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Abstract

Pre-training is a dominant paradigm in computer vision. For example, supervised
ImageNet pre-training is commonly used to initialize the backbones of object detec-
tion and segmentation models. He et al. [1], for example, show a contrasting result
that ImageNet pre-training has limited impact on COCO object detection. Here we
investigate self-training as another method to utilize additional data on the same
setup and contrast it against ImageNet pre-training. Our study reveals the generality
and flexibility of self-training with three additional insights: 1) stronger data aug-
mentation and more labeled data further diminish the value of pre-training, 2) unlike
pre-training, self-training is always helpful when using stronger data augmentation,
in both low-data and high-data regimes, and 3) in the case that pre-training is
helpful, self-training improves upon pre-training. For example, on the COCO
object detection dataset, pre-training benefits when we use one fifth of the labeled
data, and hurts accuracy when we use all labeled data. Self-training, on the other
hand, shows positive improvements from +1.3 to +3.4AP across all dataset sizes.
In other words, self-training works well exactly on the same setup that pre-training
does not work (using ImageNet to help COCO). On the PASCAL segmentation
dataset, which is a much smaller dataset than COCO, though pre-training does
help significantly, self-training improves upon the pre-trained model. On COCO
object detection, we achieve 54.3AP, an improvement of +1.5AP over the strongest
SpineNet model. On PASCAL segmentation, we achieve 90.5 mIOU, an improve-
ment of +1.5% mIOU over the previous state-of-the-art result by DeepLabv3+.1

1 Introduction

Pre-training is a dominant paradigm in computer vision. As many vision tasks are related, it is
expected a model, pre-trained on one dataset, to help another. It is now common practice to pre-train
the backbones of object detection and segmentation models on ImageNet classification [2–5]. This
practice has been recently challenged He et al. [1], among others [6, 7], who show a surprising result
that such ImageNet pre-training does not improve accuracy on the COCO dataset.

A stark contrast to pre-training is self-training [8–10]. Let’s suppose we want to use ImageNet to
help COCO object detection; under self-training, we will first discard the labels on ImageNet. We
then train an object detection model on COCO, and use it to generate pseudo labels on ImageNet.
The pseudo-labeled ImageNet and labeled COCO data are then combined to train a new model. The
recent successes of self-training [11–14] raise the question to what degree does self-training work
better than pre-training. Can self-training work well on the exact setup, using ImageNet to improve
COCO, where pre-training fails?

⇤Authors contributed equally.
1Code and checkpoints for our models are available at https://github.com/tensorflow/tpu/tree/

master/models/official/detection/projects/self_training
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Our work studies self-training with a focus on answering the above question. We define a set of
control experiments where we use ImageNet as additional data with the goal of improving COCO.
We vary the amount of labeled data in COCO and the strength of data augmentation as control
factors. Our experiments show that as we increase the strength of data augmentation or the amount of
labeled data, the value of pre-training diminishes. In fact, with our strongest data augmentation, pre-
training significantly hurts accuracy by -1.0AP, a surprising result that was not seen by He et al. [1].
Our experiments then show that self-training interacts well with data augmentations: stronger data
augmentation not only doesn’t hurt self-training, but also helps it. Under the same data augmentation,
self-training yields positive +1.3AP improvements using the same ImageNet dataset. This is another
striking result because it shows self-training works well exactly on the setup that pre-training fails.
These two results provide a positive answer to the above question.

An increasingly popular pre-training method is self-supervised learning. Self-supervised learning
methods pre-train on a dataset without using labels with the hope to build more universal representa-
tions that work across a wider variety of tasks and datasets. We study ImageNet models pre-trained
using a state-of-the-art self-supervised learning technique and compare to standard supervised Ima-
geNet pre-training on COCO. We find that self-supervised pre-trained models using SimCLR [15]
have similar performance as supervised ImageNet pre-training. Both methods hurt COCO perfor-
mance in the high data/strong augmentation setting, when self-training helps. Our results suggest
that both supervised and self-supervised pre-training methods fail to scale as the labeled dataset size
grows, while self-training is still useful.

