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ABSTRACT 

 Lithium metal anodes are critical enablers for high energy density next 

generation batteries, but they suffer from poor morphology control and parasitic 

reactions. Recent experiments have shown that an external packing force on Li metal 

batteries with liquid electrolytes extends their lifetimes by inhibiting the growth of 

dendritic structures during Li deposition.  However, the mechanisms by which 

pressure affects dendrite formation and growth have not been fully elucidated.  For 

example, beneficial pressure effects have been observed even for thin polymer 

separators whose mechanical properties are not expected to be able to hinder 

dendrite growth.  In this paper we offer an explanation for how dendrite growth can 

be inhibited when the cell is subjected to an external load, even with a relatively soft 

separator.  We carried out a three-dimensional contact mechanics model based on 

the semi-analytical method for tracking Li surface and sub-surface stresses for a pouch 

cell architecture with realistically (micron-scale) rough electrode surfaces subjected to 

a packing force.  Our work shows that the picture normally used to understand 

dendrite penetration, where micron-scale Li metal protrusions press conformally 

against a separator, is oversimplified.  At the larger, sub-mm scales studied here, 

contact between the Li metal and the separator/cathode is highly heterogeneous and 

far from conformal for surfaces with realistic roughness: the load is carried at a 

relatively small number of the tallest asperities, while the rest of the Li surface feels 

no force at all.  Yet, dendrite growth is suppressed over the entire Li surface.  To 

explain this observation, we suggest that (1) local contact stresses can be high enough 

(tens of MPa) at the peaks of Li protrusions (incipient dendrites) so that incremental 

Li+ ions avoid plating there; and (2) creep ensures that Li protrusions are gradually 

flattened.  These mechanisms cannot be captured in micron-scale analyses of 

dendrite growth. 
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1. INTRODUCTION 

Using lithium (Li) metal anodes is a focus of next-generation batteries due to their 

high capacity [1-3]. However, the development of Li-metal batteries with liquid 

electrolytes, the focus of this work, has encountered a number of problems [4-6], such 

as loss of active Li (loss of capacity) as the Li reacts with the (liquid) electrolyte; and 

formation and growth of Li protrusions (commonly referred to as dendrites), which 

results in “dead” Li.  Li protrusions can also penetrate through the separator and 

cause a short circuit [3, 7-11], potentially resulting in a fire [12]. 

A number of experimental observations [5, 13-16] have shown that applying an 

external mechanical force on a Li metal pouch cell with a liquid electrolyte can inhibit 

dendrite growth, thereby reducing capacity loss and improving safety.  To understand 

this behavior, analytical and numerical studies have been undertaken to describe the 

influence of local mechanical stresses on dendrite initiation and growth, including 

phase field models[17, 18], which study dynamics at the interfaces between the 

electrolyte and dendrites; surface-tension models [19-22], which study the conditions 

for dendrite initiation and growth velocity in liquid electrolytes; Brownian statistical 

models [23-26], which analyze the morphology evolution of deposited species; and 

the Chazalviel electromigration-limited model [9, 27-29], which considers that 

dendrite initiation is induced by an electrodeposition process.   

The most widely used model for understanding how mechanical forces inhibit 

dendrite growth is that proposed by Monroe and Newman [20, 30].  This model 

assumes that a growing Li protrusion (incipient dendrite) under a given current density 

pushes against a polymer electrolyte or separator such that they are in perfect 

(conformal) contact, and it calculates minimum mechnical properties of the polymer 

such that dendrites cannot penetrate through it.  Srinivasan et al. [31] have recently 

proposed an extension of this model and applied it to soft gel, polymer, and ceramic 

electrolytes.  The model, which focuses on the shear strength of the electrolyte, has 

met with only limited success.  For example, ceramic solid electrolytes, with 

sufficient shear modulus to prevent dendrites according to the model, suffer from 

defects and grain boundaries that are susceptible to dendrite penetration, 
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demonstrating the importance of considering real rather than ideal model systems.  

Furthermore, even glass solid electrolytes with no grain boundaries suffer from 

dendrite penetration [32-36].  Similarly, dendrite suppression with soft separators 

under an external load[16] would also seem to violate its predictions. 

Most of the work mentioned above has focused on the influence of local 

mechanical stresses at the particle or micron scale, an understanding of which is 

clearly necessary for analyzing growth of Li protrusions. However, because of Li metal’s 

modest yield strength and tendency to creep, its mechanical behavior cannot be fully 

captured with a micron- or sub-micron-scale analysis. To our knowledge, there have 

been no investigations of the effects of spatial heterogeneity [10, 37] on the 

mechanical contact stresses that are generated when macroscopic external pressures 

are applied to electrodes with realistic (rough at the micron-scale) surfaces.  As we 

show below, stresses caused by micron-sized asperities at one location can affect the 

stress field over thousands of square microns. 

Theoretical work aimed at accounting for spatial heterogeneity in pressure must 

consider the nature of the cell architecture, including modeling the contacts for a 

realistically rough cathode.  (The cathode porosity, generally near 30% for 

commercial cathodes, ensures that its surface is rough.) A significant level of 

roughness is inevitable on the Li metal as well[11, 16, 38, 39], which can add to the 

complexity of the stress field.  

