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ABSTRACT
Current blockchain platforms, especially the recent permis-
sioned systems, have architectural limitations: smart con-
tracts run sequentially, all node executes all smart contracts,
consensus protocols are hard-coded, the trust model is static
and not flexible, and non-determinism in smart-contract ex-
ecution poses serious problems. Overcoming these limita-
tions is critical for improving both functional properties of
blockchains, such as confidentiality and consistency, as well
as their non-functional properties, such as performance and
scalability.

We discuss these limitations in the context of permissioned
blockchains, including an early version of the Hyperledger
Fabric blockchain platform, and how a re-design of Hyper-
ledger Fabric’s architecture addresses them.
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1. BACKGROUND
Permissioned blockchains have evolved as an alternative

to permissionless blockchains (in which anybody can par-
ticipate, e.g., Bitcoin1, Ethereum2), to address the need for
running blockchain technology among a set of known and
identifiable participants that have to be explicitly admitted
to the blockchain network. This concept behind permis-
sioned blockchains is particularly interesting in business ap-
plications of blockchain technology and distributed ledgers,
in which the participants require some means of identifying
each other while not necessarily fully trusting each other.

Permissioned blockchains are quickly gaining a lot of trac-
tion across different industries. A good example is the Hy-
perledger Project3, a prominent open-source initiative under

1http://bitcoin.org/
2http://www.ethereum.org
3http://www.hyperledger.org/
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the auspices of the Linux Foundation, dedicated to bringing
blockchain technologies to businesses, with a strong focus
on permissioned blockchains. Among over 100 member or-
ganizations of the Hyperledger Project, one can find tech-
nology companies, fintech startups, world-leading financial
organizations (banks, stock-exchanges and financial interme-
diaries), airplane and consumer electronics manufacturers,
telecommunication providers and more.

The state-of-the-art permissioned blockchain systems avail-
able today (for example, Kadena4, Tendermint5, Chain6)
typically follow, on a high-level, the design thinking behind
permissionless blockchains. However, this leads to subopti-
mal results more often than not. In particular, a design that
works well for public permissionless blockchains built around
a cryptocurrency is not necessarily adequate for business
applications that want to benefit from distributed ledger
technology (DLT) perhaps without dependency on a spe-
cific cryptocurrency. We have been confronted with such is-
sues during the development of Hyperledger Fabric, an open-
source general-purpose permissioned blockchain system.

Specifically, the limiting design decisions that permissioned
blockchains typically inherit from their permissionless rela-
tives include at least: sequential execution of smart con-
tracts performed after consensus, execution of smart con-
tracts on all nodes, hard-coded consensus protocols (whether
they use proof-of-work or Byzantine fault-tolerance (BFT) [19]),
as well as problems with non-determinism in smart con-
tracts. Apart from these limitations, permissioned blockchains
often and unnecessarily expose some low-level trust assump-
tions originating from their consensus mechanism to their
smart-contract applications. This then requires a smart con-
tract to reason about a trust model such as “f faults out of
3f + 1,” which have nothing to do with the application and
stem from the low-level BFT consensus protocol.

In this paper, we continue in Section 2 with an overview of
these limitations inherent in many permissioned blockchains.
Then, in Section 3, we describe how the need for overcoming
these limitations has influenced our design decisions for Hy-
perledger Fabric, and how an architecture re-design in Hy-
perledger Fabric addresses them. These decisions are aimed
at improving both functional properties of Hyperledger Fab-
ric such as confidentiality and consistency, as well as its non-
functional properties, such as performance and scalability.

4http://www.kadena.io
5http://tendermint.com
6http://chain.com



2. DESIGN LIMITATIONS OF
PERMISSIONED BLOCKCHAINS

Sequential execution. Permissionless generic blockchains,
such as Ethereum, execute transactions on smart contracts
sequentially, usually after consensus or intertwined with it.
All permissioned blockchains that we know of inherit this
style of execution, which basically follows the active state-
machine replication approach, well-known in distributing
computing [17, 7]. In this approach, requests to the ap-
plication (smart contract) are ordered by the consensus and
then executed in the same order, sequentially, one request
at a time, at all nodes.

This style of execution has several limitations when used
in blockchains. Perhaps the biggest one is the bound on the
effective throughput that can be achieved by the blockchain.
In particular, the throughput becomes inversely proportional
to the latency of execution, which may often, except for the
simplest smart contracts, become the performance bottle-
neck. Moreover, an adversary trying to subvert performance
of such a blockchain system could simply introduce smart
contracts that take a very long time to execute, effectively
mounting a denial of service (DoS) attack on the blockchain
network.