Our work however does not dismiss the use of pre-training in computer vision. Fine-tuning a pre-
trained model is faster than training from scratch and self-training in our experiments. The speedup
ranges from 1.3x to 8x depending on the pre-trained model quality, strength of data augmentation,
and dataset size. Pre-training can also benefit applications where collecting sufficient labeled data
is difficult. In such scenarios, pre-training works well; but self-training also benefits models with
and without pre-training. For example, our experiment with PASCAL segmentation dataset shows
that ImageNet pre-training improves accuracy, but self-training provides an additional +1.3% mIOU
boost on top of pre-training. The fact that the benefit of pre-training does not cancel out the gain by
self-training, even when utilizing the same dataset, suggests the generality of self-training.

Taking a step further, we explore the limits of self-training on COCO and PASCAL datasets, thereby
demonstrating the method’s flexibility. We perform self-training on COCO dataset with Open
Images dataset as the source of unlabeled data, and RetinaNet [16] with SpineNet [17] as the object
detector. This combination achieves 54.3AP on the COCO test set, which is +1.5AP better than the
strongest SpineNet model. On segmentation, we use PASCAL aug set [18] as the source of unlabeled
data, and NAS-FPN [19] with EfficientNet-L2 [12] as the segmentation model. This combination
achieves 90.5AP on the PASCAL VOC 2012 test set, which surpasses the state-of-the-art accuracy
of 89.0AP [20], who also use additional 300M labeled images. These results confirm another benefit
of self-training: it’s very flexible about unlabeled data sources, model architectures and computer
vision tasks.

2 Related Work

Pre-training has received much attention throughout the history of deep learning (see [21] and
references therein). The resurgence of deep learning in the 2000s also began with unsupervised
pre-training [22–26]. The success of unsupervised pre-training in NLP [27–32] has revived much
interest in unsupervised pre-training in computer vision, especially contrastive training [15, 33–37].
In practice, supervised pre-training is highly successful in computer vision. For example, many
studies, e.g., [38–42], have shown that ConvNets pre-trained on ImageNet, Instagram, and JFT can
provide strong improvements for many downstream tasks.

Supervised ImageNet pre-training is the most widely-used initialization method for machine vision
(e.g., [2–5]). Shen et al [6] and He et al. [1], however, demonstrate that ImageNet pre-training does
not work well if we consider a much different task such as COCO object detection. Ghiasi et al. [7]
find model trained with random initialization outperforms the ImageNet pre-trained model on COCO
object detection when strong regularization is applied. Poudel et al [43] on the other hand show that
ImageNet pre-training is not necessary for semantic segmentation with CityScapes if aggressive data
augmentation is applied. Furthermore, Raghu et al. [44] show that ImageNet pre-training does not
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improve medical image classification tasks. Compared to these previous works, our work takes a
step further and studies the role of pre-training in computer vision in greater detail with stronger
data augmentation, different pre-training methods (supervised and self-supervised), and different
pre-trained checkpoint qualities.

Our paper does not study targeted pre-training in depth, e.g., using an object detection dataset to
improve another object detection dataset, for two reasons. Firstly, targeted pre-training is expensive
and not scalable. Secondly, there exists evidence that pre-training on a dataset that is the same as the
target task still can fail to yield improvements. For example, Shao et al. [45] found that pre-training
on the Open Images object detection dataset actually hurts COCO performance. More analysis of
targeted pre-training can be found in [46].

Our work argues for the scalability and generality of self-training (e.g., [8–10]). Recently, self-
training has shown significant progress in deep learning (e.g., image classification [11, 12], machine
translation [13], and speech recognition [14, 47]). Most closely related to our work is Xie et al. [12]
who also use strong data augmentation in self-training but for image classification. Closer in
applications are semi-supervised learning for detection and segmentation (e.g., [48–52]), who only
study self-training in isolation or without a comparison against ImageNet pre-training. They also do
not consider the interactions between these training methods and data augmentations.

