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Rethinking Indian monsoon rainfall prediction
in the context of recent global warming
Bin Wang1,2, Baoqiang Xiang3,4, Juan Li1, Peter J. Webster5, Madhavan N. Rajeevan6, Jian Liu7,8 & Kyung-Ja Ha9

Prediction of Indian summer monsoon rainfall (ISMR) is at the heart of tropical climate

prediction. Despite enormous progress having been made in predicting ISMR since 1886, the

operational forecasts during recent decades (1989–2012) have little skill. Here we show, with

both dynamical and physical–empirical models, that this recent failure is largely due to the

models’ inability to capture new predictability sources emerging during recent global

warming, that is, the development of the central-Pacific El Nino-Southern Oscillation

(CP–ENSO), the rapid deepening of the Asian Low and the strengthening of North and South

Pacific Highs during boreal spring. A physical–empirical model that captures these new

predictors can produce an independent forecast skill of 0.51 for 1989–2012 and a 92-year

retrospective forecast skill of 0.64 for 1921–2012. The recent low skills of the dynamical

models are attributed to deficiencies in capturing the developing CP–ENSO and anomalous

Asian Low. The results reveal a considerable gap between ISMR prediction skill and

predictability.
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T
he Indian Meteorological Department (IMD) measures the
Indian summer monsoon rainfall (ISMR) using the All-
India Rainfall Index (AIRI), the total amount of summer

June-to-September (JJAS) rainfall averaged over the entire Indian
subcontinent1, which represents very well the leading principal
mode of the ISMR2 and the like-signed severe rainfall anomalies
occurring across India3. Swings in the AIRI, even with variations
of only 10%, can cause severe flooding or drought, affecting
Indian food production and security, and Gross Domestic
Product4,5. Mitigation is possible with timely and accurate
predictions of AIRI.

During the last century, great efforts have been made to
understand the basic physics of the monsoon, with some
success6–11. Prediction efforts started as early as 1886, but there
has not been a similar or satisfactory success1,7,12–14. In fact, the
correlation skill of the official operational forecasts made by IMD
statistical models for 1989–2012 is � 0.12 (Fig. 1). The negative
skill is mainly due to the failure in forecasting four extreme events
in 1994, 2002, 2004 and 2009. Why is the forecasting skill of the
ISMR so poor in the recent decades? Does the Indian monsoon
possess intrinsically limited predictability during the recent global
warming period? Or is it because of the deficiencies in the
methodologies used or in the models? Here we address these
questions by examining 46-year multi-model ensemble (MME)
dynamical hindcast and a 92-year retrospective forecast made by a
physically motivated empirical prediction model. We show that the
recent failure is largely due to the models’ inability to capture new
predictability sources emerging during the recent global warming.

Results
Performance of dynamical predictions. The recent low skill of
AIRI prediction is not only seen in operational statistical models
but also found in dynamical predictions of the state-of-the-art
global-coupled climate models. We have examined five climate
models that participated in ENSEMBLE project15 for the 46 years
(1960–2005) and four climate models that participated in the
APCC/CliPAS project16 for the 27 years (1982–2008; see
Methods). The hindcast correlation skill for the five
ENSEMBLE models’ MME is 0.09 for 1989–2005 and the four
APCC/CliPAS models’ MME skill is 0.24 for 1989–2005 (Fig. 1).
Interestingly, the APCC/CliPAS MME and the ENSEMBLE
models’ MME have the similar performance: the correlation
coefficient between the two MMEs’ hindcasts of AIRI for
1989–2005 is 0.87, suggesting that the current dynamical

models capture similar sources of predictability. Both MMEs
also show systematic biases in the climatological mean and year-
to-year variance compared with observations (Fig. 1), indicating
the necessity for a mean bias correction and variance inflation in
practical dynamic forecast.

However, we also find that the ENSEMBLE MME hindcast of
AIRI has a good skill of 0.63 for the earlier period from 1960 to
1988 (Fig. 1). The results here imply that the recent failure of the
ISMR prediction reflects secular changes in the prediction skills, a
more reliable validation of the dynamical models’ performance
may need hindcast data longer than 40–50 years, and a more
reliable estimation of the monsoon rainfall predictability may
need centennial hindcast data.

