cold
page loading time with the browser cache and DNS cache cleared.

Unless otherwise stated, we repeat each experiment for at least 5
times. Measurement outliers are detected and removed by applying
the modified Z-score [28] on page load time values of each config-
uration combination. We add more experiments if the number of
remaining samples after removing outliers is too small. Each point
on the cumulative distribution function (CDF) graphs on this sec-
tion presents the average for each website. For estimating variation,
we calculated 95% confidence intervals for each average but do not
present here because most of the confidence intervals are less than
5% of the average values.

6.2 Energy Saving
Total energy saving. We first evaluate how much total energy

saving can be achieved by all the three techniques together. Fig-
ure 5 shows the result. On S5-E, the average total energy saving in
loading the 100 websites is 24.4%, ranging from 0.02% to 66.5%.
62 websites have an energy saving of 15%-45%, and 7 websites
have an energy saving of more than 50%. These results demon-
strate that our techniques are able to significantly reduce the en-
ergy cost of web page loading. We should also be able to achieve
this high energy saving on Chromium-based web browsers such
as Google Chrome and Opera Mobile. The most energy saving
(66.5%) website is infusionsoft.com that has a heavy slide show of
high resolution images with a fading transition effect. The least en-
ergy saving websites are the ones with simple text content such as
usps.com.

The S5-S smartphone has a smaller energy saving than the S5-E
smartphone. On S5-S, the average energy saving is 11.7%, ranging
from 0.21% to 57.1%. 66 websites have an energy saving of 5%-
30% and only two websites have an energy saving more than 50%.
The reason is that S5-S does not support big.LITTLE and thus can-
not benefit from application-assisted scheduling which is the most
energy saving technique as we will show later in this section.

The above energy savings are measured in terms of the total sys-
tem energy consumption, including the energy cost of the screen,
because the web browser does not load web pages with screen off.
Therefore, in order to evaluate the impact of power of the screen,
we use a separate experiment. We run the experiment twice with
the screen turned on and off. The screen power is then measured
as the system power difference between the two different types of
experiments. The two smartphones use the same type of screen and
the screen power is 186 mW at the lowest brightness level. Exclud-

20

Figure 5: Total energy saving Figure 6: Energy saving of individual techniques

ing the energy cost of screen, the average energy saving increases
from 24.4% to 26.6% on S5-E and from 11.7% to 13.0% on S5-S.

Energy saving of individual techniques. We next evaluate to
what extent each technique can save energy consumption. Figure 6
shows the results when only one of the three techniques is enabled.
NRP, ACP, and AAS stand for energy-aware resource buffering, ag-
gregated content painting, and application-assisted scheduling, re-
spectively.

On S5-E, the most energy saving technique is AAS, reducing the
average energy consumption by 19.5%. The other two techniques
are also useful, with an average energy saving of 10.2% for NRP

and 6.8% for ACP, respectively. Only NRP and ACP can be used on
S5-S and have average energy savings of 6.8% and 6.3%, respec-
tively. If we exclude the energy cost of screen, on S5-E, the average
energy savings for NRP, ACP and AAS are 11.1%, 7.4% and 21.1%,
respectively; and on S5-S, the average energy savings of NRP and
ACP are 7.6% and 6.9%, respectively. These results demonstrate
that all the three techniques are effective in reducing the energy
consumption of web page loading.

It is worth to note that, for some websites, enabling only one of
the techniques may slightly increase the system energy cost. For
example, on S5-E, if only the AAS technique is enabled, four web-
sites have increased energy costs, ranging from 0.28% to 3.0%. The
maximum energy cost increases on S5-E and S5-S are 3.8% and
5.6%, respectively. However, with all the three techniques (two on
S5-S), it never increased the energy consumption for all the 100
websites.

6.3 Page Load Time and User Experience
Next we evaluate how much PLT is increased by the combination

of the three techniques and by each individual technique, and study
the impact of the techniques on user perceived experience using
Speed Index [10] and a user study.