3 Methodology

3.1 Methods and Control Factors

Data Augmentation: We use four different augmentation policies of increasing strength that work
for both detection and segmentation. This allows for varying the strength of data augmentation in our
analysis. We design our augmentation policies based on the standard flip and crop augmentation in
the literature [16], AutoAugment [53, 54], and RandAugment [55]. The standard flip and crop policy
consists of horizontal flips and scale jittering [16]. The random jittering operation resizes an image to
(0.8, 1.2) of the target image size and then crops it. AutoAugment and RandAugment are originally
designed with the standard scale jittering. We increase scale jittering (0.5, 2.0) in AutoAugment
and RandAugment and find the performances are significantly improved. For RandAugment we
use a magntiude of 10 for all models [55]. We arrive at our four data augmentation policies which
we use for experimentation: FlipCrop, AutoAugment, AutoAugment with higher scale jittering,
RandAugment with higher scale jittering. Throughout the text we will refer to them as: Augment-S1,
Augment-S2, Augment-S3 and Augment-S4 respectively. The last three augmentation policies are
stronger than He et al. [1] who use only a FlipCrop-based strategy.

Pre-training: To evaluate the effectiveness of pre-training, we study ImageNet pre-trained check-
points of varying quality. To control for model capacity, all checkpoints use the same model
architecture but have different accuracies on ImageNet (as they were trained differently). We use
the EfficientNet-B7 architecture [56] as a strong baseline for pre-training. For the EfficientNet-B7
architecture, there are two available checkpoints: 1) the EfficientNet-B7 checkpoint trained with
AutoAugment that achieves 84.5% top-1 accuracy on ImageNet; 2) the EfficientNet-B7 checkpoint
trained with the Noisy Student method [12], which utilizes an additional 300M unlabeled images, that
achieves 86.9% top-1 accuracy.2 We denote these two checkpoints as ImageNet and ImageNet++ ,
respectively. Training from a random initialization is denoted by Rand Init. All of our baselines are
therefore stronger than He et al. [1] who only use ResNets for their experimentation (EfficientNet-
B7 checkpoint has an approximately 8% higher accuracy than a ResNet-50 checkpoint). Table 1
summarizes our notations for data augmentations and pre-trained checkpoints.

Self-training: We use a simple self-training method inspired by [9, 12, 48, 57] which consists of
three steps. First, a teacher model is trained on the labeled data (e.g., COCO dataset). Then the
teacher model generates pseudo labels on unlabeled data (e.g., ImageNet dataset). Finally, a student is
trained to optimize the loss on human labels and pseudo labels jointly. Our experiments with various
hyperparameters and data augmentations indicate that self-training with this standard loss function
can be unstable. To address this problem, we implement a loss normalization technique, which is
described in Appendix B.

2https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
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Name Description
Augment-S1 Weakest augmentation: Flips and Crops
Augment-S2 Third strongest augmentation: AutoAugment, Flips and Crops
Augment-S3 Second strongest augmentation: Large Scale Jittering, AutoAugment, Flips and Crops
Augment-S4 Strongest augmentation: Large Scale Jittering, RandAugment, Flips and Crops
Rand Init Model initialized w/ random weights
ImageNet Init Model initialized w/ ImageNet pre-trained checkpoint (84.5% top-1)
ImageNet++ Init Model initialized w/ higher performing ImageNet pre-trained checkpoint (86.9% top-1)

Table 1: Notations for data augmentations and pre-trained models used throughout this work.