Physically motivated empirical model. To estimate the pre-
dictability of the AIRI using as-long-as-possible retrospective
prediction, we developed a physically motivated empirical (P–E)
model using the data from 1900 to 1988, and performed a 92-year
independent retrospective prediction using data from 1871 to
2012 (see Methods). The P–E model was established based on an
understanding of the physical processes linking predictors and
the predictand. Statistical tests are used as an auxiliary tool to
maximize the predictors–predictand correlation in training peri-
ods and to confirm their significance and ascertain mutual
independence among the predictors. On the basis of physical
considerations, rather than fishing statistical predictors, we con-
fine the predictor search in only two fields, sea surface tem-
perature (SST) and sea level pressure (SLP) and only two types of
precursors, that is, persistence signals in spring and tendency
signals across spring. The former often hint maintenance of
anomalies due to positive atmosphere–ocean–land interaction
processes, while the latter indicates the direction of the anomaly
development. This physically motivated searching principle
makes the selection procedure objective and easy to apply to other
climate prediction problems. For AIRI, only four correlation
maps were examined (Fig. 2); the April–May mean SST is not
used owing to its high correlation with the April–May mean SLP.

Mining new predictors for AIRI. It is well known that the
ISMR variations are primarily driven by eastern Pacific (EP) El
Nino-Southern Oscillation (ENSO)17 through tropical
teleconnection6,9–11. Traditionally, the April–May Nino 3 or
Nino 3.4 SST anomaly was used as a persistent predictor.
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Figure 1 | Time series of observed and predicted AIRI. Shown are the observed AIRI (units: mm) during 1960–2012 (Obs), predicted AIRI by IMD

operational forecast (Oper) during 1989–2012, by four CliPAS dynamical models’ ensemble during 1982–2008 (CliP) and by five ENSEMBLE dynamical

models’ ensemble prediction during 1960–2005 (ENS). The temporal correlation skills are shown at the bottom. The green vertical line indicates the year

of 1989. The corresponding MSSS skills (see Methods) for operational, ENSEMBLE and CliPAS are, �0.36 (1989–2012), � 1.32(1989–2005) and

� 1.36 (1989–2005), respectively.
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However, we use an east–west-oriented SST tendency as a new
predictor because the EP–ENSO develops through Bjerknes
feedback18, that is, the equatorial zonal wind-SST gradient
feedback through changing oceanic thermocline depth and
upwelling19. This positive Bjerknes feedback can be captured
well by the Pacific east–west dipolar SST tendency from March to
May (denoted by EPT, Table 1 and Fig. 2a). For instance, a
cooling tendency during spring in the equatorial EP (and/or a
warming in the equatorial western Pacific) signifies an enhanced
east–west thermal contrast and associated pressure gradients in
the ensuing summer, which enhances equatorial easterly that
further strengthens upwelling in the EP, leading to development

of an EP La Nina. Thus, EPT connotes a growing cold phase of
EP–ENSO18 event in the ensuing summer (Fig. 3a). Note that the
selected boxes also maximize the correlation of EPT with the
AIRI. Other significant signals in Fig. 2a are not independent
from the EPT.

Given the recent weakening of the AIRI and EP–ENSO
relationship20, it remains a great challenge to find new sources
of predictability that can foresee the pathway leading to
development of the diversity of ENSO and the Asian land
surface pressure anomalies.

The central-Pacific (CP)-ENSO21,22 has recently been found to
have conspicuous impact on ISMR23 but no predictor has been
proposed. A CP–ENSO develops mainly through zonal advection
by ocean currents22. To capture this mechanism, we look for the
north–south dipolar SST tendency in the CP (denoted by CPT,
Table 1 and Fig. 2b) that signifies ensuing southern warming–
northern cooling in the CP. The north–south SST contrast
further strengthens northward pressure gradients and associated
equatorial easterlies and westward ocean currents, leading to a
cold phase of CP–ENSO (Fig. 3b). Considering the numbers of
SST observations (Supplementary Fig. 1), the location of the
northern box for CPT was slightly shifted eastward towards the
CP ship tracks. Note that the selected northern box does not
maximize the correlation, but it is selected because of its clear
physical meaning. The May minus April SST tendency used here
is better than May minus March tendency because the CP–ENSO
tends to develop later in the spring and has a shorter life span
compared with the EP–ENSO. Although the maximum
correlation regions on this map are located in the equatorial
western and EP, they were not selected because of their
dependence on the EPT predictor.