Total page load time increase. Our techniques impose minimal
extra PLT. Figure 7 shows the results on the two smartphones (all
the three techniques are enabled on S5-E and only two techniques
are enabled on S5-S). On S5-E, the average PLT is decreased by
0.38% (or decrease 29 ms in terms of the absolute PLT), ranging
from -8.11% to 6.38%. In fact, 55 websites have a decreased PLT
and 93 websites have PLT increases less than 3%. In terms of the
absolute PLT, 94 websites have PLT increases less than 0.2 seconds.
On S5-S, the average PLT increase is almost zero, 0.01%, ranging
from -4.1% to 4.5%. 51 websites have a decreased PLT, and 94
websites have a PLT increase less than 3%. In terms of the absolute
PLT, the average PLT is increased by 6.7 ms, and 93 websites have
a PLT increase less than 0.2 seconds. We argue that it is worth to
trade this small PLT increase for the significant energy saving. In
particular, we are indeed able to decrease the PLT of about half of
the 100 websites.

Page load time increase of individual techniques. We also

Configuration
Average PLT increase Average energy saving (%)

Relative (%) Absolute (ms) With screen No screen

All -0.38 -29.0 24.4 26.6
NRP 0.04 -2.6 10.2 11.1
ACP -0.45 -49.9 6.8 7.4
AAS 0.23 -22.8 19.5 21.1

Table 2: Energy saving and PLT increase on S5-E

Configuration
Average PLT increase Average energy saving (%)

Relative (%) Absolute (ms) With screen No screen

All 0.01 6.7 11.7 13.0
NRP 0.76 56.2 6.8 7.6
ACP -0.25 -24.5 6.3 6.9

Table 3: Energy saving and PLT increase on S5-S

measure the PLT increase caused by each individual technique.
Figure 8 shows the results. As one may expect, each technique
alone also introduces minimal extra PLT. On S5-E, AAS introduces
the highest average PLT increase but the increase is only 0.23%
and it even decreases 22.8 ms in terms of absolute PLT. The PLT
increase for NRP and ACP are 0.04% (-2.6 ms) and -0.45% (-49.9
ms), respectively. On S5-S, the PLT increase is 0.76% (56.2 ms)
for NRP and -0.25% (-24.5 ms) for ACP, respectively. Compared to
the other two techniques, ACP has the smallest impact on PLT as it
decreases PLT on both phones.

Table 2 and Table 3 summarize the average energy savings and
PLT increase on S5-E and S5-S, respectively. It is worth noting that
the three techniques are not completely independent, and thus the
total energy saving is not equal to the sum of the energy savings of
individual techniques.

Impact on visually complete progress. In order to evaluate
the impact of the techniques on the visual loading progress of web
pages, we measure the Speed Index [10] in addition to the page
load time. The metric measures how quickly the page content is
visually populated, and is calculated as in the following formula:

SpeedIndex =

∫
end

0

(1−
V C

100
),

where end is the end time in milliseconds and V C is the percentage
of visually complete. Lower Speed Index is better because the user
will see the web page content painted earlier and thus faster visual
loading progress.

We use Telemetry tool to get visual progress from paint events
exposed by Blink through the DevTools timeline. Compared to
getting visual progress from video capture, this method deals with
pages that update and change better [10, 12]. Moreover, it worked
more reliably on the websites in our dataset specially ones with
animations.

Our techniques increase the metric by 1.8% on average, so they
delay the page loading progress only slightly. Figure 9 shows the
increase of Speed Index of the All configuration compared to the

21

Figure 7: Total PLT increase Figure 8: PLT increase of individual techniques

Figure 9: Impact of All configuration on Speed Index metric

Figure 10: User perceived experience on our revised Chromium

compared to the default Chromium

Default. We report the results for 99 websites, except conduit.com

which contains a continuously rotating image and for which the
Telemetry tool reported an abnormal decrease of 42% by our tech-
niques.