3.2 Additional Experimental Settings

Object Detection: We use COCO dataset [58] (118k images) for supervised learning. In self-
training, we experiment with ImageNet [59] (1.2M images) and OpenImages [60] (1.7M images) as
unlabeled datasets. We adopt RetinaNet detector [16] with EfficientNet-B7 backbone and feature
pyramid networks [61] in the experiments. We use image size 640⇥ 640, pyramid levels from P3 to
P7 and 9 anchors per pixel as done in [16]. The training batch size is 256 with weight decay 1e-4.
The model is trained with learning rate 0.32 and a cosine learning rate decay schedule [62]. At the
beginning of training the learning rate is linearly increased over the first 1000 steps from 0.0032 to
0.32. All models are trained using synchronous Batch Normalization. For all experiments using
different augmentation strengths and datasets sizes, we allow each model to train until it converges
(when training longer stops helping or even hurts performance on a held-out validation set). For
example, training takes 45k iterations with Augment-S1 and 120k iterations with Augment-S4, when
both models are randomly initialized. For results using SpineNet, we use the model architecture and
hyper-parameters reported in the paper [17]. When we use SpineNet, due to memory constraints
we reduce the batch size from 256 to 128 and scale the learning rate by half. The hyper-parameters,
except batch size and learning rate, follow the default implementation in the SpineNet open-source
repository.3 All SpineNet models also use Soft-NMS with a sigma of 0.3 [63]. In self-training, we
use a hard score threshold of 0.5 to generate pseudo box labels. We use a total 512 batch size with
256 from COCO and 256 from a pseudo dataset. The other training hyper-parameters remain the
same as those in supervised training. For all experiments the parameters of the student model are
initialized by the teacher model to save training time. Experimental analysis studying the impact of
student model initialization during self-training can be found in Appendix C.

Semantic Segmentation: We use the train set (1.5k images) of PASCAL VOC 2012 segmentation
dataset [64] for supervised learning. In self-training, we experiment with augmented PASCAL
dataset [18] (9k images), COCO [58] (240k images, combining labeled and unlabeled datasets), and
ImageNet [59] (1.2M images). We adopt a NAS-FPN [19] model architecture with EfficientNet-
B7 and EfficientNet-L2 backbone models. Our NAS-FPN model uses 7 repeats with depth-wise
separable convolution. We use pyramid levels from P3 to P7 and upsample all feature levels to
P2 and then merge them by a sum operation. We apply 3 layers of 3 ⇥ 3 convolutions after the
merged features and then attach a 1 ⇥ 1 convolution for 21 class prediction. The learning rate is
set to 0.08 for EfficientNet-B7 and 0.2 for EfficientNet-L2 with batch size 256 and weight decay
1e-5. All models are trained with a cosine learning rate decay schedule and use synchronous Batch
Normalization. EfficientNet-B7 is trained for 40k iterations and EfficientNet-L2 for 20k iterations.
For self-training, we use a batch size of 512 for EfficientNet-B7 and 256 for EfficientNet-L2. Half
of the batch consists of supervised data and the other half pseudo data. Other hyper-parameters
follow those in the supervised training. Additionally, we use a hard score threshold of 0.5 to generate
segmentation masks and pixels with a smaller score are set to the ignore label. Lastly, we apply
multi-scale inference augmentation with scales of (0.5, 0.75, 1, 1.25, 1.5, 1.75) to compute the
segmentation masks for pseudo labeling.

In Appendix H, we show the optimal training iterations and loss hyperparameters used for all of our
experiments.

3https://github.com/tensorflow/tpu/tree/master/models/official/detection
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4 Experiments

4.1 The effects of augmentation and labeled dataset size on pre-training

This section expands on the findings of He et al. [1] who study the weaknesses of pre-training on the
COCO dataset as they vary the size of the labeled dataset. Similar to their study, we use ImageNet for
supervised pre-training and vary the COCO labeled dataset size. Different from their study, we also
change other factors: data augmentation strengths and pre-trained model qualities (see Section 3.1
for more details). As mentioned above, we use RetinaNet object detectors with the EfficientNet-B7
architecture as the backbone. Below are our key findings:

Pre-training hurts performance when stronger data augmentation is used. We analyze the
impact of pre-training when we vary the augmentation strength. In Figure 1-Left, when we use
the standard data augmentation (Augment-S1), pre-training helps. But as we increase the data
augmentation strength, the value of pre-training diminishes.