The mega-ENSO24, which has a pattern similar to Interdecadal
Pacific Oscillation25 but involves both interannual and multi-
decadal variations of the Pacific basin-wide SST variability, has
been recently identified as a major driver for the northern
hemisphere monsoon rainfall variations including the ISMR24.
The mega-ENSO involves an off-equatorial atmosphere–ocean
thermodynamic feedback between the two Pacific subtropical
highs (PSHs)/trades and basin-wide SST anomalies26. Thus, we
define a PSH predictor (Table 1 and Fig. 2c) that gauges the
anomalous intensity of the two PSHs during April and May that
can foreshadow intensification of a mega-ENSO event (Fig. 3c).
Thus, the predictor PSH serves as a mega-ENSO predictor.
Coincidently, the two boxes in Fig. 2c also maximize the PSH
correlation with AIRI. Note also that all three ENSO-related
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Figure 2 | AIRI–predictor correlations in the observation for the period

1900–1988. The correlation coefficients between observed JJAS AIRI and

(a) May minus March SST, (b) May minus April SST, (c) April–May

mean SLP and (d) May minus March SLP. The black boxes outline the

regions for the predictors defined in Table 1. Black dots in each panel

represents the region with correlation significant at the 95% confidence

level (Student’s t-test).

Table 1 | Definitions of the four AIRI predictors.

Name Definition Meaning

EPT May minus March east–west SST dipole

tendency: DSST* (20� S–5� N, 150� E-170� E)

minus DSST (10� S–10� N, 110� W–80� W).

EP–ENSO

predictor

CPT May minus April SST north–south dipole

tendency: DSSTw(10�–25� S, 170� E–160� W)

minus DSST (5�–20� N, 180�–150� W)

CP–ENSO

predictor

PSH April–May mean SLP averaged over SP (40�

S–10� S, 160� W–90� W) and NP (10� N–30�

N, 180�–130� W)

mega-ENSO

predictor

NAT May minus March SLP averaged over

(45� N–60� N, 95� E–125� E)

Anomalous

Asian Low

predictor

AIRI, All-India Rainfall Index; CPT, SST tendency in central-Pacific; ENSO, El Nino-Southern

Oscillation; EP, eastern Pacific; EPT, SST tendency in eastern-Pacific; PSH, Pacific subtropical

high; SLP, sea level pressure

*Here DSST means the difference of SST between May and March (May minus March).

wHere DSST means the difference of SST between May and April (May minus April).
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spring predictors are well correlated with not only the JJAS
growing ENSO (Fig. 3) but also the corresponding mature ENSO
anomalies in ensuing October through December (Supplementary
Fig. 2).

In addition to the abovementioned three ENSO-related
predictors, an enhanced ISMR is accompanied by an abnormal
low pressure over Asian continent. To presage the development
of abnormal Asian low, we focus on spring SLP over North Asia
(NA). We found that the decreasing SLP tendency from March to
May in the vicinity of Siberian High pressure centre near the Lake
of Baikal (NAT, Table 1, Fig. 2d) represents a spring warming and
low SLP anomaly over the entire Asian continent (Supplementary
Fig. 3a). The largest correlation over the eastern tropical Pacific in
Fig. 2d was not selected because of its high correlation with the
predictor EPT. The NAT foreshadows the establishment of an
anomalous Asian Low in the following summer that enhances the
southwest monsoon rainfall over India (Supplementary Fig. 3b).