User perceived experience To further evaluate the impact of
the increased PLT on user perceived experience, we conduct a user
study to collect real user feedback on our techniques on real-world
environments. Therefore, we recruited 18 undergraduate students
in our university, 11 males and 7 females and performed two tests
using the S5-E smartphone on a real-world WiFi network. In the
first test, we use the default Chromium and our revised Chromium
to load 10 web pages randomly selected from the top 100 web-
sites. Each website is loaded using either the default Chromium
or our revised Chromium browser. We show the web page loading
to the users but do not let them know which Chromium version is
used. User can ask to repeat loading any web page as many times
as he/she wants. We then ask them whether our revised Chromium
is better or worse than the default Chromium in terms of page load-
ing speed and smoothness, using a seven-level scale (from 3 to -3
for much better, better, little better, the same, little worse, worse,
and much worse, respectively). In the second test, we let the users
do web browsing in their favorite way, using each version of the
browser for 5 minutes, respectively. The users also do not know
which Chromium version being used. This test includes not only
page loading but also page reading and users interactions (e.g.,

Figure 11: Power consumption in loading infusionsoft.com

with All configuration

scrolling). Then we ask them to compare the two browsers again
using the same seven-level scale, in terms of page loading speed
and the overall speed.

Figure 10 shows the results. For the first test, 4 of 18 (22%) users
told that it is difficult to tell which browser is faster. 10 (55%) users
even gave a higher score on our revised browser. For smoothness,
most of the users could not tell the difference. The average scores
of page loading speed and smoothness are almost zero: 0.04 (stan-
dard deviation(stdev) 1.30) and -0.02 (stdev 1.14), respectively. In
the second test of real usage, we get similar results: 7 (39%) users
told that our revised browser is faster in page loading, and 5 (28%)
users told that our revised browser is faster in overall speed. The
average scores of page loading speed and the overall speed are also
near zero: -0.12 (stdev 1.45) and -0.18 (stdev 1.38), respectively.
These results demonstrate that our techniques impose a minimal
impact on user experience and such a small impact is hardly per-
ceivable by the users. After the tests, we asked the users how they
would like to use our techniques. 13 (72%) of them would always
use our techniques and 5 (28%) of them would use when the battery
level is low.

6.4 Energy Saving Analysis: Case Study
To investigate further how our proposed techniques reduce en-

ergy consumption, we present a detailed analysis for infusion-

soft.com as a case study since it is the most energy saving website
for each technique. In essence, our techniques decrease the total en-
ergy consumption by reducing system power and CPU utilization.
We examine the results obtained on the S5-E smartphone.

System power reduction. As our techniques introduce a min-
imal increase of PLT while reducing total consumed energy, what
we actually reduce is system power consumption. Figure 11 shows
the power traces in loading infusionsoft.com, the website that has
the highest energy saving (66.5%). Our techniques are able to sig-
nificantly reduce the system power. For the time period of 5.0 sec
- 17.0 sec in the figure, the average system power in using the de-
fault Chromium is 5.28 W; with our techniques enabled, the aver-

22

Figure 12: Thread CPU time in loading infusionsoft.com with

NRP configuration

Figure 13: Thread CPU time in loading infusionsoft.com with

ACP configuration

age system power is reduced to 1.44 W. This significant reduction
of system power comes from the reduced CPU utilization, as shown
below.

CPU utilization reduction of NRP. Figure 12 shows the CPU
time of the main threads in loading infusionsoft.com, using the de-
fault Chromium and using our revised Chromium with only the
NRP technique enabled. When NRP is enabled, the CPU time of
the Chrome_ChildIOThread thread is significantly reduced, from
2.42 seconds to 0.84 seconds, or a reduction of 65.3%. This is
because NRP is designed to the reduce IPCs between the Browser
process and the Renderer process. NRP also reduces the CPU time
of the CompositorRasterWorker thread (from 8.68 seconds 1.83
to seconds, or 78.9%), Compositor thread (from 3.58 seconds to
2.14 seconds, or 40.2%), Chrome_InProcGpuThread thread (from
2.26 seconds to 1.29 seconds, or 42.9%), and AsyncTransferThread

thread (from 2.94 seconds to 1.86 seconds, or 36.7%). This is be-
cause increasing data size for each processing reduces the number
of changes to layers of a web page and thereby the number of con-
tent rendering. This way, it significantly reduces the CPU process-
ing time of the rendering engine and graphic processing.