In this work, we ask how an external pressure can inhibit dendrite growth in 

lithium metal batteries, even in the absence of a stiff polymer electrolyte or separator.  

Our approach is to model the mechanics of a single electrode pair under conditions 

similar to those used by Dahn et al [16].  In those experiments, a Cu foil current 

collector supported by a rigid structure served as the negative electrode upon which 

Li metal was deposited during the charge step.  We used that work to guide our 

modeling because the experiment was well characterized and because it showed a 

beneficial effect of presure, even for a thin separator whose mechanical properties 

would not have been expected[20, 31] to inhibit dendrite growth according to the 

Monroe-Newman model.   
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We consider the Li-separator and cathode-separator interfaces to be contact 

interfaces (where stresses are calculated), while the interface between the Cu foil and 

the Li metal is considered as an internal material interface. Contact interfaces involving 

rough surfaces can be modeled by using semi-analytical methods (SAMs) built on core 

analytical solutions and supported by efficient numerical approaches, including the 

conjugate gradient method (CGM) [40] and the fast Fourier transform (FFT) method 

[41, 42]. SAMs have been used for solving numerous contact problems, such as 

magnetoelectroelastic contacts [43-45], elastoplastic contacts [46-49], and contact 

involving rough surfaces [50-53]. Derivation of the core analytical solutions, in terms 

of displacements and stresses, is essential for developing a contact model and 

simulating the surface interactions in such structures.  Here we use a SAM-based 

analysis to model a single electrode pair.  By carrying out the analysis in 3D, we can 

properly capture long-range effects of rough surfaces. 

We emphasize that these are mechanics calculations carried out at the sub-mm 

scale.  We are not trying to account for non-mechanical (e.g., electrical, chemical, 

transport) effects on dendrite formation; or for any effects—mechanical or 

otherwise—at the 1-micron scale or smaller.  Furthermore, we are not investigating 

how dendrites penetrate separators; we are focusing on understanding why an 

external pressure can inhibit dendrite growth in the absence of a stiff separator. 

 

2. FORMULATION FOR 3D CONTACTS OF Li-SEPARATOR-CATHODE INTERFACES 

2.1 Problem description 

Figure 1 illustrates the 3D structure of a Li metal pouch cell with a single electrode 

pair. A liquid electrolyte fills the pores, shown in white.  We assume that, since there 

is essentially 100% pore connectivity in commercial electrodes[54] and separators[55], 

excess electrolyte can be locally squeezed out under any local load—ultimately, to the 

edges of the pouch, as is the case for gases [56]—so that for purposes of these 

calculations we assign a zero modulus to these regions and ignore their contribution 

to the local pressure, even though the pores always remain filled with electrolyte.  

The Poiseuille equation predicts that for a pressure differential of 1 atm, an electrolyte 
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viscosity of 2 cp[57], and a pore diameter of 0.1 m, electrolyte can flow through the 

electrode or the separator in less than 1 second, supporting this assumption.  

Rectangular Cartesian coordinates (𝑥, 𝑦, 𝑧𝐿𝑖) , (𝑥, 𝑦, 𝑧𝐶𝑎𝑡ℎ)  and (𝑥, 𝑦, 𝑧𝐶𝑢) are 

introduced with the positive 𝑧𝐿𝑖 axis oriented into the depth direction (or the vertical 

direction) of the Li metal, the positive 𝑧𝐶𝑎𝑡ℎ axis oriented into that of the cathode, 

and the positive 𝑧𝐶𝑢 axis oriented into that of the copper, as shown in Figure 1. Such 

a contact problem is completely general subject to the following considerations: 

• During the charge cycle, the thickness of the Li metal increases from 2 μm to 

18 μm, corresponding to an incremental 3.3 mAh[16].  Simultaneously, the 

external load increases.  We treat the copper foil plus its supporting 

structure as a half space, where any effects from the far side of the supporting 

structure is ignored.  The elastic modulus of the copper foil on the rigid 

support is taken to be that of copper.  

• The separator is treated as continuous body whose only important property 

is its elasticity. (See below for additional discussion.) 

• The cathode is treated as a rigid body because the elastic moduli for all 

commercial cathode particles are much larger (> 100 GPa) than those of the 

contact partners—a polypropylene separator (~0.22GPa[58, 59]) and Li metal. 

The binder can be relatively soft, but we assume that the calendering process, 

which occurrs at very high pressures before assembly, has made the cathode 

much more rigid (jammed) in compression than the separator and the Li 

metal. (Calendering, a process carried out for commercial electrodes, can 

reduce the porosity by up to a factor of 2[60], with the compressive forces 

used in calendering limited by the fracture strength of the particles[61, 62].)  

Our analysis assumes a calendered electrode in order to make it relevant to 

real-world systesms. 

• The lengths of the system, 𝐿𝑐 in the 𝑥 and 𝑦 directions, are taken to be 

infinite relative to the separator thickness ℎ𝑆𝑒𝑝 (13.5 μm). 