None of the above four predictors used in the present P–E
model was not used by IMD prediction system (Supplementary
Fig. 4). The three new ENSO-related predictors have distinctive
periodicities (Supplementary Fig. 5): the EPT has quasi-biennial
and quasi-quadrennial periodicities; the CPT has 3–4-, 8- and
20-year cycles; and the PSH has significant quasi-biennial and
multi-decadal (60 year) peaks. Thus, they reflect different flavours
of ENSO development that make complementary contributions
to ISMR prediction on different timescales. The new land
predictor NAT peaks on quasi-biennial and 10-year periodicities,
which, to some extent, differs from the three ENSO-related
predictors.

Prediction skill of the P–E model. The above four com-
plementary predictors are physically connected to and sig-
nificantly correlated with the AIRI using the data from 1900 to
1988 (Table 2). These predictors reflecting different physical
processes are used to build prediction equations. Since reliable
estimation of the practical predictability requires centennial
independent retrospective forecasts, we developed a suite of
progression (forward rolling) multi-regression prediction equa-
tions using the same four predictors (Table 1) and 142-year
observations from 1871 to 2012. At each progression step, the
prediction equation is derived using only 50-year training data
and the AIRI is predicted for the ensuing 10 years (see Methods).
These 10-year rolling predictions are ‘independent’ in the sense
that no ‘future’ (after initial date of prediction) information is
used beyond the training period. Starting from 1871, totally,
10 segments of 10-year predictions were made for the 92 years
(1921–2012). The 92-year retrospective forecast correlation skill
reaches 0.64 (Fig. 4a), and the truly independent forecast skill for
1989–2012 is 0.51, which is significantly higher than the IMD
operational forecast skill (� 0.12). The deterministic skill mea-
sure here also reflects the probabilistic measure as they are rela-
ted16. Previous studies27,28 have reported maximum correlation
skill of B0.5 from statistical and dynamical forecast models for
shorter periods; thus, the skill here demonstrates a substantial
improvement over past predictions.

As shown by Delsole and Shukla28, if all the data (model
development and validation) are used to select the predictors, the
cross-validated skill may be inflated. For the period of 1921–1950,
the forecast used partial training information so that the skill of
0.68 in this period is possibly partially inflated. For the period of
1951–1988, the forecast used full training information so that the
prediction skill of 0.74 during this period is likely more inflated.
However, the independent forecast skill of 0.51 for the 1989–2012
is independent of training period data, thus not inflated.

Causes of the low forecast skills in the recent decades. The
recent 24 years are indeed a challenging period for ISMR pre-
diction: the P–E model has a high skill of 0.77 for 1960–1988 but
drops to 0.51 for 1989–2012 (Fig. 4a). This is mainly attributed to
the drastic weakening of the AIRI–EPT predictor relationship
(Fig. 4b). In Fig. 4b, a test of significance of running correlations29

was carried out. The running correlations between the predictor
EPT (CPT) and AIRI are significantly more variable than
expected from noise at 95% (90%) confidence level. The
running correlations with PSH, NAT and the hindcast are
insignificantly distinguishable from those expected from noise.

The AIRI–CPT relationship became significant after 1940
when the ocean observation improves (Supplementary Fig. 1). In
the recent three decades, the AIRI–CPT relationship remains
significant especially after the late 1990s when CP–ENSO became
the dominant mode of ENSO30. It is notable that the land
warming predictor (NAT) is complementary to EPT; its
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Figure 3 | Three ENSO-related predictors. Shown are the correlation maps

of the boreal summer (JJAS) SST anomalies (shading and contour over
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Table 2 | Cross-correlation coefficients between AIRI and

predictors during 1900–1988.

AIRI EPT CPT PSH NAT

EPT 0.51 0.22 0.22 0.10

CPT 0.35 0.22 0.16 �0.04

PSH 0.40 0.22 0.16 �0.20

NAT � 0.24 0.10 �0.04 �0.20

The statistical significance and mutual independence of the four predictors are summarized. The

bold (Italic) numbers denote statistically significant at 99% (95%) confidence level by Student’s

t-test.
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increasing skill in the recent decades tends to compensate the
decreasing skill of EPT (Fig. 4b). Although the prediction skill is
relatively low in the recent decades, the three new predictors
(PSH, CPT and NAT) positively contribute to the improved skill.