CPU utilization reduction of ACP. Figure 13 shows the re-
sults with only the ACP technique enabled. When ACP is enabled,
the CPU time of the following four threads are significantly re-
duced: for Compositor thread, from 3.58 seconds to 1.87 seconds
(47.8%), for Chrome_InProcGpuThread thread, from 2.26 seconds
to 1.41 seconds (37.5%), and for CompositorRasterWorker thread,
from 8.68 seconds to 6.25 seconds (28.0%). These results demon-
strate the effectiveness of ACP in reducing the processing cost of
the graphic processing pipeline.

CPU utilization reduction of AAS. AAS reduces big cores
workload significantly while increasing utilization of little cores
for energy efficient processing. Figure 14 shows the utilization of
little and big clusters when loading infusionsoft.com. In default

(a) Default configuration

(b) AAS configuration

Figure 14: Utilization on clusters of application-assisted

scheduling

Configuration
Average PLT increase Average energy saving (%)

Relative (%) Absolute (ms) With screen No screen

All 1.69 180 10.5 11.9
ACP -0.46 -36 9.5 10.5
AAS 2.00 195 3.3 3.9

Table 4: Energy saving and PLT increase on Firefox

Chromium, the average utilization of little and big cores are 25.2%
and 40.9%, respectively. Using AAS, the average utilization of little
cores increases to 60.1% while the average utilization of big cores
decreases to only 6.1%.

6.5 Energy Saving on Other Web Browser
In order to demonstrate applicability of techniques on other web

browsers, we implement the ACP and AAS techniques on Firefox for
Android open source web browser. Among the top 100 websites,
our experiments were performed on 72 websites that use HTTP
protocol. This is because it is problematic for Firefox to establish
HTTPS connections to the Web Page Replay server which uses a
self-signed encryption certificate. We use Firefox version 38, the
latest version at the time of writing this paper. For ACP, the imple-
mentation is only 50 lines of code in the CompositorParent class
which is responsible for graphical composition in Firefox. The im-
plementation of AAS involves changes to thread management mod-
ule. Because the NRP technique requires considerable implemen-
tation of a whole new buffer layer in the network stack of Firefox,
we leave it as future work.

With the ACP and AAS techniques, the revised Firefox web
browser saves a non-trivial amount of energy while affect page load
time minimally. On S5-E, both techniques save 10.5% average sys-
tem energy saving while increasing 1.69% (180 ms) PLT. For each
technique, average system energy saving is 9.5% for ACP and 3.3%
for AAS. The PLT increase is -0.46% for ACP and 0.2% for AAS.
The results are shown in Table 4. The reason the AAS technique
does not save much energy on Firefox is that the AAS technique at-
tempts to put Compositor thread to little cores. However, although
the thread has higher CPU utilization than other threads, it still has
light CPU load. Therefore, putting Compositor thread onto a lit-

23

Device
Average PLT increase Average energy saving (%)

Relative (%) Absolute (ms) With screen No screen

S5-E -0.06 -3.5 21.8 23.4
S5-S -0.92 -47.3 6.0 6.5

Table 5: Energy saving and PLT increase on a fast network

Figure 15: Energy saving and PLT increase in hot loading

tle core does not save much energy compared with the case where
the Compositor thread is running on a big core at the least possible
frequency.

6.6 Energy Saving on Fast Networks
We also evaluate how much energy our techniques can save on

fast networks such 4G cellular and WiFi. We emulated a fast net-
work with 20 Mbps downlink bandwidth, 10 Mbps uplink band-
width, and 50 ms RTT. Table 5 shows that our techniques still save
21.8% and 6.0% of system energy on S5-E and S5-S, respectively.
Excluding screen energy, our techniques save 23.4% and 6.5% on
S5-E and S5-S, respectively. The PLT is even decreased by 0.06%
(S5-E) and 0.92% (S5-S). This decrease of PLT may come from
two reasons: 1) when the network is faster, the extra latency intro-
duced by NRP becomes smaller; 2) as AAS makes better use of little
cores, it leaves more capacity of big cores to the rendering engine
and thus makes content rendering faster.