2.2 Interfacial conditions 

2.2.1 Li-Separator (Li-Sep) interfacial conditions.  
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We introduce a 3D rough surface profile 𝑠𝐿𝑖(𝑥, 𝑦) of the Li as a function of lateral 

coordinate variables 𝑥 and 𝑦. The Li-Sep interfacial condition (i.e. 𝑧𝐿𝑖 = 𝑧𝑆𝑒𝑝 = 0) 

for the vertical displacements can be expressed as, 

, ,
( , ,0)+ ( , ,0) ( , ) ( , ) ,

Li z Sep z Li Li Sep Li Sep
u x y u x y s x y g x y − −= − + +           (1) 

where 𝑢𝐿𝑖,𝑧(𝑥, 𝑦, 0)  and 𝑢𝑆𝑒𝑝,𝑧(𝑥, 𝑦, 0)  are the surface vertical displacement 

components of the Li and the separator, respectively, g𝐿𝑖−𝑆𝑒𝑝(𝑥, 𝑦)  is the gap 

between the Li and the separator, and 𝛿𝐿𝑖−𝑆𝑒𝑝  is the relative rigid-body motion 

between Li and the separator.   

Due to the roughness of the Li surface, the contact and non-contact regions 

between Li-Sep interface are complementary to each other, in which the contact 

region Γ𝐿𝑖−𝑆𝑒𝑝  is subjected to contact pressure 𝑝  (in the Li-Sep interface). Hence, 

the contact condition for pressure distributions can be written as, 

( , ) 0 & ( , ) 0, ( , ) ,

( , ) 0 & ( , ) 0, ( , ) ,

Li Sep Li Sep

Li Sep Li Sep

p x y g x y x y

p x y g x y x y

− −

− −

 =  

=   
                    (2) 

where the overall mechanical equilibrium condition for the packing force 𝑊 in the 

modeled region, must satisfy ∫ 𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑊𝛤𝐿𝑖−𝑆𝑒𝑝 .                          (3) 

The surface stresses in the Li and separator at the Li-Sep interface (i.e. 𝑧𝐿𝑖 =𝑧𝑆𝑒𝑝 = 0) can be written as, 

, , ,
( , ,0) 0, ( , ,0) 0, ( , ,0) ( , ),

Li zx Li zy Li zz
x y x y x y p x y  = = = −             (4) 

, , ,
( , ,0) 0, ( , ,0) 0, ( , ,0) ( , ),

Sep zx Sep zy Sep zz
x y x y x y p x y  = = = −           (5) 

where 𝜎𝑧𝑥(𝑥, 𝑦, 0)  and 𝜎𝑧𝑦(𝑥, 𝑦, 0)  are the surface shear stress components, and 𝜎𝑧𝑧(𝑥, 𝑦, 0) is the surface normal stress. 

2.2.2 Separator-Cathode interfacial conditions.  

Surface roughness was measured for a commercial LiFePO4 (LFP) cathode 

harvested from a dry A123 20Ah pouch cell using a Bruker Dektak XT Stylus 

Profilometer.  We take this surface to be representative of commercial, calendered 

cathodes.  A 1000m x 1000m region was interrogated with a 1 μ m spacing, 
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averaging over any structures at the sub-micron scale in order to study forces at the 

sub-mm scale.  The surface profile is considered as a 3D function of lateral coordinate 

variables 𝑥  and 𝑦 , i.e. 𝑠𝐶𝑎𝑡ℎ(𝑥, 𝑦) .  In the presence of a packing force 𝑊 , the 

cathode surface asperities penetrate into the separator, deforming it.  The vertical 

displacement 𝑢𝑆𝑒𝑝,𝑧 of the separator at the Sep-Cath interface (i.e. 𝑧𝑆𝑒𝑝 = ℎ𝑆𝑒𝑝) can 

be written as,  

,
( , , ) ( , ) ( , ) ,

Sep z Sep Cath Sep Cath Sep Cath
u x y h s x y g x y − −= − + +                (6) 

where g𝑆𝑒𝑝−𝐶𝑎𝑡ℎ(𝑥, 𝑦)  is the gap between the separator and the cathode, and 𝛿𝑆𝑒𝑝−𝐶𝑎𝑡ℎ is the relative rigid-body motion between the separator and cathode. 

Due to the roughness of the cathode surface, contact and non-contact regions in 

the Sep-Cath interface are complementary, where the contact region Γ𝑆𝑒𝑝−𝐶𝑎𝑡ℎ  is 

subjected to deformation constraints 𝑞 (caused by cathode asperities). Hence, the 

contact condition for deformation constraints 𝑞 can be written as, 

( , ) ( , ) & ( , ) 0, ( , ) ,

( , ) 0 & ( , ) 0, ( , ) .

Cath Sep Cath Sep Cath Sep Cath

Sep Cath Sep Cath

q x y s x y g x y x y

q x y g x y x y

 − − −

− −

= − =  

=   
       (7) 

Due to the lack of bonding at the Sep-Cath interface (i.e. 𝑧𝑆𝑒𝑝 = ℎ𝑆𝑒𝑝 ), the shear 

stresses on the separator at the Sep-Cath interface vanish, 

,

,

( , , ) 0,

( , , ) 0.