To cope with this issue, blockchains orchestrated around
their own cryptocurrency, such as Ethereum, introduce the
concepts such as gas which basically requires the transac-
tion (submitter) to pay for every step of the computation
performed during smart contract execution. To support the
concept, Ethereum goes a long way and introduces its own
virtual machine to be able to monitor and control steps of
the computation. Whereas this looks like a viable solution
for public cryptocurrencies, it is not adequate for many busi-
ness applications that require the benefits of DLTs, without
the actual need for a cryptocurrency. In addition, the need
for a specialized VM execution environment limits the lan-
guages in which smart contracts can be written, which can
also hinder adoption in practice.

Finally, the research literature in the field of distributed
systems proposes many directions for overcoming these is-
sues, such as data sharding, parallel execution, or multi-core
execution (see, e.g., [19] for specific pointers). Yet many of
these need to be re-worked and tailored to the trust model
and requirements specific to blockchain.

Non-deterministic execution. One important problem of
the active-replication approach are non-deterministic trans-
actions. Indeed, when smart contracts run after consensus
on the transaction inputs, their execution must be deter-
ministic; otherwise, the effects of consensus are nullified and
execution may result in diverging ledgers or “forks.” Ide-
ally, smart-contract execution would always be determinis-
tic; however, this expectation requires smart contract lan-
guages and compilers that enforce determinism.

We believe that domain-specific languages (DSLs) for smart
contracts are an interesting research topic, ensuring that
they are sufficiently expressive for many applications but
restricted enough to ensure deterministic execution. How-
ever, a more attractive solution would be to program smart
contracts in a general-purpose programming language. Such
a design would simplify the adoption of blockchain across
businesses, as developers would not need to learn specific
blockchain DSLs, but could rely on their favorite program-
ming language.

General-purpose languages are problematic with respect
to determinism since the application developer does not need
to explicitly introduce a clearly non-deterministic operation
(such as reading the system time or generating a random
number) to produce non-deterministic effects. For instance,
in many languages (e.g., golang) a simple map iteration
may produce a different order in two executions. For these
reasons, tackling non-deterministic execution with trust as-
sumptions and failure models relevant to blockchain is an
important research topic [8].

Execution on all nodes. Blockchain smart contracts most
often execute on all nodes, following the original public, per-
missionless blockchains. This is at odds with confidentiality,
since for many blockchain use cases, the logic of a smart con-
tract or a transaction input should be restricted to certain
nodes.

Whereas cryptography, in particular encryption and zero-
knowledge protocols [3], can help to achieve confidentiality,
this often comes with a considerable overhead. Without
doubt, the zero-knowledge techniques will be useful when-
ever they do not impair performance, but focusing only on
cryptographic techniques for providing confidentiality may
be short-sighted.

In principle, the goal of reaching consensus and synchro-
nizing the state across all nodes does not require that all
nodes execute all smart contracts. It is sufficient to propa-
gate the same state to all nodes. Smart contract execution
can thus be restricted to a subset of the nodes trusted for
this task, which vouch for the results of the execution, and
other nodes simply verify that these results match. Such
a design represents a departure from active replication to-
wards a variant of passive replication [6], with one caveat
specific to the trust model of blockchain. Namely, which set
of nodes can be“trusted” to execute transactions properly, is
there a “sufficient” number of them, or should there be more
complex way to describe what makes a transaction “valid”?
We postpone possible solutions to Section 3, yet this ques-
tion is tightly related to another limiting factor permissioned
blockchains face, which we discuss next.

Trust model flexibility. Permissioned blockchains mostly
rely on asynchronous BFT replication protocols to establish
consensus [19]. These protocols come with their well-known
assumption which stipulates that at least 3f + 1 nodes are
necessary to reach agreement (consensus) in the presence of
up to f Byzantine faulty nodes [5]. Moreover, blockchains
most often rely on the same nodes for execution that run
BFT consensus. Hence, this trust assumption spills over to
smart-contract execution as well, even though the required
ratio of correct to (potentially) faulty nodes is lower for BFT
execution than it is for BFT agreement [20].