Figure 1: The effects of data augmentation and dataset size on pre-training. Left: Supervised
object detection performance under various ImageNet pre-trained checkpoint qualities and data
augmentation strengths on COCO. Right: Supervised object detection performance under various
COCO dataset sizes and ImageNet pre-trained checkpoint qualities. All models use Augment-S4 (for
similar results with other augmentation methods see Appendix D).

Furthermore, in the stronger augmentation regimes, we observe that pre-training actually hurts
performance by a large amount (-1.0 AP). This result was not observed by He et al. [1], as pre-training
only slightly hurts performance (-0.4AP) or is neutral in their experiments.

More labeled data diminishes the value of pre-training. Next, we analyze the impact of pre-
training when varying the labeled dataset size. Figure 1-Right shows that pre-training is helpful in the
low-data regimes (20%) and neutral or harmful in the high-data regime. This result is mostly consistent
with the observation in He et al. [1]. One new finding here is that the checkpoint quality does correlate
with the final performance in the low data regime (ImageNet++ performs best on 20% COCO).

4.2 The effects of augmentation and labeled dataset size on self-training

In this section, we analyze self-training and contrast it with the above results. For consistency, we
will continue to use COCO object detection as the task of interest, and ImageNet as the self-training
data source. Unlike pre-training, self-training only treats ImageNet as unlabeled data. Again, we use
RetinaNet object detectors with the EfficientNet-B7 architecture as the backbone to be compatible
with previous experiments. Below are our key findings:

Self-training helps in high data/strong augmentation regimes, even when pre-training hurts.
Similar to the previous section, we first analyze the performance of object detectors as we vary
the data augmentation strength. Table 2 shows the performance of self-training across the four data
augmentation methods, and compares them against supervised learning (Rand Init) and pre-training
(ImageNet Init). Here we also show the gain/loss of self-training and pre-training to the baseline. The
results confirm that in the scenario where pre-training hurts (strong data augmentations: Augment-S2,
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Augment-S3, Augment-S4), self-training helps significantly. It provides a boost of more than +1.3AP
on top of the baseline, when pre-training hurts by -1.0AP. Similar results are obtained on ResNet-101
(see Appendix E).

Setup Augment-S1 Augment-S2 Augment-S3 Augment-S4
Rand Init 39.2 41.5 43.9 44.3
ImageNet Init (+0.3) 39.5 (-0.7) 40.7 (-0.8) 43.2 (-1.0) 43.3
Rand Init w/ ImageNet Self-training (+1.7) 40.9 (+1.5) 43.0 (+1.5) 45.4 (+1.3) 45.6

Table 2: In regimes where pre-training hurts, self-training with the same data source helps. All
models are trained on the full COCO dataset.

Self-training works across dataset sizes and is additive to pre-training. Next we analyze the
performance of self-training as we vary the COCO labeled dataset size. As can be seen from Table 3,
self-training benefits object detectors across dataset sizes, from small to large, regardless of pre-
training methods. Most importantly, at the high data regime of 100% labeled set size, self-training
significantly improves all models while pre-training hurts.

In the low data regime of 20%, self-training enjoys the biggest gain of +3.4AP on top of Rand Init.
This gain is bigger than the gain achieved by ImageNet Init (+2.6AP). Although the self-training gain
is smaller than the gain by ImageNet++ Init, ImageNet++ Init uses 300M additional unlabeled images.

Self-training is quite additive with pre-training even when using the same data source. For example,
in the 20% data regime, utilizing an ImageNet pre-trained checkpoint yields a +2.6AP boost. Using
both pre-training and self-training with ImageNet yields an additional +2.7AP gain. The additive
benefit of combining pre-training and self-training is observed across all of the dataset sizes.

Setup 20% Dataset 50% Dataset 100% Dataset
Rand Init 30.7 39.6 44.3
Rand Init w/ ImageNet Self-training (+3.4) 34.1 (+1.8) 41.4 (+1.3) 45.6
ImageNet Init 33.3 38.8 43.3
ImageNet Init w/ ImageNet Self-training (+2.7) 36.0 (+1.7) 40.5 (+1.3) 44.6
ImageNet++ Init 35.9 39.9 43.8
ImageNet++ Init w/ ImageNet Self-training (+1.3) 37.2 (+1.6) 41.5 (+0.8) 44.6

Table 3: Self-training improves performance for all model initializations across all labeled dataset
sizes. All models are trained on COCO using Augment-S4.