Sep zx Sep

Sep zy Sep

x y h

x y h





=

=                                (8) 

The overall mechanical equilibrium condition for the normal stress at the Sep-Cath 

interface must satisfy 

,
( , , ) d d .

Sep Cath
Sep zz Sep

x y h x y W
−

=                       (9) 

2.2.3 Li-Cu interfacial conditions.  

Following the experiments of Dahn et al.[16], we assume an initial 2 m thick Li 

film that is perfectly bonded to the Cu; Li metal is added during the charge step.  

Displacements at the Li-Cu interface (i.e. 𝑧𝐿𝑖 = ℎ𝐿𝑖 and 𝑧𝐶𝑢 = 0) are 

, ,

, ,

, ,

( , , ) ( , ,0),

( , , ) ( , ,0),

( , , ) ( , ,0),

Li x Li Cu x

Li y Li Cu y

Li z Li Cu z

u x y h u x y

u x y h u x y

u x y h u x y

=

=

=

                               (10) 
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2.3 Displacement and stress solutions 

The boundary-value problem described by Eqs. (1-10) can be handled by a fast 

Fourier transform (FFT)-based numerical process, if the Fourier-transformed solutions 

of displacements and stresses at the Cu-Li and the separator-rigid cathode systems are 

analytically solvable.  

 The Fourier-transformed elastic displacements and stress solutions for the Cu-Li 

metal system can be found in [42], also provided in the Supplementary Information S1.  

The Fourier transformed displacements and stresses for the separator-rigid cathode 

system can be obtained starting from the Lamé-Navier equations using the Papkovich–

Neuber potentials and by considering the interfacial conditions Eqs. (5-8). Solutions 

and derivation details are also presented in the Supplementary Information S2.  

2.4 FFT-based elastic-perfectly-plastic contact modeling  

In the FFT-based numerical process, the contact information (e.g. pressure, 

contact stress) and profiles of the Li and cathode surfaces are taken as discrete data 

from an infinite sequence along the 𝑥 and 𝑦 directions. A representative portion, 𝐿𝑐 × 𝐿𝑐, in the 𝑥 − 𝑦 plane is selected as the physical domain, assuming that 𝐿𝑐 × 𝐿𝑐  

is one period of the whole structure, as shown in Figure 2.  This means the overall 

information, including surface features, loading conditions, and mechanical behaviors, 

are taken as periodically repeated from those in the representative 𝐿𝑐 × 𝐿𝑐.  

To operate the FFT-based algorithm, the solutions in section 2.3 need to be 

obtained in the form of frequency response functions (FRFs) by the continuous 

convolution and FFT (CC-FT) algorithm [63]. The details of CC-FT algorithm are given in 

the Supplementary Information S3. The contact simulation was written in Fortran, 

involving the CC-FT algorithm [63] and the conjugate gradient method (CGM) [40]. The 

details of the contact algorithm and a flow diagram are given in the Supplementary 

Information S4. 

In most elastic-perfectly-plastic contact models involving rough surfaces, when 

yield occurs at the surface of materials, we can simply truncate the contact pressure 

peaks at the material hardness, which is about 3 times the yield strength 𝜎𝑌 .  As 

shown in [64], the accuracy of the pressure calculation when using such a truncation 
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treatment increases with decreasing material yield strength, indicating that truncation 

for Li, which has a low yield strength, should be acceptably accurate.  

In the following numerical computation, the physical representative domain of 𝐿𝑐 × 𝐿𝑐  was discretized with a 400 × 400 subset grid in the 𝑥 and 𝑦 directions, 

where the periodic length of the modeled interface is set to 𝐿𝑐 = 400 μm, and the 

spatial resolution is 1 m.  At this size, the major features of the surface are included, 

and CPU times for these 3D calculations are reasonable.  We assume that the Li is 

elastic-perfectly-plastic for these low to moderate strain rates[65].   

To calculate the Li subsurface stresses, the Li was discretized with 200  grid 

points in the 𝑧  direction.  The spacing of these grid points depended on the 

subsurface stress gradients. The macroscopic external pressure is calculated by 𝑃 =𝑊/(𝐿𝑐 × 𝐿𝑐)  where 𝑊  is the total packing force applicable to this representative 

domain.  

Experiment shows that under low pressures, plated Li can be porous [13], while 

deposition at higher pressure can lead to a denser material.  In the Dahn et al. 

experiments [16], run at a current density of 0.6 mA/cm2, a Li metal thickness increase 

of ~ 250 μm  was measured during deposition in their multi-electrode-pair cell, 

compared to a calculated thickness increase of 254μm .  This calculation explicitly 

assumed that the plated Li was fully dense at 0.534 g/cm3.  (No account was taken of 

any volume change in their cathode, but we have measured the crystallographic 

volume change of their cathode material to be less than 1% upon delithiation[66].)  

The agreement, to within about 2% between the calculated and measured thickness 

increase, argues that the plated Li in their high-pressure experiments was reasonably 

close to fully dense. 