6.7 Energy Saving in Hot Loading
We evaluate the performance of our techniques in case of web

page loading with cached content. We test on the hot web page
loading in which the web browser loads the web pages again im-
mediately after a cold load. Thereby, many resources are still in the
web browser cache and DNS lookup results are also still in the lo-
cal DNS cache of the OS. We use the emulated WiFi network with
2 Mbps downlink, 1 Mbps uplink bandwidth and a 120 ms RTT.

Our techniques are still effective in reducing the system energy
consumption in hot loading. The results of the All configuration on
S5-E are shown in Figure 15. The average system energy is reduced
by 19.6% and average page load time is decreased by 1.73% (or 67
ms in terms of absolute page load time). The decrease of page load
time can be explained similarly as on fast networks.

6.8 Energy Saving on 3G Network
We evaluate the energy saving of our techniques when running

on a 3G network, given that the power consumption profile of a
cellular network interface is different from WiFi [36]. For repeat-
able experiments, web pages are loaded from our Web Page Replay
server. The server throttles bandwidth by 2 Mbps download and 1
Mbps upload while not adding any delay. Given the 3G (HSPA+)
network is fast enough, the bandwidth is limited at the server side.
The delay is not controlled and determined by the 3G network. We

Figure 16: Effectiveness of All configuration on a 3G network

use the 3G network provided by KT Corporation, and the phone
has only its 3G interface turned on (its WiFi interface is off).

Figure 16 shows the results of All configuration on S5-E. Our
techniques have average system energy saving of 22.5% and av-
erage PLT increase of 0.41% (27 ms in absolute page load time).
Average system energy saving when using a cellular network inter-
face is still high although it is about 2% lower than when using a
WiFi network interface (24.4%). Given the amount of downloaded
data for each web page is not large (e.g., 1.1 MB on average in our
dataset), the processing on the CPU generally dominates the power
consumption of the whole system. The measured energy is the total
system energy which includes the 3G tail energy during web page
load time but does not include the tail energy after the page loading
finishes.

7. DISCUSSION AND FUTURE WORK
Apply the proposed techniques to other applications. Other

browsers and applications may use the three proposed techniques
to improve their energy efficiency. Two techniques, NRP and ACP,
are about general processing of web contents and thus may benefit
other browsers. In particular, the Chromium-based web browsers
such as Opera Mobile and WebKit-based web browser such as Sa-
fari may directly benefit from the techniques.

Furthermore, many mobile apps are designed to access web con-
tents (e.g., a native app of a news website) and some of them are
even directly built on top a browser control (e.g., the Chromium-
based WebView class on Android). They are essentially customized
browsers and thus may also benefit from our techniques. Further-
more, AAS is not specifically designed for browsers. The idea of
leveraging application internals to make better scheduling decisions
is general enough to be used by more applications. In particular, on
big.LITTLE platforms, we see big potential of this technique and
plan to investigate more on how to apply this technique to more ap-
plications. Furthermore, AAS technique is applicable to non-rooted
Android since setting thread cpu affinity does not require the root
priviledge. Also, current Android 5.0 also uses the same kernel ver-
sion 3.10 on big.LITTLE architecture phones as on Android 4.4 so
this technique will be also effective.

Reduce energy consumption after page loading. Although we
focus on the energy consumption of page loading in this paper, it is
possible to save more energy after page loading, i.e., when a user
reads and interacts with a web page. In fact, the AAS technique
may be applied to user reading time as well. We have measured
the energy consumption of the top 100 websites with 10 seconds
of non-interactive user reading time, and found that AAS is able
to reduce the system energy consumption in the user reading time
by 4.6% (5.6% excluding screen energy) with minimal user expe-
rience degradation. Furthermore, after page loading, the web con-

24

tents have been processed and thus we may apply more aggressive
CPU power saving policies to save more energy. We plan to inves-
tigate more energy saving techniques for the time period after page
loading.