4.3 Self-supervised pre-training also hurts when self-training helps in high data/strong
augmentation regimes

The previous experiments show that ImageNet pre-training hurts accuracy, especially in the highest
data and strongest augmentation regime. Under this regime, we investigate another popular pre-
training method: self-supervised learning.

The primary goal of self-supervised learning, pre-training without labels, is to build universal
representations that are transferable to a wider variety of tasks and datasets. Since supervised
ImageNet pre-training hurts COCO performance, potentially self-supervised learning techniques
not using label information could help. In this section, we focus on COCO in the highest data
(100% COCO dataset) and strongest augmentation (Augment-S4) setting. Our goal is to compare
random initialization against a model pre-trained with a state-of-the-art self-supervised algorithm.
For this purpose, we choose a checkpoint that is pre-trained with the SimCLR framework [15] on
ImageNet. We use the checkpoint before it is fine-tuned on ImageNet labels. All backbones models
use ResNet-50 as SimCLR only uses ResNets in their work.

The results in Table 4 reveal that the self-supervised pre-trained checkpoint hurts performance
just as much as supervised pre-training on the COCO dataset. Both pre-trained models decrease
performance by -0.7AP over using a randomly initialized model. Once again we see self-training
improving performance by +0.8AP when both pre-trained models hurt performance. Even though
both self-supervised learning and self-training ignore the labels, self-training seems to be more
effective at using the unlabeled ImageNet data to help COCO.
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Setup COCO AP
Rand Init 41.1
ImageNet Init (Supervised) (-0.7) 40.4
ImageNet Init (SimCLR) (-0.7) 40.4
Rand Init w/ Self-training (+0.8) 41.9

Table 4: Self-supervised pre-training (SimCLR) hurts performance on COCO just like standard super-
vised pre-training. Performance of ResNet-50 backbone model with different model initializations
on full COCO. All models use Augment-S4.

4.4 Exploring the limits of self-training and pre-training

In this section we combine our knowledge about the interactions of data augmentation, self-training
and pre-training to improve the state-of-the-art. Below are our key results:

COCO Object Detection. In this experiment, we use self-training and Augment-S3 as the aug-
mentation method. The previous experiments on full COCO suggest that ImageNet pre-training hurts
performance, so we do not use it. Although the control experiments use EfficientNet and ResNet
backbones, we use SpineNet [17] in this experiment as it is closer to the state-of-the-art. For self-
training, we use Open Images Dataset (OID) [60] as the self-training unlabeled data, which we found
to be better than ImageNet (for more information about the effects of data sources on self-training,
see Appendix F). Note that OID is found to not be helpful on COCO by pre-training in [45].

Table 5 shows our results on the two largest SpineNet models, and compares them against previous
best single-model, single-crop performance on this dataset. For the largest SpineNet model we
improve upon the best 52.8AP SpineNet model by +1.5AP to achieve 54.3AP. Across all model
variants, we obtain at least a +1.5AP gain.

Model # FLOPs # Params AP (val) AP (test-dev)
AmoebaNet+ NAS-FPN+AA (1536) 3045B 209M 50.7 —
EfficientDet-D7 (1536) 325B 52M 52.1 52.6
SpineNet-143† (1280) 524B 67M 50.9 51.0
SpineNet-143 (1280) w/ Self-training 524B 67M (+1.5) 52.4 (+1.6) 52.6
SpineNet-190† (1280) 1885B 164M 52.6 52.8
SpineNet-190 (1280) w/ Self-training 1885B 164M (+1.6) 54.2 (+1.5) 54.3

Table 5: Comparison with the strong models on COCO object detection. Self-training results use
the Open Images Dataset. Parentheses next to the model name denote the training image size. † The
SpineNet baselines here do not contains the Augment-S3 that is used in the Self-training experiments
as the models were found to be too unstable and were unable to finish training.

