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Abstract: Class activation map (CAM) helps to formulate saliency maps that aid in interpreting the
deep neural network’s prediction. Gradient-based methods are generally faster than other branches
of vision interpretability and independent of human guidance. The performance of CAM-like studies
depends on the governing model’s layer response and the influences of the gradients. Typical gradient-
oriented CAM studies rely on weighted aggregation for saliency map estimation by projecting the
gradient maps into single-weight values, which may lead to an over-generalized saliency map. To
address this issue, we use a global guidance map to rectify the weighted aggregation operation during
saliency estimation, where resultant interpretations are comparatively cleaner and instance-specific.
We obtain the global guidance map by performing elementwise multiplication between the feature
maps and their corresponding gradient maps. To validate our study, we compare the proposed study
with nine different saliency visualizers. In addition, we use seven commonly used evaluation metrics
for quantitative comparison. The proposed scheme achieves significant improvement over the test
images from the ImageNet, MS-COCO 14, and PASCAL VOC 2012 datasets.

Keywords: class activation map (CAM); explainable AI (XAI); global guidance map

1. Introduction

Deep neural networks have achieved superior performance on numerous vision
tasks [1–3]. However, they contain complicated black boxes with huge, unexplainable
parameters that begin with random initialization and reach another unpredictable (still) sub-
optimal point. Such transformations are non-linear for each problem, the interpretability
remains unsolved.

The vision community relies on estimating saliency maps for deciphering the decision-
making process of deep networks. We try to bridge the unknown gap between the input
space and decision space through this saliency map. These saliency map generation
approaches can be divided into different procedures regarding input space [4–6], feature
maps [7–13], or propagation scheme [14–18]. Usual perturbation-based methods [19–21]
probe the input space into different deviated versions and obtain a unified saliency map by
their underlying algorithms. Even though their approach produces a better result, their
process is relatively slow. CAM-like methods rely on the gradient for the given class and
create a decent output within a very brief computation time.

This study explores the established framework of CAM-based methods to address
current issues within vision-based interpretability. Similar studies usually rely on gradient
information to produce saliency maps. Some replace the gradient dependency with score
estimation to build the saliency map out of the feature maps. Nonetheless, these studies
formulate saliency maps that often suffer degradation during class discriminative examples.
Moreover, their weighted accumulation does not always cover the expected region for the
given single class instance, as the associated weights sometimes do not address the local
correspondence. On the other hand, the gradient-less methods take significant time to
produce a score index for the feature maps.
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Typically, the gradient maps are averaged into single values to produce the saliency
map within CAM-like studies. However, this projection is not always efficient for the
saliency map. In Figure 1, we can see that weighted multiplication still contains traces of
unwanted classes. For dual-class image (right), activation-based methods [9,10,22] suffer
from unwanted traces for the secondary class (cat), as the model should highlight salient
regions for the primary class (dog) only. To address the appearance of the secondary class
due to the weighted multiplication, we first look at the problem setup. For a given image,
we introduce a scheme that produces a fixed number of feature maps before going into
the dense layers. This fixation limits our search space for the saliency map, and the only
variables are the gradient maps that change according to the class.

(a) Single Class (b) Feature map (c) Ours

(d) Score-CAM (e) Grad-CAM (f) Grad-CAM++

(a) Dual Class (b) Feature map

(c) Ours (1st class) (d) Ours (2nd class)

(e) Score-CAM (1st

class)
(f) Grad-CAM (1st

class)
(g) Grad-CAM++(1st

class)

Figure 1. Examples of feature maps, saliency maps from three existing methods [9,10,22], and pro-
posed method’s results for single (left) and dual-class (right) images. For the single class, our
method’s response is close to the feature map response. For dual-class, our method shows the class
discriminatory behavior, whereas the other methods still show the traces of the secondary class on
the primary class response.