There is considerable discussion in the literature over the appropriate value to 

use for the yield stress of Li metal.  Low values for bulk Li have been measured [67, 

68] in the range of 0.41 to 0.89 MPa.  However, more recent work has shown that the 

yield stress depends strongly on the size of the Li structure [69, 70].  Images from 

deposition at high pressure [16] show Li structures roughly in the range 1 to 10 m, 

corresponding to yield stress values [69] in the range of 10 to 100 MPa.  Therefore, 
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we have performed calculations for the three values, 0.66, 10 and 100 MPa, shown in 

Table 1. 

 

3. RESULTS 

3.1 Model properties and verification 

  The cathode surface profile is shown in Figure 3(a).  As expected, the 

measured roughness of this commercial (calendered) electrode is low.  The surface 

roughness of Li metal varies dramatically[38], within each cycle and from cycle to cycle. 

Rather than trying to capture the full range of possible Li surfaces in our calculations, 

we will consider 2 cases: a perfectly smooth Li surface and a surface with a sinusoidal 

form, s𝐿𝑖(𝑥, 𝑦) = 𝐴0 cos(2𝜋𝑥/𝜆) cos(2𝜋𝑦/𝜆)  where we have taken 𝐴0 = 1.0μm 

and 𝜆 = 40μm, Figure 3(b), as an example. Each peak may be considered as a model 

Li protrusion (incipient dendrite).  Although such an assumption is clearly idealized, 

we believe that by analyzing simple surfaces, we can obtain a semi-quantitative 

understanding of local stresses and their distributions for a range of realistic conditions.  

When the separator thickness ℎ𝑆𝑒𝑝 approaches infinity, the coefficients in Eq. 

Eq. (S2.16) become 𝐶 = −1/𝛼, 𝐶̅ = 0, 𝐷 = (1 − 2ν𝑆𝑒𝑝)/𝛼2, and 𝐷̅ = 0. Therefore, 

the Fourier-transformed displacement in Eq. Eq. (S2.8) yields 𝑢̃̃𝑆𝑒𝑝,𝑧 = (1 − ν𝑆𝑒𝑝)𝑝̃̃/(𝜇𝑆𝑒𝑝𝛼) , which is identical to the classical solutions to a half-space given in [41], 

confirming that the Fourier-transformed solutions with their coefficients Eqs. (S2.6-

S2.14, S2.16) are correctly calculated for this case. In order to further verify the CC-FT 

based numerical modeling, we compare the term, 𝛿𝑆𝑒𝑝−𝐶𝑎𝑡ℎ − 𝑢𝑆𝑒𝑝,𝑧 , at the 

separator-cathode interface with the cathode surface profile, s𝐶𝑎𝑡ℎ, of Figure 3(a), for 

the problem of a large macroscopic external pressure 𝑃 = 1,585kPa, a Li thickness ℎ𝐿𝑖 = 18μm, and the Li surface profile 𝑠𝐿𝑖 of Figure 3(b). For such a large external 

pressure, the calculation shows no gap between the separator and the cathode. As 

shown in Figure 3(c), 𝛿𝑆𝑒𝑝−𝐶𝑎𝑡ℎ − 𝑢𝑆𝑒𝑝,𝑧  calculated from the present numerical 

model agrees well with the surface profile 𝑠𝐶𝑎𝑡ℎ , consistent with the interfacial 

condition given in Eq. (6).  
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3.2 Contact stress calculation  

3.2.1 Smooth Li 

Figures 4 and 5 plot the Li surface stress contours ( 𝑥 − 𝑦  section), and Li 

subsurface von Mises stress contours (𝑦 − 𝑧 section) for a smooth Li surface with yield 

strengths of 𝜎𝑌 = 0.66MPa, 10MPa and 100MPa, corresponding to Li structures of 

“very large,” ⁓10m, and ⁓1m, respectively [69].  In the experiments[16], the 

packing pressure increased with Li thickness ℎ𝐿𝑖, and we modeled 3 cases taken from 

their Table 1, where (𝑃, ℎ𝐿𝑖) = (744 kPa, 2μm) , (1,205 kPa, 11μm) , and (1,585 kPa, 18μm). Our calculation results show no gaps between the separator and 

the cathode at these very high pressures, which means the surfaces are conformal, 

and the entire separator-cathode interface carries load.  On the other hand, the Li-

separator interface is not conformal.  Red, green, and yellow regions in Figures 4(a) 

and 5(a) show areas where there is contact between the separator and the Li, while 

the blue regions denote regions where the stress is zero (no contact).  Thus, all of the 

load is supported by taller asperities. Figure 5(c) shows the gap thickness between the 

Li and the separator where white regions show where the gap is zero, denoting the 

contact areas. The maximum gap is between 0.5 and 0.6 microns for the case of (𝑃, ℎ𝐿𝑖) = (744kPa, 2μm) . The gap volumes are 2 × 104, 1.3 × 104 , and 9× 103 μm3, for (𝑃, ℎ𝐿𝑖) = (744kPa, 2μm), (1,205kPa, 11μm) , and (1,585kPa, 18μm) , 

respectively.  The surface stress reaches its maximum value of 1.98MPa , which is 

3𝜎𝑌 , at most contact points. The von Mises stress values indicate that subsurface 

regions below the contact points are plastically deformed.   