We further analysed the 46-year hindcast data made by the
ENSEMBLE models to find why the dynamical MME hindcast skill
sharply declined after the late 1970s. The results in Fig. 5 indicate
that the ENSEMBLE models’ MME captures the AIRI–EPT and
AIRI–PSH relationship reasonably well but overestimate the former
compared with the observed weakening relationship. However, the
models totally missed the CP–ENSO and Asian Low (NAT)
predictors. When the ENSO behaviour (amplitude, frequency,
structure and evolution) changed in the late 1970s (refs 23,31,32),
the dynamical models could not capture the declining role of the
EP–ENSO and the increasing role of the CP–ENSO so that the
modelled ENSO teleconnection patterns did not match observa-
tions13,14,27. In addition, the Asian Low predictor has significant
contribution to the AIRI in the recent period (Fig. 4b), but the
models have no capacity in catching up this tendency (Fig. 5d,h).

Discussion
The 92-year hindcast skill (0.64) may provide an estimate for the
lower bound of ISMR predictability, while at least 41% of the
ISMR variance are predictable (see Methods), pointing to a
significant room for improving current seasonal forecasts. While
the dynamical models are steadily improving, the skill of the best
model is still significantly below potential limit of predictability.
There is a need to develop P–E models to possibly attain higher
prediction skills and to help understanding the causes of the
models’ deficiencies.

Compared with previous statistical models, the superior
prediction skill of the new P–E model arises primarily from use
of the three new predictors, that is, predictors signifying
developing CP–ENSO, enhancing PSHs and the abnormal Asian

Low during spring. In addition, use of tendency predictors
appears to provide more skillful predictions than those obtained
with monthly anomalies27. Our 24-year (1989–2012) independent
prediction provides a more rigorous validation than the ‘cross-
validation’ or any other existing validation method. We have also
verified the model prediction for 2013 and 2014, which show the
predictions being qualitatively correct. However, statistical
validation of the real model prediction skills may require a
decade long real-time prediction.

Prediction of severe drought and flood years of ISMR is important
but remains a very challenging issue. For the 92-year forecast, the
P–E model generally predicts the severe drought and flood years
with correct sign but the amplitude of some events is underestimated
and two false alarms occurred (Supplementary Fig. 6).

The P–E model can be extended to a wide range of climate
predictability and prediction problems. It is primarily based on
the physical understanding of the lead–lag linkage between the
predictors and predictand. Although simultaneous relationships
between a predictand and lower boundary anomalies have been
studied for decades, the proposed understanding of the physical
basis for lead–lag relationships represents advancement in climate
study and it is more valuable for invention of prediction tools. We
note that the dynamical models’ low skill for a short period of
1989–2005 is not significantly different from a skill of 0.45 due to
random sampling variability. Since the dynamical models have
been significantly improved in the recent decade and will provide
an ultimate prediction tool, an updated assessment of the current
dynamical models’ hindcast skill is needed. Our explanations of
the physical meanings of the predictors should be viewed as
hypotheses. Comprehensive numerical experiments with coupled
climate models should be conducted to test these hypotheses.

We also note that the decrease in the recent AIRI prediction skill
concurs with the most prominent recent global warming with the
amplitude of 0.4 �C since the late 1970s (ref. 24). Figure 4b shows
that since late 1970s, the decline of the AIRI–EPT relationship is
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unprecedented over the last century, and both the CP–ENSO and
the Asian Low predictors have increased their correlations with
AIRI. More frequent occurrence of CP–ENSO has been speculated
for both anthropogenic origin33 and multi-decadal origin30. The
secular change of the predictor–predictand relationships seems to
be affected by both global warming and a multi-decadal natural
variation, but the precise mechanisms require further studies.