Gradient matrix to a single value conversion eventually reduces many significant
gradients from influencing the overall accumulation. If we keep all the gradients and
perform elementwise multiplication with feature maps, the obtained map contains better
representations of the assigned class. The acquired map is the intermediate global guidance
map for the usual local weighted multiplication. We use this guidance map to constrain
the generated feature maps to be responsive only to the assigned class through element-
wise matrix multiplication. After that, we perform the formal weighted accumulation for
acquiring the saliency map, followed by a carefully designed upscaling process. Thus,
the produced saliency map is more responsive to the given class and its boundaries than
previous approaches. The following lines summarize our overall contributions:

• A new saliency map generation scheme is formulated by introducing a global guidance
map that incorporates the elementwise influence of the gradient tensor onto the
saliency map.

• Acquired boundaries for the saliency maps are crisper than contemporary studies and
perform efficiently within single/multi-class/multi-instance-single class cases.

• To validate our study, we perform seven different metric analyses on three different
datasets, and the proposed study achieves state-of-the-art performance in most cases.

The rest of the paper is organized as follows: Section 2 describes the literature that
is related to our method. Following this, we describe our proposed architecture with a
mathematical description in Section 3. Subsequently, Section 4 contains the performance
evaluation based on different relevant metrics. Section 5 highlights the advantages and
limitations of the proposed method. Finally, the last section concludes with future works.
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2. Related Work
2.1. Backprop-Based Methods

Zisserman et al. [1,2] first introduced gradient calculation by focusing on computing
the confidence score for explanation generation, and other back propagation-based expla-
nation studies have been introduced later [11,12,14]. However, their gradient employment
and manipulation lead to several issues, as addressed by [11,12]. Instead of a single layer
gradient, Srinivas et al. [11] focuses on aggregating gradients from all convolutional layers.

2.2. Activation-Based Methods

Class activation mapping (CAM) methods are based on the study [7], where authors
select feature maps as a medium for creating an explanation map. GradCAM [9] is a
weighted linear combination of the feature maps followed by the ReLU operation for a
given image and the respective model. Later, GradCAM++ [10] introduced the effect of the
higher-order gradients with inclusive only to positive elements properties. In this way, they
achieve a more precise representation compared to the previous studies. EFC-CAM [23]
has applied constraints on the weighted values of GradCAM for better performance.
However, gradients are not the only way to generate the saliency map, which inspires the
ScoreCAM [22], AblationCAM [13]. X-gradCAM [8], an extension to the GradCAM, follows
the same underlying weighted multiplication for GradCAM. EigenCAM [24] introduces
principal component analysis in developing the saliency map. CAMERAS [25] utilizes
basic CAM studies with multiscale input extension, leveraging the fusion technique of
multiscale feature and gradient map weighted multiplication.

However, GradCAM [9], and relevant studies have shown to produce traces of sec-
ondary saliency when images have multiple classes, as shown in Figure 1. Moreover,
the boundaries of the salient regions are blurred for most results. We believe these negative
effects are due to their averaged implementation of gradient maps for saliency calculation.
In this paper, we introduce a global variable that element-wisely weighs the gradient map
to produce clearly bounded saliency map that is free from secondary traces.

2.3. Perturbation-Based Methods

Another group of studies treats the neural network as a “white box” instead of a
“black box” and proposes an explanation map by probing the input space. These studies
generate saliency maps by checking the response to the manipulated input space. By block-
ing/blurring/masking some of the regions randomly, these studies observe the forward
pass response for each case and finally aggregate their decision to develop the saliency
map. RISE [4] first introduces such analysis, followed by external perturbation [20,21]
where authors rely on the optimization procedure. SISE [5] presents feature map selection
from multiple layers, followed by attribution map generation and mask scoring to gen-
erate the saliency map. Later, they improvise it through adaptive mask selection in the
ADA-SISE [6] study.

3. Proposed Methodology

This section will describe the formulation of the proposed approach as shown in
Figure 2 for obtaining the saliency for the given model and image.
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Figure 2. A comparative overview of the proposed saliency generation. In the baseline formulation [9],
the λkl

C (the mean value of∇kl
C ) is directly multiplied to the feature mapMkl to produce saliency map,

Equation (4) (left green). In our scheme, first we build the global guidance map GM from gradients
and feature map, Equation (5). Then, we follow the baseline formulation by multiplying λkl

C and
guided feature maps to produce the refined saliency map.