For a yield strength of 𝜎𝑌 = 10MPa , corresponding to Li structures near 10 

m[69], the fraction of the area in contact 𝐴𝑝 is reduced because the larger yield 

strength allows contact asperities to carry more load. The peak surface stress for this 

case is 25 MPa, below its maximum value of 3𝜎𝑌 = 30MPa.  The peak von Mises stress 

is 6.66 MPa, lower than yield strength, so that no plastic yielding occurs inside the Li 

metal. The stresses for a yield strength of 𝜎𝑌 = 100MPa  (1 m Li structures) are 

identical to those for 𝜎𝑌 = 10MPa.   
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3.2.2 Rough Li 

Figures 6, 7, and 8 plot the Li surface stress contours (𝑥 − 𝑦  section), and Li 

subsurface von Mises stress contours (𝑦 − 𝑧 section) for the “rough” (i.e., sinusoidal 

with an amplitude of 1 m) Li surface of Figure 3(b). For the low yield strength case, 𝜎𝑌 = 0.66MPa, the surface stress either reaches its maximum value of 1.98MPa or 

is 0. Most of the subsurface Li below the contact points is plastically deformed, 

highlighted by red regions. The surface and sub-surface stresses for 𝜎𝑌 = 10MPa , 

Figure 7, are plastic only near some of the contact points. For 𝜎𝑌 = 100MPa, Figure 

8, the contact points can carry larger loads without plasticity.  The largest surface 

stress is 40 MPa, too low for plastic deformation. These results show that Li protrusions 

(incipient dendrites) are exposed to significant compressive contact stresses (up to 

tens of MPa) by the time they are only 1 m tall. 

Figure 9 shows how the smooth (a) and sinusoidal (b) Li surfaces deform against 

the cathode for external pressures of 𝑃= 744, 1,205, and 1,585 kPa.  The cathode 

surface profile along the 𝑦 direction (for x = 0) from Figure 3(a) is also plotted as a 

dotted line for comparison. For a smooth Li surface, asperity peaks of the rigid cathode 

surface penetrate into the separator, as described by interfacial condition Eq. (6). As 

expected, corresponding convex crests appear on the separator surface at the Li-

separator interface. For the sinusoidal surface, direct contacts between the Li 

asperities and separator become stronger, so that the Li stress distribution is 

dominated by details of the Li surface profile for this example. 

3.2.3 Lighter loads 

The previous calculation results show that for an external pressure of 𝑃= 744 

kPa or greater, the cathode surface is completely conformal with the soft separator. 

Figure 10(a) plots the surface contact stresses on Li for lighter external pressures of 𝑃= 100, 200, and 300 kPa, and a Li thickness of ℎ𝐿𝑖 = 10μm. We have preliminary 

experimental data showing that suppression of Li protrusions may occur in this 

pressure range.  For such pressures, which are of more practical interest, there are 

gaps between the separator and cathode, shown in red, green, and yellow regions in 

Figure 10(b). Separator-cathode gap maps for the rough Li case are identical to those 
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for smooth Li case. Figure 11 plots the fraction of the area in contact as a function of 

the external pressure, for both the Li-separator and separator-cathode interfaces. 

When the external pressure is 500kPa, the whole cathode interface is in contact with 

the separator, while only 12.6% of the Li is in contact with the separator.  

 

4. DISCUSSION 

We first point out two important properties of the separator.  (1) Although we 

are treating the separator as a homogeneous solid, in fact it is highly heterogeneous, 

with pores that penetrate through it.  The smaller in-plane dimension of the pores is 

typically about 100 nm[55], ⁓2 orders of magnitude smaller than the contact regions 

seen in Figure 5.  Thus, from a mechanical point of view, treating the separator as 

homogeneous is a reasonable approximation at the scale of interest here.  (2) 

Assuming that all of the separator pores are filled with electrolyte, Li+ ions can diffuse 

through the separator for purposes of plating or stripping just as readily in contact 

regions as in non-contact regions (but see discussion below).   

Numerous factors, including external pressure, charging rate, separator 

properties, electrolyte chemistry, and temperature can impact the growth of Li 

protrusions (incipient dendrites) during charging.  In the absence of constraints, 

protrusions tend to grow for electrical and transport reasons, a positive feedback 

process that can lead to dendrite growth[11].  In this work we focus on the 

mechanical aspects at larger (sub-mm) scales.  One effect of these macroscale 

interactions is to distribute the load in complex patterns that depend on the surface 

roughness of the electrodes.  These stress fields do depend on mechanical properties 

of the separator, but in a manner different from that discusses by Monroe and 

Newman[20, 30, 31]. 

Our analysis at sub-mm length scales shows that even under high packing forces, 

most of the Li metal surface is not in contact with the separator (unless we use a 

presumably unrealistically low[69, 70] Li yield strength of < 1 MPa).  We note that 

previous work has assumed, implicitly or explicitly, that contact between the separator 

and the lithium metal is conformal, so that any protrusion that starts to form would be 
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subject to being “squashed” by is an extremely stiff separator.  Whatever the validity 

of this picture at micron or sub-micron scales, our results indicate that the mechanics 

involved in pressurizing a Li metal cell should also take larger scales into account. 