Methods
Data sets used in this study. (i) All-India rainfall data provided by IITM
(Indian Institute of Tropical Meteorology) for the period from 1871 to 2011
(http://www.tropmet.res.in/static_page.php?page_id=53) and IMD for 2012
(http://www.imd.gov.in/section/nhac/dynamic/mon2012.jpg) were used to derive
prediction equations. The operational predicted AIRI was based on IMD data. The
two data have very similar year-to-year fluctuation but have different seasonal
means: the IITM mean is 850mm, while the IMD mean is 890mm. (ii) National
Climatic Data Center’s Extended Reconstructed Sea Surface Temperature (v3b) at
2� spatial resolution for the period 1871–2012 (ref. 34). (iii) The twentieth century
reanalysis data for the 850 hPa wind, SLP and 2m air temperature for the period
1871–2010 (ref. 35). (iv) The twentieth century-merged statistical analyses of
historical monthly precipitation anomalies reconstructed data at 2.5� spatial
resolution for the period from 1900 to 2008 (ref. 36). (v) To extend the 20C data,
we also use European Centre for Medium-Range Weather Forecasts Re-Analysis
(ERA-interim) data for SLP for period 2011–2012 (ref. 37). (vi) IMD’s operational

forecast results during 1989–2012 are obtained from http://www.imdpune.gov.in/
research/ncc/longrange/Previouslongrange/pre1989-2012.html.

To ensure the reliability of oceanic observations, the SST predictors were
basically chosen in the regions where island instrumental records are available or
with relatively large number of monthly accumulative ship-by opportunity
observations31 (Supplementary Fig. 1).

Hindcast experiments of the dynamical models. One set of the dynamical
models’ hindcasts was derived from the ENSEMBLES project15. This data set
consists of five state-of-the-art coupled atmosphere ocean circulation models and
the hindcast was made for the period of 1960–2005. The five models are from the
Euro-Mediterranean Center for Climate Change (CMCC-INGV) in Bologna,
European Centre for Medium-Range Weather Forecasts (ECMWF), the Leibniz
Institute of Marine Sciences at Kiel University (IFM-GEOMAR), Météo France
(MF) and UK Met Office (UKMO). AIRI in dynamical models is defined as the
total land rainfall over India, which is different from the previous study that
calculates the total rainfall in a box domain (70 E–90 E, 10 N–25 N)27. Another
four state-of-the-art-coupled models’ hindcast results (1982–2008) used in this
paper, are adopted from the Climate Prediction and its Application to Society
(CliPAS) project16 sponsored by the Asia-Pacific Economic Cooperation (APEC)
climate center (APCC). The models include NCEP CFS version 2, ABOM POAMA
version 2.4, GFDL CM version 2.1, and FRCGC SINTEX-Fmodel.

The 92-year retrospective forecast. The progressional prediction models were
built by using only the 50-year data as training period each step to build a four-
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predictor multiple-regression model. For example, we built the first prediction
model using the training data of 1871–1920 to forecast ISMR for the next 10 years
(1921–1930), and then built the second prediction model using the 1881–1930 data
to forecast the next 10 years (1931–1940). The predictions for the rest years were
done in the same manner. The retrospective forecast does not use any ‘future’ data
beyond the training period. We have also used 30 or 40 years as a training period at
each step to reconstruct the empirical prediction models and to use 1, 5 and 10
years as the forecast periods. It is found that using 50 years as a training period is
systematically better than 40 years and 30 years in dealing with the secular var-
iations of the predictor–predictand relationships; and use of different forecast
period ranging from 1 to 10 years has no significant impact on the forecast skill
(Supplementary Table 1). We also used longer training period of 60 years, the
forecast skill is almost the same as 50 years.

The time of the forecast. Using our P–E model, a forecast of the ensuing AIRI
can be made as early as 26 May, because the May predictors can be estimated with
some surety 5 days before the end of the month by using short-range forecasts. The
dynamic model forecast we used here is starting from 1 May, and the operational
forecast starts from 1 June.

Mean square skill score. In addition to the correlation skill, we also used the
Mean Square Skill Score38 (MSSS) to measure the deterministic forecasts skill in
Fig. 1. For the 92-year retrospective forecast, the MSSS score is 0.41. The MSSS is
defined as follows:

MSSS ¼ 1�
MSE

MSEc
ð1Þ

Where the mean squared error of the forecasts is:

MSE ¼
1

n

Xn

i¼1

fi � xið Þ2 ð2Þ

where x and f denote time series of observations and forecasts. The MSE for
climatology is given by:

MSEc ¼
1

n

Xn

i¼1

xi � �xð Þ2 ð3Þ
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