Offload more graphic processing to GPU. As we have shown,
the graphic-processing pipeline has heavy workload and is energy
consuming, especially the rasterization. As GPU is more efficient
in doing graphic tasks, it is possible to move the graphic processing
currently done on CPU (such as Raster Worker) to GPU to save en-
ergy. In fact, recent experimental features of Chrome have demon-
strated big improvement in reducing frame generation time [38],
and thus has potential to reduce energy consumption. However, this
technique is orthogonal to our techniques. We focus on optimizing
IPCs overhead, granularity of content processing and painting, and
task scheduling on big.LITTLE architecture.

Real deployment and field study. Although our in-lab exper-
iments and user study have demonstrated the effectiveness of our
techniques, they show few insights on how our techniques could
perform in real usage. It is desirable to deploy our revised Chromium
browser to end users and further evaluate its performance in more
realistic and diverse network conditions and settings. We plan to
conduct a long-term field study to collect real user feedback from
daily use.

Re-design mobile browser architecture. Ideally, the architec-
ture of mobile web browsers should be re-designed to have energy
consumption as the first-class consideration at the very beginning.
The web browser should be aware of the energy cost of each stage
of the content fetching and processing pipeline, adapt to the user-
perceived experience, and reduce the interaction overhead of dif-
ferent components. It should also better utilize new hardware ca-
pabilities such as big.LITTLE cores to save energy. We plan to in-
vestigate more on how systematic architecture re-design may help
us further balance the energy consumption and user experience of
mobile web browsing.

8. RELATED WORK
Energy-efficient mobile web browsing has been explored

through various approaches. Thiagarajan et al. [41] examined
the energy consumed to render individual web page primitives,
such as HTML, images, JavaScript, and Cascade Style Sheets
(CSS), and suggested guidelines for designing energy-efficient web
pages, such as diminishing complex JavaScript and CSS and using
JPEG images. Zhu et al. [46] introduced energy-efficient, latency-
sensitive scheduling of web pages for mobile browsing over het-
erogeneous cores, according to statistical inference models that es-
timate page load time and energy consumption through the char-
acteristics of web page primitives, HTML and CSS. Butkiewicz
et al. [15] presented a linear regression model that predicts page
load times according to the characteristics of web pages (e.g.,
number and size of images) and web servers (e.g., number of
servers/origins). Chameleon [20, 21] renders web pages with
energy-efficient color schemes on OLED mobile systems under
user-supplied constraints. Qian et al. [35] provided a deep analysis
of how mobile web browsing uses wireless network resources and
offered guidelines for energy-efficient browsing, such as decom-
posing a tall web page into several smaller subpages and reducing
JavaScript-triggered delayed or periodic data transfers in cellular
networks. Zhao et al. [45] reorganized computation stages in web
browsers and predicted user reading time in order to quickly put
the radio interface into the power-saving IDLE state on 3G based
phones. Our work can be differentiated from the above approaches
in that we leverage browser internals (e.g., process/thread structure,
resource fetching/processing pipelines) for energy-efficient brows-

ing, while the others focus on the characteristics of web pages (e.g.,
primitives, colors, network accesses). Thereby, we believe our
work can be integrated with others to improve energy efficiency
further.

Mobile browsing performance optimization. Many techniques
have been developed to reduce page load time without taking en-
ergy concerns into account. New web protocols such as SPDY [9]
and HTTP 2.0 [8] are now under development to improve the per-
formance of current HTTP protocol. Their key features include (i)
multiplexing HTTP transactions into a single TCP connection and
(ii) prioritizing some object loads over others (e.g., JavaScript over
images). A recent study [42] found that SPDY can improve page
load time significantly over HTTP 1.1 by largely benefiting from
the use of a single TCP connection. However, they also showed
that such a benefit can be overwhelmed by dependencies in web
pages and browser computation, and suggested to restructure the
page load process to reduce page load time. In addition to such
infrastructure-related approaches, client-only approaches were de-
veloped with the benefit of easy deployment without infrastructure
support. Wang et al. [43] showed that two popular client-only
schemes, caching and prefetching, can be ineffective for mobile
browsing, while speculative loading can be helpful to overcome
their limitation. Ma et al. [30] first proposed and used a proac-
tive approach for a comprehensive study on mobile web cache per-
formance to identify the problems of unsatisfactory cache perfor-
mance and revealed the root causes. Meyerovich et al. [31] in-
troduced algorithms to parallelize web page layout and rendering
engines to speedup browser computation.