3.1. Baseline Formulation

Every trained model infers through the collective response of its feature maps for the
given image. The current understanding of deep learning requires more research to define
the ideal formulation for the extracted feature maps during inference. In this subsection, we
first revisit the baseline formulation used in many of the previous CAM and GradCAM-like
methods [7,9–12].

For any image X ∈ RW×H×3; the model θ generates feature mapsM during inference.
Say,Mkl is the kth feature channel at lth layer, before the final dense layer. CAM [7] aggre-
gates them all and obtains a unified map that will represent the collective correspondence
due to the model θ for the given image. This aggregation for the activated channels is
as follows:

Al = ∑
k
Mkl (1)

This tensor Al contains the global representation for all activated feature maps, which
can serve the purpose of marking salient regions with careful tuning as shown in Figure 1.
In Equation (1), we aggregated all of the feature representations into Al ; elements over
a specific threshold may correspond to the primary class information. Nonetheless, this
observation only works within images with a single class, but is not appropriate for the
dual-class scenarios, as shown in Figure 1.

To achieve class discriminatory behavior, researchers [9–12] worked with the idea
of using weighted aggregation for Equation (1), in contrast to the plain linear addition
operation. To extract weights, first they compute the gradient maps ∇C with respect to the
given class C, from the feature mapsM.

If YC is the class score [9] for the given image from the input model θ, for each
location (i, j) of the kth feature map at the lth layer, then the corresponding gradient map is
expressed as:

∇kl
Cij

=
∂YC

∂Mkl
ij

(2)

If each feature map holds Z number of elements, then the corresponding weight for
each feature mapMkl is:

λ
kl
C =

1
Z ∑

i
∑

j
∇kl
Cij

(3)
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which is the mean value of ∇kl
C . Hence, the regular baseline formulation [9] for the saliency

map SC estimation is expressed as follows:

SC = ReLU(∑
k

λ
kl
C ×M

kl ) (4)

3.2. Incorporating Global Guidance

Equation (4) achieves class discriminatory behavior; however, it still faces challenges
due to its formulation. If we investigate the above equation, we see that λ

kl
C weighs the

corresponding feature mapMkl . Typical λ
kl
C treats every member of the givenMkl equally

and increases/decreases their collective effect homogeneously. Therefore, we can still see
the traces of the other classes in the saliency map, as shown in Figure 1. Other studies [5,6]
have shown class discriminatory performance through perturbations without relying upon
the gradients. However, those studies are time expensive [11] and often require human
interaction. Hence, it is natural to ask, can we still rely on the gradient-weighted operation
and address the above issues?

In response to this, we propose a global guidance map. To obtain the global guidance
map, we perform a simple elementwise multiplication between the feature maps and
their corresponding gradient maps. The formulation for the global guidance map (GM) is
as follows:

GM = ReLU(∑
k
∇kl
C �M

kl ) (5)

The idea behind considering the global guidance map is to focus only on the salient
regions by limiting the operating zone for the λ

kl
C . Since the multiplication operation of

Equation (5) investigates individual responses for every element of the gradient maps,
we can mark the class-specific regions from the feature maps. In this way, the captured
guidance map successfully omits the trace of the secondary classes from Equation (4)
unless the generated feature maps heavily overlap between categories, signifying the
possible misclassification.

In summary, we first compute GM and multiply it with each of the feature maps to
obtain the class discriminative feature maps from the initial class representative feature
maps. Then, we perform the weighted multiplication between each member of the λ

kl
C and

class discriminative feature maps, followed by the final aggregation to obtain the desired
representation. Hence, our proposed weighted-multiplicative-aggregation is as follows:

SC = ReLU(∑
k

λ
kl
C × (GM �Mkl )) (6)