Coupled with the executing applications on all nodes, an
assumption such as “f out of 3f + 1” may not match the
trust model that a smart-contract developer needs to reason
about. Coming back to the question of the “sufficient” num-
ber of executing nodes whose execution results must match,
one may be tempted to give an “obvious” answer of f + 1
(to guarantee execution by at least one correct node). Yet
this answer is wrong, not because it is technically wrong,
but because it is conceptually wrong, as it exposes a low-
level threshold to the application. We firmly believe that
permissioned blockchains should decouple application trust
assumptions from those pertaining to the underlying consen-
sus protocol and allow smart contract developers to reason



about the execution trust model in a flexible way and inde-
pendently of the low-level consensus.

Hard-coded consensus. Virtually all blockchain systems
of today, whether permissioned or not, come with a hard-
coded consensus protocol (a notable exception is Hyper-
ledger Fabric, where consensus has been modular from the
start). Changing the consensus protocol in blockchains is
very difficult, if not impossible, without serious code re-
writes.

This is clearly not optimal, as there is no such “one-size-
fits-all” consensus protocol. For instance, BFT protocols are
known to exhibit different performances under different sys-
tem conditions and deployment environments [18]. This is
not difficult to see, actually: for instance, a protocol with
the “chain” communication pattern that exhibits provably
optimal throughput on a LAN cluster with symmetric and
homogeneous network bandwidth across different links [10,
11], will typically degrade on a wide-area, heterogeneous
network with non-uniform link bandwidth. Furthermore,
external conditions such as load, network parameters and
current number of faults, may vary over time in a given
deployment. This motivates the use of inherently reconfig-
urable protocol frameworks for BFT consensus, which can
adapt to a dynamically changing environment [2]. Another
important consideration for matching a conse nsus mecha-
nism to a given blockchain deployment are the trust model
and fault assumptions themselves. Indeed, one may want to
replace an asynchronous BFT protocol with a protocol in an
alternative trust/fault model such as XFT [14], or in some
cases even plain crash fault-tolerant (CFT) protocol (e.g.,
[12, 16]).7

With no “one-size-fits-all” consensus protocol, why would
one ever build a general-purpose blockchain with a spe-
cific hard-coded consensus? Fixing consensus might perhaps
make sense if a blockchain is to be deployed only in a static,
well-defined environment, in specific use cases that require
very fine performance tuning that in turn mandates tight
coupling of consensus with other parts of the blockchain
system. However, such a design does not scale well across
different use cases and deployment scenarios; therefore, a
general-purpose permissioned blockchain should be designed
with modular/pluggable consensus in mind.

3. OVERCOMING THE LIMITATIONS
WITH HYPERLEDGER FABRIC

Fabric or, more completely, Hyperledger Fabric (HLF)8

is an open-source project within the Hyperledger umbrella
project. HLF is a modular general-purpose permissioned
blockchain system which can be also seen as a distributed
operating system for permissioned blockchains.

Starting with its first skeleton version in the beginning
of 2016, HLF has supported pluggable consensus. However,
it was initially designed in the “classical” way, following the
active state-machine replication approach [17] and hence suf-
fering from many of the limitations discussed in Section 2.

7Using CFT may seem at first to be entirely at odds with
blockchain trust assumptions; however, CFT consensus is
amenable to certain blockchain business use cases in which
there is both a need for DLT, as well as a (distributed)
trusted (third) party.
8https://github.com/hyperledger/fabric

The active replication architecture remained in place un-
til the v0.6-preview release of Hyperledger Fabric (Septem-
ber 2016). Despite the limitations, v0.6-preview codebase
received significant attention by different blockchain stake-
holders across industries, as well as in the blockchain re-
search community, with over 100 proof-of-concepts and pro-
totypes built around HLF v0.6-preview, and even with some
production deployments (e.g., [15]).

Towards v1 release (due in 2017), and after gaining expe-
riences with earlier versions, the HLF architecture has been
overhauled and the system has been re-designed, primarily
with the goal of addressing the limitations we outlined in
Section 2. Whereas the technical details of the architecture
and implementation of Hyperledger Fabric v1 are clearly be-
yond the scope of this paper, in the rest of this section we
briefly discuss how the high-level design of Hyperledger Fab-
ric v1 (hereafter HLFv1) addresses the above limitations [1].