The primary question we must ask with respect to our analysis is: In the absence 

of a stiff separator[20], and in the absence of physical contact over most of the Li 

surface (Figure 5), how can we understand the experimental observation that an 

external pressure can impede growth of Li protrusions over the full surface?  We will 

offer two hypotheses that may, singly or in combination, explain the observations.  

We will also propose possible experimental tests of these hypotheses.   

4.1 Asperities 

During the charging step, a total of 15.9 μm of Li was deposited on a 2 μm  

thick Li metal film[16]. Our calculations show that stresses at asperity contacts can 

exceed the average (macroscale) pressure by as much as 2 orders of magnitude, if we 

use the recent measurements for the yield strength[69, 70].  We hypothesize that 

there will be a tendency for Li ions to avoid plating in regions with such high stresses 

because an incremental Li atom deposited on the surface of a region under load is at 

higher energy than one deposited on a surface that is not feeling any load.  In general, 

depositing on the regions that are supporting the external load requires local PV 

mechanical work to lift the cathode by 15.9 microns[71].  These processes can lead 

to local deposition overpotentials on the order of several mV at local stresses of tens 

of MPa[36].  For this reason, we suggest that there will be a tendency to plate in 

regions of lower stress, ultimately allowing the most-stressed regions to partially 

unload.  This process will tend to homogenize the stress field and flatten the Li, but 

only until the stress effects at asperities are small compared to effects of 

electrochemistry and transport [11], at which point this mechanism will no longer 

operate.  Similarly, new protrusions may form and grow during plating, leading to 

new asperity contacts, until the stresses there become high enough so that plating 

moves elsewhere.  This picture differs qualitatively from the Monroe-Newman model 

in that we are not focusing on properties of the separator that are needed to prevent 

dendrite growth, and we are not specifying a particular local current density.  Instead, 
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we are focusing on longer-range heterogeneity in local contact stresses that 

encourages a more uniform Li plating.  

We next address the possibility, ignored up to this point, that protrusions can 

grow as nanoscale dendrites through the separator pores.  There is evidence that at 

these modest current densities (well below the limiting current), dendrite growth 

through nanoscale pores does not occur.  Monroe and Newman’s Figure 12 [20] 

shows that the initial dendrite radius is around 0.4 microns at the limiting current and 

larger than 1 micron at lower currents, compared to a pore size of 0.1 microns in the 

separator.   Supporting their calculation, TEM images show[14] that incipient 

dendrites quickly attain a tip radius of curvature greater than 1 micron.  Cui et al[72] 

also found that Li deposited directly under a separator has a large radius of curvature.  

Additionally, Bazant et al[11] showed that the tips of mossy lithium, the form that 

grows at low current densities, have large radii of curvature.  Most important, they 

showed that mossy dendrites do not penetrate small pores, although their work did 

not involve any external pressure.  In order to test our asperity picture, we suggest 

performing a 6Li-7Li isotope experiment using TOF-SIMS[73, 74], where 6Li is deposited 

under pressure on a 7Li substrate.  To the extent that asperity contact stress plays a 

role and that separator pores can be ignored, we should see an initial (before all of the 

gaps have been filled) patchy spatial distribution of 6Li and 7Li that statistically 

resembles a contact stress map analogous to Figure 5. 

4.2 Creep of Li 

 It has recently been demonstrated[65, 75, 76] that creep plays a critical role in 

understanding the mechanics of Li metal.  Unfortunately for the purposes of our 

analysis, most creep work has examined more-or-less pure Li metal[65, 70, 75, 76]. 

This has a different overall composition from the Li that is plated in an electrochemical 

environment, which incorporates significant amounts of SEI.  Because the presence 

of stiff SEI could change the mechanical properties of Li, we are not convinced that it 

is useful at this time for us to carry out quantitative calculations involving creep of 

electrodeposited Li.   

Nevertheless, we expect, qualitatively, that creep can play an essential role in 
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determining Li morphology, especially at long times.  Once a mechanical situation 

such as that shown in Figure 5 is created, Li metal will begin to creep away from regions 

of high stress to regions of low stress during intervals (which could be many hours) 

such as after charging but before discharging, or even during a slow charge.  Thus, 

creep will also tend to smooth out Li metal surfaces and homogenize stress over time 

scales on the order of hours[65].  This possibility can be tested by rapidly charging 

multiple cells under identical electrochemical and pressure conditions.  The cells can 

then be held at rest, opened at appropriate intervals, and examined ex-situ to see if 

the Li surfaces flatten (relax) with time in a statistical sense.   

In contrast to the Monroe-Newman model, we do not specify a local (micron-scale) 

current density.  Instead, our picture assumes that Li will plate wherever its energy is 

lowest.  Since Li in asperity contact with even a soft separator is at relatively high 

energy, our picture says that Li will tend to plate elsewhere, while protrusions that are 

in contact with the separator will slowly melt away via creep.  Thus, in our picture, 

specific mechanical properties of the separator, such as a high shear modulus (>> 1 

GPa[20, 36, 76]), are not required in order for dendrite growth to be inhibited, in 

agreement with observation [16].  These processes cannot be captured unless stress 

heterogeneity at greater than micron-scale is recognized.   