In Equation (6), the only reason we are using the λ
kl
C is to gain a similar homogeneous

increment as in Equation (4), which also helps to preserve visual integrity during the
final upsampling operation. Since guidance map GM can successfully omit the secondary
classes from any kth feature mapMkl by ‘masking’ the primary governing region, it also
becomes possible to produce increments in the desired class region with the additional
multiplication help from λ

kl
C . Finally, typical smoothing and normalization are performed

on the saliency map before post aggregation up-sampling onto the given image size. In this
way, the achieved saliency map SC shows significant improvement in both single class
representative and multiclass discriminative cases. Figure 3 illustrates each of the stages.
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Input(Dual Class)

GM (cat) Sc w/ GM (cat) SC w/o GM for
GradCAM++(cat)

GM (dog) Sc w/ GM (dog) Sc w/o GM (dog) SC w/o GM for
GradCAM++(dog)

Figure 3. Proposed global guidance maps GM for cat, proposed saliency map (Sc) with GM for cat
and saliency map (Sc) of Grad-CAM ++ [10] without global guidance GM (first row), and the same
maps for the dog [second row]. The proposed global guidance map provides strong localization
information as well as the exclusion of non-target class.

4. Performance Evaluation

Datasets. Our experimental setup covers three widely used vision datasets: ImageNet,
MS-COCO 14, and PASCAL-VOC 12. Among them, PASCAL-VOC 12 provides the full
segmentation annotations for the input images. Hence, experiments using segmentation-
oriented metrics are performed on this dataset. Other experiments do not involve segmen-
tation labels, as the rest of the experiments are applicable for all datasets mentioned above.

Compared studies. For visual comparison, given the availability and functional
complexities, we consider available official implementations of the GradCAM [9],
GradCAM++ [10], X-gradCAM [8], ScoreCAM [22], Fullgrad [11], Smooth-Fullgrad [11],
CAMERAS [25], Integrated [12], and Relevance-CAM [26]. We report seven different quan-
titative analyses in addition to the visual demonstration. We extract saliency maps from
pretrained VGG16 and ResNet50 networks for all of the methods above in our experiments.
A later section reports the quantitative results from ResNet50 in the respective tables. Like
previous studies [8,10,12,22], we randomly selected a few thousand random images from
the ImageNet and MS-COCO 14 datasets for our experiments. However, since the random
images from previous studies are not made public, the results of our random selections
may vary from the cited studies.

4.1. Visual Demonstration

In this section, we show a qualitative comparison with previous methods. In Figure 4,
we have included diverse sets of images from the datasets. The first five rows show the
performance due to ResNet50, and later are for VGG16. Our image selection includes class
representative, class discriminative, and multiple instances examples. Here, the proposed
method can capture the class discriminative region with greater confidence, if not the entire
class area itself for the bicycle, sheep, sea-bird, and dog image. Our scheme captures the
class region for the sea-bird image and excludes its reflection in the water compared to
other methods.

Additionally, the proposed CAM bounds the whole dog class as a dog and captures
the sheep in a lowlight environment more clearly than other methods.

For images with dual classes, our method presents superior class discriminative
performance. Our study successfully bounds the ’Horse’ as the primary class in the two
Horse images without leaving any traces of the secondary class ’Person’. On the other
hand, compared studies often mark both horse and secondary class instances. Similarly,
in Mastiff image, our method can cover the utmost salient region of the primary class
’Mastiff’ without leaving any traces of the secondary class ’tiger cat’. Our concrete saliency
maps without any traces show that our method can assume better model accuracy than
other methods in the case of images under challenging visual conditions.
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Figure 4. Visual comparison between previous state-of-the-art studies and the proposed method.
For the given demonstrations, our approach can mark down the primary salient regions under
challenging visual conditions. Additionally, our saliency maps are more concrete and leave almost
no traces for the secondary-salient areas.

4.2. Quantitative Analysis

To present our quantitative analysis, we perform the following experiments: model’s
performance drops and increments due to the salient and context regions, Pointing score,
Dice score, and IoU score. We present the scores for the above metrics for ResNet50 for
all datasets.