Energy saving for mobile apps. Pathak et al. [34] examined the
energy consumption of smartphone apps in a fine-grained manner,
reporting some interesting findings such as third-party advertise-
ment modules consume about two-thirds of energy spent in free
apps. Xu et al. [44] studied energy saving on email client through
various techniques, including reducing 3G tail time and decoupling
data transmission from data processing. Some researchers focus on
effectiveness of DVFS on mobile CPU. A recent study [17] con-
sidered energy saving on big.LITTLE architecture with a focus on
integrating core offlining with frequency scaling, while paying no
attention to determining on which type of cores (big or little) apps
run for energy efficiency.

9. CONCLUSION
This paper presented three effective techniques to optimize the

energy consumption of web page loading on smartphones. Two
of the techniques, network-aware resource processing and adap-
tive content painting, are designed to address energy-inefficiency
issues of the current mobile web browsers in its content process-
ing and graphic processing pipelines. The third one, application-
assisted scheduling, is designed to balance the trade-off between
the energy saving and the QoS big.LITTLE platforms. We have
implemented the proposed techniques on Chromium and Firefox,
and conducted comprehensive evaluations using real-world web-
sites and latest-generation smartphones. Experimental results and
user study show that the techniques are able to significantly reduce
the energy cost of web page loading and introduce hardly perceiv-
able page load time increase.

ACKNOWLEDGEMENTS

This work was supported in part by ICT/SW Creative research pro-
gram (2014-H0510-14-1008) of MSIP/NIPA, Korea, and Microsoft
Research and by SW Computing R&D Program (2011-10041313)
of MSIP/KEIT, Korea. We also thank our anonymous reviewers
and shepherd for their insightful and constructive comments that
helped us improve this paper.

25

10. REFERENCES

[1] 3G/4G wireless network latency: Comparing Verizon,
AT&T, Sprint and T-Mobile in February 2014.

[2] Alexa, Top Sites in United States.
http://www.alexa.com/topsites/countries/US.

[3] ARM big.LITTLE technology.
http://www.thinkbiglittle.com.

[4] Blink. http://www.chromium.org/blink.

[5] Content module. http:
//www.chromium.org/developers/content-module.

[6] Differences between Google Chrome and Linux distro
Chromium. http://code.google.com/p/chromium/
wiki/ChromiumBrowserVsGoogleChrome.

[7] The dummynet project.
http://info.iet.unipi.it/~luigi/dummynet.

[8] Hypertext transfer protocol version 2.0,
draft-ietf-httpbis-http2-07. http://tools.ietf.org/
html/draft-ietf-httpbis-http2-07.

[9] SPDY. http://www.chromium.org/spdy.

[10] Speed index.
http://sites.google.com/a/webpagetest.org/

docs/using-webpagetest/metrics/speed-index.

[11] Telemetry.
http://www.chromium.org/developers/telemetry.

[12] Visual progress - dev tools. http://www.webpagetest.
org/forums/showthread.php?tid=12216.

[13] Web Page Replay. http:
//www.github.com/chromium/web-page-replay.

[14] WebKit. http://www.webkit.org.

[15] M. Butkiewicz, H. V. Madhyastha, and V. Sekar.
Understanding Website Complexity: Measurements, Metrics,
and Implications. In Proc. ACM IMC, 2011.

[16] A. Carroll and G. Heiser. Mobile multicores: Use them or
waste them. In Proc. USENIX HotPower, 2013.

[17] A. Carroll and G. Heiser. Unifying DVFS and offlining in
mobile multicores. In Proc. IEEE RTAS, 2014.

[18] H. Chung, M. Kang, and H. D. Cho. Heterogeneous
Multi-Processing Solution of Exynos 5 Octa with ARM
big.LITTLE Technology, 2012.

[19] A. Cunningham. New Opera for Android looks like Opera,
tastes like Chrome. http://arstechnica.com/
information-technology/2013/05/new-opera-for-

android-looks-like-opera-tastes-like-chrome.