PASCAL VOC Semantic Segmentation. For this experiment, we use NAS-FPN architecture [19]
with EfficientNet-B7 [56] and EfficientNet-L2 [12] as the backbone architectures. Due to PASCAL’s
small dataset size, pre-training still matters much here. Hence, we use a combination of pre-
training, self-training and strong data augmentation for this experiment. For pre-training, we use the
ImageNet++ for the EfficientNet backbones. For augmentation, we use Augment-S4. We use the
aug set of PASCAL [18] as the additional data source for self-training, which we found to be more
effective than ImageNet.

Table 6 shows that our method improves state-of-the-art by a large margin. We achieve 90.5% mIOU
on the PASCAL VOC 2012 test set using single-scale inference, outperforming the old state-of-the-art
89% mIOU which utilizes multi-scale inference. For PASCAL, we find pre-training with a good
checkpoint to be crucial, without it we achieve 41.5 % mIOU. Interestingly, our model improves the
previous state-of-the-art by 1.5% mIOU even using much less human labels in training. Our method
uses labeled data in ImageNet (1.2M images) and PASCAL train segmentation (1.5k images). In
contrast, previous state-of-the-art models [65] used 250x additional pre-training labeled classification
data: JFT (300M images), and 86x additional labeled segmentation data: COCO (120k images),
and PASCAL aug (9k images). For a visualization of pseudo labeled images, see Appendix G.
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Model Pre-trained # FLOPs # Params mIOU (val) mIOU (test)
ExFuse † ImageNet, COCO 85.8 87.9 ‡

DeepLabv3+ ImageNet 177B 80.0 —
DeepLabv3+ ImageNet, JFT, COCO 177B 83.4 —
DeepLabv3+ † ImageNet, JFT, COCO 3055B 84.6 89.0 ‡

Eff-B7 ImageNet++ 60B 71M 85.2 —
Eff-B7 w/ Self-training ImageNet++ 60B 71M (+1.5) 86.7 —
Eff-L2 ImageNet++ 229B 485M 88.7 —
Eff-L2 w/ Self-training ImageNet++ 229B 485M (+1.3) 90.0 90.5

Table 6: Comparison with state-of-the-art models on PASCAL VOC 2012 val/test set. † indicates
multi-scale/flip ensembling inference. ‡ indicates fine tuning the model on the train+val with
hard classes being duplicated [20]. EfficientNet models (Eff) are trained on PASCAL train set for
validation results and train+val for test results. Self-training uses the aug set of PASCAL.

5 Discussion

Rethinking pre-training and universal feature representations. One of the grandest goals of
computer vision is to develop universal feature representations that can solve many tasks. Our
experiments show the limitation of learning universal representations from both classification and
self-supervised tasks, demonstrated by the performance differences in self-training and pre-training.
Our intuition for the weak performance of pre-training is that pre-training is not aware of the task
of interest and can fail to adapt. Such adaptation is often needed when switching tasks because, for
example, good features for ImageNet may discard positional information which is needed for COCO.
We argue that jointly training the self-training objective with supervised learning is more adaptive to
the task of interest. We suspect that this leads self-training to be more generally beneficial.

The benefit of joint-training. A strength of the self-training paradigm is that it jointly trains the
supervised and self-training objectives, thereby addressing the mismatch between them. But perhaps
we can jointly train ImageNet and COCO to address this mismatch too? Table 7 shows results for joint-
training, where ImageNet classification is trained jointly with COCO object detection (we use the
exact setup as self-training in this experiment). Our results indicate that ImageNet pre-training yields
a +2.6AP improvement, but using a random initialization and joint-training gives a comparable gain
of +2.9AP. This improvement is achieved by training 19 epochs over the ImageNet dataset. Most Im-
ageNet models that are used for fine-tuning require much longer training. For example, the ImageNet
Init (supervised pre-trained model) needed to be trained for 350 epochs on the ImageNet dataset.