Transition to execute-order-validate architecture. HLFv1
separates nodes responsible for executing chaincode (i.e.,
smart contracts in Hyperledger Fabric parlance) from those
responsible for agreement on the order of blocks (consen-
sus). Execution nodes are called peers. Each peer maintains
a copy of the distributed ledger. Consensus on the order
of blocks and transactions in the blockchain is delegated to
orderers who provide an ordering service without holding
distributed ledger state. The semantics of the ordering ser-
vice are similar to the total-order publish-subscribe service
which takes, as an input, transactions from clients (pro-
ducers) and delivers a totally ordered sequence of blocks of
transactions to peers (consumers).9

Before clients submit their transactions to the ordering
service, they first submit them for execution to a subset of
peers that serve as endorsers for the transaction and the
chaincode. Clients first collect matching signed results of
the execution (i.e., versioned updates to the chaincode state)
from a“sufficient”number of peers. Then, clients submit the
versioned state update, along with gathered signatures, to
the ordering service, which in turn outputs a sequence of
blocks with such updates to the peers. Finally, all peers
perform the validation of the endorsement. However, this
does not involve re-executing chaincode but merely consists
of: (a) verifying the freshness of versioned updates contained
in the transaction state update, and (b) verifying signatures
from endorsers, to validate that transaction updates were
indeed endorsed by “sufficiently” many endorsers.

This approach can be understood as a BFT variant of
middleware-based replicated database with asymmetric up-
date processing according to Kemme et al. [13]. It en-
sures that: (a) chaincode execution comes before ordering
in HLFv1, and (b) that not all peers execute all chaincodes.
This addresses three of the limitations from Section 2:

• Execution needs not necessarily be sequential, as dif-
ferent subsets of peers can execute transactions in par-
allel. Chaincodes designate only certain peers as en-
dorsers, so different chaincodes can designate different
endorsers, allowing for parallel execution.

• Not every peer executes all transactions. While this
clearly holds across chaincodes, it sometimes even holds
for transactions pertaining to a single chaincode. Namely,

9If necessary, peers can also run clients.



a given peer may be required to endorse a given trans-
action but not another one. In particular, if the trans-
actions are independent (i.e., do not update the same
variables) and are allowed to have different endorsers,
such transactions may be executed in parallel. Obvi-
ously, a chaincode may require that all (or a majority
of) the peers executes and endorses its transaction, but
this is merely one possible option.

• Disseminating a “sufficient” number of matching state
updates helps eliminate the effects of non-determinism
[8]. Transaction execution may diverge due to non-
determinism, but this is tolerated. If the results of such
an execution diverge across replicas, a client will (most
probably) not be able to gather the required num-
ber of matching replies, and such a non-deterministic
transaction might fail. However, non-deterministic ex-
ecution may never make the state of the peers di-
verge. This preserves the consistency of HLFv1 in the
presence of non-deterministic chaincodes and even al-
lows peers to use local policies to terminate resource-
exhaustive execution of DoS transactions.

Flexible endorsement policies. The precise definition of
the “sufficient” number of endorsers signatures is stipulated
by an endorsement policy. The endorsement policy is es-
sentially a transaction validation program that is executed
by all peers after ordering. However, in HLFv1, endorse-
ment policies are very different from chaincodes, and the
application developers cannot code them as they can code
chaincodes. A chaincode can simply point to a pre-defined
endorsement policy, possibly with some parameters. For
instance, a typical endorsement policy will specify that a
chaincode has n endorsers (by giving their identities), out of
which at least k (chaincode policy parameter) are required
to endorse a transaction.

This approach allows for a flexible separation of the trust
assumptions for chaincodes from the trust assumptions per-
taining to the ordering service (consensus). Chaincode can
freely select its endorsement policy (HLFv1 comes with a
set of most often used policies) and parameterize it to suit
the trust model of the application.

We emphasize that, in principle, an endorsement policy
can be an arbitrarily complex validation program, so long
as it always produces a deterministic outcome. However, to
maintain efficiency and determinism of endorsement policy
evaluation (which is done at all peers) HLFv1 restricts the
number of endorsement policies and their complexities.

Pluggable ordering service (consensus). Finally, as al-
ready hinted at, the ordering service is pluggable and modu-
lar by design. HLFv1 currently comes with both a CFT and
a BFT consensus implementation, as well as with a central-
ized ordering service (used for development and testing pur-
poses). HLFv1 CFT ordering service is built around Apache
Kafka, whereas the BFT ordering service is a modified vari-
ant of the PBFT protocol [9], called SimpleBFT. More con-
sensus offering is coming to Hyperledger Fabric; for instance,
work is ongoing on integration of the other well-known BFT
library to Hyperledger Fabric, namely BFT-SMaRt [4].
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Throughput optimal total order broadcast for cluster
environments. ACM Trans. Comput. Syst.,
28(2):5:1–5:32, 2010.



[12] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In Proceedings of the 2011 IEEE/IFIP 41st
International Conference on Dependable
Systems&Networks, DSN ’11, pages 245–256, 2011.
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