Performance due to the saliency region. If we have a perfect model and a perfect
interpreter to mark the spatial correspondence for the specific class, the network will
provide a similar prediction for both the given image and the segmented salient image.
Here, we first extract the salient region from the given images with the help of the given
interpreter. Then, we perform prediction on the original image, and the corresponding
salient image [10] and check the performance drop for the given interpreter. The expectation
is that the better interpreter can exclude the non-salient region as much as possible; hence,
the performance drop will be as low as possible. Therefore, our first metric delivers the
performance drop due to salient area only as input. For some cases, prediction performance
hinders due to the presence of a strong spatial context.

Performance due to the context region. As above, if saliency extraction is as good as
one expects, then we can set up another experiment with the context region. In this setup,
we first exclude the salient part from the given image to obtain the context image and
predict it. If the interpreter can successfully extract all the salient areas, the performance
will drop near 100 percent.

Pointing game, Dice Score, IoU. For image sets with segmentation labels, various
segmentation evaluations can be calculated for saliency maps. We follow [17] to perform the
pointing game for class discriminative evaluation. In this performance metric, the ground-
truth label is used to trigger each visualization approach, and the maximum active spot on
the resulting heatmap is extracted. After that, it determines if the highest saliency points
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undergo into the annotated boundary box of an object, determining whether it is a hit or
miss. The pointing game accuracy can be expressed as follows:

pointing game =
Hitstotal

Hitstotal + Missestotal
(7)

The high-pointing game value represents a better explanation for the model. The
dice score is a popular metric for analyzing segmentation performance. It results from the
ratio of the doubled intersection over the total number of elements associated with this
instance. IoU stands for intersection over the union. It is a widespread metric for evaluating
segmentation performance. This score ranges from 0 to 1 and signifies the overlapping area
between the obtained image and its corresponding ground truth.

The proposed method performs better or similar to the best-performing saliency
generation method in Table 1. Here, we present the comparative data on the Pascal VOC
2012 dataset for the ResNet50 model. Out of seven different performance tests, our method
obtains the highest score for six of them. For an increase in the context zone, our study
differs only 0.03 from the best performing result. In Table 2, the proposed research avails
state-of-the-art performance for three out of four metrics. Table 3 also shows the best
performance of our method for every experiment metric using the ImageNet dataset.
The PASCAL VOC 2012 dataset has a corresponding segmentation mask, and we can
achieve pseudo segmentation masks by thresholding the saliency maps. Achieved scores
for the Pointing game, Dice and IoU signify that our study can better capture interest zones
than the compared studies. To measure the explainability, we also conducted a comparative
analysis in Figure 5 on three images from the Pascal VOC 2012 dataset and presented the
insertion and deletion metrics proposed in [4]. Here, our method captures the most salient
regions for both single, dual, and dual classes with multiple instances in comparison to
GradCAM [9], GradCAM++ [10], and X-gradCAM [8].

Table 1. Comparative evaluation in terms of salience zone drop and context zone increase, Pointing
Game, Dice, IoU (higher is better) and salience zone increase and context zone drop (lower is better)
on the PASCAL VOC 2012 dataset for ResNet50 model. Comparison performed on GradCAM, Grad-
CAM++, X-gradCAM, CAMERAS, FullGradCAM, Smooth FullGradCAM, Integrated GradCAM,
ScoreCAM, RelevanceCAM, and our proposed method, respectively. The best scores are in bold form
and second-best scores are underlined.

[9] [10] [8] [25] [11] [11] [12] [22] [26] Proposed

Increase for salience zone ↑ 0.0366 0.0716 0.0366 0.0715 0.0421 0.0421 0.0172 0.0506 0.0559 0.0786
Drop for context zone ↑ 0.9395 0.8812 0.9429 0.8834 0.9083 0.9281 0.8124 0.9389 0.9089 0.9443
Pointing Game ↑ 0.3355 0.4731 0.3733 0.4412 0.3713 0.4422 0.2642 0.4322 0.532 0.5945
Dice ↑ 0.2822 0.3422 0.2934 0.3342 0.2942 0.3328 0.1834 0.3321 0.411 0.4321
IoU ↑ 0.0823 0.1122 0.0901 0.1007 0.0812 0.0963 0.0625 0.0943 0.121 0.1321
Drop for salience zone ↓ 0.8996 0.8064 0.8745 0.8201 0.8873 0.8762 0.9399 0.8567 0.8333 0.7784
Increase for context zone ↓ 0.0172 0.0312 0.0205 0.0244 0.0291 0.0215 0.0411 0.0151 0.029 0.0183