[20] M. Dong and L. Zhong. Chameleon: A Color-adaptive Web
Browser for Mobile OLED Displays. In Proc. ACM

MobiSys, 2011.

[21] M. Dong and L. Zhong. Chameleon: A Color-Adaptive Web
Browser for Mobile OLED Displays. IEEE Transactions on

Mobile Computing (TMC), 2012.

[22] S. Dutton. Measuring Page Load Speed with Navigation
Timing. http://www.html5rocks.com/en/tutorials/
webperformance/basics, 2011.

[23] J. Glauner. Analyzing Website Performance at a Glance.
http://www.stratigent.com/community/

analytics-insights-blog/

analyzing-website-performance-glance, 2013.

[24] U. Gundecha. Selenium Testing Tools Cookbook. Packt
Publishing, 2012.

[25] Q. He, C. Dovrolis, and M. Ammar. On the predictability of
large transfer TCP throughput. In Proc. ACM SIGCOMM,
2005.

[26] J. Huang. Performance and Power Characterization of

Cellular Networks and Mobile Application Optimizations.
PhD thesis, The University of Michigan, 2013.

[27] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and
P. Bahl. Anatomizing application performance differences on
smartphones. In Proc. ACM MobiSys, 2010.

[28] B. Iglewicz and D. Hoaglin. Volume 16: How to Detect and

Handle Outliers. 1993.

[29] Monsoon Solutions Inc. Monsoon power monitor. http:
//www.msoon.com/LabEquipment/PowerMonitor.

[30] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie.
Measurement and Analysis of Mobile Web Cache
Performance. In Proc. WWW, 2015.

[31] L. A. Meyerovich and R. Bodik. Fast and parallel webpage
layout. In Proc. WWW, 2010.

[32] M. Mirza, J. Sommers, P. Barford, and Xiaojin Zhu. A
machine learning approach to TCP throughput prediction.
Networking, IEEE/ACM Transactions on, 18(4):1026–1039,
2010.

[33] K. W. Nixon, X. Chen, H. Zhou, Y. Liu, and Y. Chen. Mobile
gpu power consumption reduction via dynamic resolution
and frame rate scaling. In HotPower, 2014.

[34] A. Pathak, Y. C. Hu, and M. Zhang. Where is the Energy
Spent Inside My App?: Fine Grained Energy Accounting on
Smartphones with Eprof. In Proc. ACM EuroSys, 2012.

[35] F. Qian, S. Sen, and O. Spatscheck. Characterizing Resource
Usage for Mobile Web Browsing. In Proc. ACM MobiSys,
2014.

[36] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Characterizing Radio Resource Allocation
for 3G Networks. In Proc. ACM IMC, 2010.

[37] M. Rasmussen. sched: Task placement for heterogeneous
MP systems. http://www.lwn.net/Articles/517250,
2012.

[38] R. Schoen. Wicked Fast (Performance investments). In
Chrome Dev Summit, 2014.

[39] B. Shneiderman, C. Plaisant, M. Cohen, and S. Jacobs.
Designing the User Interface: Strategies for Effective

Human-Computer Interaction. Fifth edition, 2009.

[40] J. Sommers and P. Barford. Cell vs. wifi: On the performance
of metro area mobile connections. In Proc. ACM IMC, 2012.

[41] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and
J. P. Singh. Who Killed My Battery?: Analyzing Mobile
Browser Energy Consumption. In Proc. WWW, 2012.

[42] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. How Speedy is SPDY? In Proc. USENIX

NSDI, 2014.

[43] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How Far Can
Client-only Solutions Go for Mobile Browser Speed? In
Proc. WWW, 2012.

[44] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang,
and Q. Li. Optimizing Background Email Sync on
Smartphones. In Proc. ACM MobiSys, 2013.

[45] B. Zhao, Q. Zheng, G. Cao, and S. Addepalli. Energy-Aware
Web Browsing in 3G Based Smartphones. In Proc. IEEE

ICDCS, 2013.

[46] Y. Zhu and V. J. Reddi. High-performance and
Energy-efficient Mobile Web Browsing on Big/Little
Systems. In Proc. IEEE HPCA, 2013.

26