4.3 Possible Additional Effects on Dendrite Growth 

Experiment shows that growth of Li protrusions/dendrites depends on electrolyte 

chemistry[16, 72, 77, 78].  One possible contributing factor is that the relatively stiff 

SEI films could act as reinforcements for the plated Li, forming Li/SEI composites that 

have higher yield stresses and lower creep rates than pure Li, as suggested by the work 

of Cheng et al.[79].  If SEI mechanical properties are different for different 

electrolytes, we can rationalize the observed dependence on electrolyte chemistry.   

The creep picture could provide a contributing factor for why dendrites are more 

likely to grow at high current densities, since if dendrite formation is fast compared to 

characteristic creep times, then creep cannot play its role.   

4.4 Approximations, Assumptions, and Limitations 

Our analysis is subject to a number of approximations, assumptions, and 
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limitations, foremost of which is that we are considering only static mechanical effects.  

We recognize that a dynamic analysis will ultimately be necessary, but we expect 

mainly quantitative changes, rather than qualitative changes, for such an analysis. 

4.4.1 Viscoelastic and viscoplastic deformation of the separator 

 Viscoelastic and viscoplastic deformation of the nanoporous polypropylene 

separator may further enhance the effective flattening of the Li-separator interface 

and corresponding uniformity of stress state.  This is because creep deformation of 

the separator might collapse the pore network, inhibiting ion transport through the 

separator while enhancing plating in contact-free or low-stress locations.  Such an 

effect has been documented in conventional Li-ion batteries and has been suggested 

as a mechanism for mechanically-induced capacity fade [80, 81].  Indeed, scanning 

electron images of stress-induced separator pore collapse show that the collapse is 

spatially heterogeneous – an effect that may be attributable to the heterogeneous 

asperity contact.  Such behavior could be confirmed experimentally with two 

complementary experiments: (1) a rigid countersurface (e.g. sapphire) with different 

levels of surface roughness (from polishing or from lithography), can be loaded against 

separators and the subsequent spatial pore density can be measured via a scanning 

electron microscope as in[80]; and (2) a separator can be uniformly compressed to 

achieve various fractions of collapse, and its ionic transport properties can be 

measured.  

4.4.2 Pressurization of the electrolyte 

 Key assumptions in the present analysis include that the electrolyte escapes 

freely from contacting regions of the interface during deformation, and that there is 

no poroelastic transfer of stress through the liquid.  These approximations should be 

good, especially at low contact pressures, given the apparent connectivity in gaps 

shown in Figure 5.  Yet in this figure, there are some islands of contact gap even at 

low contact pressure, and the degree of percolation deteriorates further at higher 

pressures.  Subsequent creep of the Li or separator could further reduce percolation 

pathways and increase the possibility of pressurization of trapped electrolyte.  Even 

without fully trapped electrolyte, the Poiseuille equation indicates that electrolyte 
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pressurization may become significant for pathways below tens of nm.  Under these 

circumstances, an internal hydrostatic pressure and smoothing of the stress 

distribution in the underlying Li may occur.   One way to evaluate the contribution of 

electrolyte pressurization would be to evaluate stress-induced separator pore collapse 

with and without electrolyte present. Like the experiment described in the previous 

section, the counterface could be a nondeformable smooth solid such as sapphire, 

eliminating the complexity of rough Li surfaces.  If the electrolyte is trapped, it will 

suppress pore collapse leading to larger pores in the electrolyte-containing separator 

compared to the dry separator.  Assuming that pore collapse is suppressed to some 

extent, the degree of pore collapse can be used in conjunction with the properties of 

the separator to estimate the effective pressure sustained in the electrolyte. 

4.4.3 Li properties 

Li metal was treated as an elastic-perfectly-plastic material, which is valid[65] for 

low strain rates (≤ 3 × 10−4𝑠−1 ). Analyses that includes strain-hardening behavior, 

relevant for high strain rates[65], may show significant effects during fast charging. 

It may be possible to use true, evolving Li surfaces, rather than the idealized Li 

surfaces analyzed here, once data along these lines[38] is available for cells under 

pressure 

 

5. CONCLUSIONS 

A 3D contact model has been developed for understanding the Li surface and sub-

surface stresses at a sub-mm scale for electrodes with realistically rough surfaces and 

under a packing force.  Our results reveal that contact between the Li metal and the 

separator is far from conformal, even under high external pressures.  The fact that 

moderate (hundreds of kPa or less) pressure inhibits growth of Li protrusions for thin 

separators with modest shear moduli[16] argues against the ability of the Monroe-

Newman model to explain dendrite suppression[36] with external pressure—at least 

for these experiments.  Instead, we suggest that asperity contact stress and creep 

can promote flatter surfaces as local current densities adjust to pressure 

heterogeneities.  Surface flattening will be limited to conditions where surface stress 
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effects are significant compared to the transport and electrochemical effects that tend 

to enhance dendrite growth.   

We conclude with two suggested takeaways, based on our calculations.  (1) 

While pressurizing a cell retards dendrites, it does not appear that overpressurizing 

provides additional benefits.  (2) Conformal contact is not necessary to limit dendrite 

growth, but flatter cathodes may provide improved improved inhibition of dendrites 

and a longer cell life.  
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