Table 2. Comparative performance drop and increment of saliency and context zones on the MS-
COCO 14 dataset for ResNet50 model. Comparison performed on GradCAM, GradCAM++, X-
gradCAM, CAMERAS, FullGradCAM, Smooth FullGradCAM, Integrated GradCAM, ScoreCAM,
RelevanceCAM, and our proposed method, respectively. The best scores are in bold form and
second-best scores are underlined.

[9] [10] [8] [25] [11] [11] [12] [22] [26] Proposed

Drop for context zone ↑ 0.9023 0.9495 0.9142 0.9424 0.8961 0.9025 0.8607 0.9183 0.9081 0.9391
Increase for saliency zone ↑ 0.0490 0.0913 0.0555 0.0935 0.0455 0.0495 0.0796 0.0695 0.089 0.0999
Drop for saliency zone ↓ 0.8394 0.7243 0.8081 0.7325 0.8454 0.8288 0.7713 0.7822 0.7357 0.6493
Increase for context zone ↓ 0.0245 0.0165 0.0215 0.0172 0.0311 0.0315 0.0335 0.0205 0.0311 0.0152
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Table 3. Comparative performance drop and increment of saliency and context zones on the Ima-
geNet dataset for ResNet50 model. Comparison performed on GradCAM, GradCAM++, X-gradCAM,
CAMERAS, FullGradCAM, Smooth FullGradCAM, Integrated GradCAM, ScoreCAM, Relevance-
CAM, and our proposed method, respectively. The best scores are in bold form and second-best
scores are underlined.

[9] [10] [8] [25] [11] [11] [12] [22] [26] Proposed

Drop for context zone ↑ 0.8767 0.9178 0.8698 0.9335 0.8379 0.8548 0.8938 0.8585 0.8541 0.9392
Increase for saliency zone ↑ 0.0535 0.0903 0.0635 0.0936 0.0803 0.0669 0.0435 0.1003 0.0969 0.1008
Drop for saliency zone ↓ 0.7906 0.6717 0.7682 0.7302 0.7775 0.7844 0.7267 0.6975 0.6844 0.6492
Increase for context zone ↓ 0.0234 0.0067 0.0368 0.0134 0.0502 0.0301 0.0301 0.0468 0.0602 0.0012

5.1(a) 5.1(b) 5.1(c)

5.2(d) 5.2(e) 5.2(f)

5.3(g) 5.3(h) 5.3(i)

Figure 5. AUC(Area under curve) demonstration for the insertion and deletion operation for images
on the left side. The above analysis shows that the proposed method can capture the most salient
regions for a single class, dual-class, and dual-class with multiple instances compared to the previous
methods [8–10]. The second column demonstrates the IAUC(Insertion area under curve) comparison
and the third column demonstrates the DAUC(Deletion area under curve) comparison.

4.3. Interpretation Comparison

Saliency map generation is not all about capturing the class of interest as precisely as
possible. A faithful interpretation is also a significant part of saliency generation studies.
In other words, any interpretable method should explain why the underlying model is
making such a prediction by marking the corresponding image region. However, we cannot
present this for every image from the dataset, but a sophisticated example can show the
difference from previous methods.

In Figure 6a, we have presented the interpretation comparison between the proposed
study and the GradCAM++ [10]. Here, the top-1 class response is ‘Albatross’ for the given
image. For VGG16, the saliency map for the proposed method marks one of the Albatross
birds and the water as context, but fails to mark the other Albatross bird. For ‘Albatross’,
our method with the VGG16 shows different interpretations due to the global guidance map
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and responds to the water as context. In contrast to ResNet50, our guidance map marks
both Albatross birds without marking the water context. However, for both networks,
GradCAM++ [10] captures both of the birds and also barely touches the water context.
For this particular image, the proposed method presents a clearer interpretation difference
between VGG16 and ResNet50.