Moreover, pre-training, joint-training and self-training are all additive using the same ImageNet data
source (last column of the table). ImageNet pre-training gets a +2.6AP improvement, pre-training
+ joint-training gets +0.7AP improvement and doing pre-training + joint-training + self-training
achieves a +3.3AP improvement.

Setup Sup. Training w/ Self-training w/ Joint Training w/ Self-training w/ Joint Training
Rand Init 30.7 (+3.4) 34.1 (+2.9) 33.6 (+4.4) 35.1
ImageNet Init 33.3 (+2.7) 36.0 (+0.7) 34.0 (+3.3) 36.6

Table 7: Comparison of pre-training, self-training and joint-training on COCO. All three methods use
ImageNet as the additional dataset source. All models are trained on 20% COCO with Augment-S4.

The importance of task alignment. One interesting result in our experiments is ImageNet
pre-training, even with additional human labels, performs worse than self-training. Similarly, we
verify the same phenomenon on PASCAL dataset. On PASCAL dataset, the aug set is often used
as an additional dataset, which has much noisier labels than the train set. Our experiment shows
that with strong data augmentation (Augment-S4), training with train+aug actually hurts accuracy.
Meanwhile, pseudo labels generated by self-training on the same aug dataset significantly improves
accuracy. Both results suggest that noisy (PASCAL) or un-targeted (ImageNet) labeling is worse
than targeted pseudo labeling.

It is worth mentioning that Shao et al. [45] report pre-training on Open Images hurts performance
on COCO, despite both of them being annotated with bounding boxes. This means that not only
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Setup train train + aug train + aug w/ Self-training
ImageNet Init w/ Augment-S1 83.9 (+0.8) 84.7 (+1.7) 85.6
ImageNet Init w/ Augment-S4 85.2 (-0.4) 84.8 (+1.5) 86.7

Table 8: Performance on PASCAL VOC 2012 using train or train and aug for the labeled data.
Training on train + aug hurts performance when strong augmentation (Augment-S4) is used, but
training on train while utilizing aug for self-training improves performance.

we want the task to be the same but also the annotations to be the same for pre-training to be really
beneficial. Self-training on the other hand is very general and can use Open Images successfully
to improve COCO performance in Appendix F, a result that suggests self-training can align to the
task of interest well.

Limitations. There are still limitations to current self-training techniques. In particular, self-training
requires more compute than fine-tuning on a pre-trained model. The speedup thanks to pre-training
ranges from 1.3x to 8x depending on the pre-trained model quality, strength of data augmentation,
and dataset size. Good pre-trained models are also needed for low-data applications like PASCAL
segmentation.

The scalability, generality and flexibility of self-training. Our experimental results highlight
important advantages of self-training. First, in terms of flexibility, self-training works well in every
setup that we tried: low data regime, high data regime, weak data augmentation and strong data
augmentation. Self-training also is effective with different architectures (ResNet, EfficientNet,
SpineNet, FPN, NAS-FPN), data sources (ImageNet, OID, PASCAL, COCO) and tasks (Object
Detection, Segmentation). Secondly, in terms of generality, self-training works well even when
pre-training fails but also when pre-training succeeds. In terms of scalability, self-training proves to
perform well as we have more labeled data and better models. One bitter lesson in machine learning
is that most methods fail when we have more labeled data or more compute or better supervised
training recipes, but that does not seem to apply to self-training.

Broader and Social Impact

Our paper studies self-training, a machine learning technique, with applications in object detection
and segmentation. As a core machine learning method, self-training can enable machine learning
methods to work better and with less data. So it should have broader applications in computer vision,
and other fields such as speech recognition, NLP, bioinformatics etc. The datasets in our study are
generic and publicly available, which do not tie to any specific application. We foresee positive
impacts if the method is applied to datasets in self-driving or healthcare. But the method can also
be applied to other datasets and sensitive applications that have ethical implications such as mass
surveillance.
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