In Figure 6b, we show why the models might identify the given image as ‘Ruddy
Turnstone’ class. With our scheme, we interpret that surrounding stones and water are
features that are corresponding to the Ruddy Turnstone bird for both VGG16 and ResNet50.
This interpretation makes more sense if we look at typical Ruddy Turnstone images from
the ImageNet dataset Figure 6b, where the most of Ruddy Turnstone birds are shown with
a stony sea-shore area as the background. Hence, we can utilize this interpretation as a
medium for identifying the dataset bias. On the other hand, GradCAM++ [10] shows the
Albatross bird regions as the interpretation for the Ruddy Turnstone, and almost ignores
the associated context.

Input

VGG (Ours) ResNet (Ours) VGG (GradCAM++) ResNet (GradCAM++)

VGG (Ours) ResNet (Ours) VGG (GradCAM++) ResNet (GradCAM++)

(a)

1

(b)
Figure 6. Interpretation comparison between the proposed and GradCAM++ [10] to explain why
the underlying model is making such a prediction by marking the corresponding image region.
(a) Interpretation comparison between the proposed and GradCAM++ [10]. The upper row is the
response map for the primary ’Albatross’ bird class, and the second row is for the secondary class,
’Ruddy Turnstone’ bird. The proposed method clearly presents the difference between VGG16 and
ResNet50 in terms of interpretation, whereas GradCAM++ [10] responses are all similar across
different networks and classes. (b) Upon examining typical Ruddy Turnstone bird images in the
ImageNet dataset, we see that stony shore is the background for most of the Ruddy Turnstone bird
images and we can see how stony shore is interpreted as ’Ruddy Turnstone’ for VGG Net.

5. Discussion

Several studies [22,27] have raised some questions about the faithfulness of gradients
to explain deep networks. The deeper depth of the model may increase the noise and
discontinuity of the gradients, which is called the shattered gradient problem [27]. Passing
through the activation functions such as ReLU or Sigmoid may result in saturation or
explosion of gradients, and gradients can get noisy due to this saturation. GradCAM [9]
and GradCAM++ [10] accumulate only positive gradients for weighing the features, which
makes them more susceptible to these noises. Our method incorporates all of the gradients
to produce our global guidance map that generates the salience map with local information
of the corresponding classes. As a result, our method can produce a crisper saliency map
without traces of unwanted classes. The visual saliency maps from explainable methods can
be used for segmentation and localization under complex supervision. Our crisper saliency
map can achieve significant performance upgrades in both single-class and multi-class
segmentation and localization applications.
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Different class-discriminative methods backpropagate different values such as gradi-
ents for GradCAM [9,10], relevance-score [26] or maximum activated regions [28]. As an
extension of [9], our method also backpropagates gradients that require an additional
computational burden. Moreover, also like others, our method is feature map-dependent.
Comparatively shallower networks might produce faulty feature maps which are responsi-
ble for faulty gradients under the corresponding class. These faulty gradients can create
“false positive regions” that result in poor segmentation performance over the target class
and poorer results for segmentation-based metrics such as Dice and IoU. Finally, distin-
guishing multiple instances of the same class is still an unapproachable problem using
gradient backpropagate-based scheme.

6. Conclusions

In this study, we present a novel extension of the traditional gradient-dependent
saliency map generation scheme. The proposed method leverages element-wise multi-
plicative aggregation as guidance with previous weighted multiplicative summation and
further improves the performance of salient region bounding. Additionally, we showed
our study’s advanced class discriminative performance and presented evidence for better
area framing with deeper networks. Furthermore, our model can avail a crisper saliency
map and significant quantitative improvement over three widely used datasets. High-level
vision tasks such as segmentation, object detection and localization require highly class-
discriminative behavior of the model for better performance. We aim to apply our crisper
saliency map for segmentation using only the classification data. We are also interested in
the problem of distinguishing different instances of the same class.
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