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ABSTRACT
Many modern desktop and mobile platforms, including Ubuntu,

Google Chrome, Windows, and Firefox OS, support so called Web-
based system applications that run outside the Web browser and
enjoy direct access to native objects such as files, camera, and ge-
olocation. We show that the access-control models of these plat-
forms are (a) incompatible and (b) prone to unintended delega-
tion of native-access rights: when applications request native ac-
cess for their own code, they unintentionally enable it for untrusted
third-party code, too. This enables malicious ads and other third-
party content to steal users’ OAuth authentication credentials, ac-
cess camera on their devices, etc.

We then design, implement, and evaluate POWERGATE, a new
access-control mechanism for Web-based system applications. It
solves two key problems plaguing all existing platforms: security
and consistency. First, unlike the existing platforms, POWERGATE
correctly protects native objects from unauthorized access. Second,
POWERGATE provides uniform access-control semantics across all
platforms and is 100% backward compatible. POWERGATE en-
ables application developers to write well-defined native-object ac-
cess policies with explicit principals such as “application’s own lo-
cal code” and “third-party Web code,” is easy to configure, and
incurs negligible performance overhead.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls
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Web Security; Mobile Security; Firefox OS

1 Introduction
Web-based system applications, as defined by the W3C Work-

ing Group [47], are Web applications with comparable capabilities
to native applications. They are implemented in languages such as
HTML5 and JavaScript but operate outside the Web browser sand-
box, with direct access to the operating system on the host ma-
chine. Many modern operating systems, including Ubuntu, Google
Chrome, Windows, and Firefox OS, provide runtime environments
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to support Web-based system applications, eroding the distinction
between desktop, mobile, and Web-based software.

Web-based system applications offer several attractive features.
First, they are implemented in platform-independent Web languages
and thus are portable, in contrast to native applications. In the-
ory, the developer can write the application once and it will run on
many desktop and mobile platforms. Second, they have access to
native functionality such as local files, camera, microphone, etc.,
in contrast to conventional Web applications. Third, after they are
installed by the user, they can work offline, also in contrast to con-
ventional Web applications. Fourth, they are easy to maintain and
update by changing the Web code hosted on the developer’s site, in-
stead of requiring all users to update their local copies. Fifth, even
though they use runtime Web-browser libraries, they do not rely on
browsers’ user interfaces, which can take up valuable display space
on mobile devices and make applications less responsive.

Our contributions. We first analyze the security models of the ex-
isting platforms for Web-based system applications: Ubuntu, Chro-
me, Windows, and Firefox OS. These platforms have different acc-
ess-control semantics for native objects, making it difficult to im-
plement secure, portable applications even when the language and
API are platform-independent (e.g., Open Web APIs in HTML5).

Another problem with the existing platforms is that their access-
control policies are expressed in terms of system components and
thus do not map naturally onto the applications’ privilege separa-
tion requirements. For example, in Ubuntu and Windows, native-
access capabilities are granted not to the application per se but to
specific browser instances. Consider a Web-based system appli-
cation created from a conventional Web application that combines
its own content with untrusted third-party advertising in the same
browser instance (e.g., WebView). When the platform gives native-
access rights to this WebView object, it effectively grants them not
only to the application’s own code, but also to unauthorized third-
party code sharing the same WebView.

We demonstrate several security vulnerabilities caused by the
unintentional delegation of native-access rights on the existing plat-
forms. These vulnerabilities have not been reported in previous
work [20]. For example, a malicious iframe included into an Ubuntu
HTML5 app can use the privileges of the browser’s main frame to
steal the user’s OAuth credentials for Gmail, Facebook, etc. Sim-
ilarly, a malicious iframe in a Windows Runtime app can get un-
fettered access to geolocation. Google Chrome has a different but
related problem, where messages sent by the app’s local code to the
app’s Web code can be intercepted by malicious third-party content,
thereby enabling content injection attacks.

We then design, implement, and evaluate POWERGATE, a new
access-control mechanism for Web-based system applications. In
contrast to the existing mechanisms, POWERGATE provides both



security and consistency by defining and correctly enforcing uni-
form access-control semantics for all native objects.

POWERGATE enables application developers to express access
restrictions on native objects in terms of explicit principals such as
“application’s own local code,” “application’s own remote code,”
and “third-party remote code.” Crucially, these policies do not rely
on the risk-prone delegation of access capabilities to WebViews and
other system components.

We implemented a prototype of POWERGATE based on Firefox
OS. Our evaluation shows that the performance overhead of POW-
ERGATE is very small vs. stock Firefox OS. We also demonstrate
how POWERGATE can automatically emulate the access-control se-
mantics of conventional Ubuntu, Google Chrome, Windows, and
Firefox OS, thus ensuring 100% backward compatibility: any ex-
isting Web-based system application will run on a POWERGATE-
enabled platform without any changes to the application’s code.

2 Software stack
The software stack for Web-based system applications is shown

schematically in Fig. 1. All platforms in our study implement some
version of this stack; individual variations are explained in the cor-
responding sections. We divide the layers of this stack into two
categories: those managed by the platform OS and those managed
by individual applications.

Figure 1: Software stack of Web-based system applications

2.1 Platform components

Native objects. These are the native resources and functionalities
that the platform makes available to Web-based system applica-
tions. Depending on the platform, native objects may include hard-
ware components (e.g., camera or GPS), special files (e.g., contacts
list on a mobile device), and platform-level functionality (e.g., no-
tifications or authentication credentials).

Local API to native objects. To enable applications to access
native objects, each platform provides a runtime environment with
special APIs. Different APIs may be available depending on the ap-
plication’s level of privilege. Even on platforms where local APIs
are implemented in Web languages such as JavaScript, the platform
may make them available only to the application’s local code, i.e.,
the part already installed on the machine, but not to the remote Web
code running inside a browser instance.

Web API to native objects. In contrast to the local API, Web
API to native objects is available to the application’s remote Web
code. Web API is implemented via special browser objects or other
mechanisms that enable Web content executing inside a browser to
make calls outside the browser sandbox—either to the application’s
local code, or directly to the platform. Often, the Web API is a
subset of the local API.

2.2 Application components

Manifest. The application’s manifest lists what the application
needs from the platform. The key part of the manifest is an explicit
list of native objects that the application wants to access. In all
platforms in our study, this list must be approved by the user when
the application is installed. The platform’s runtime environment is
responsible for ensuring that an application cannot access a native
object via the local or Web API unless this object has been approved
by the user as part of the manifest.

Local code. Web-based system applications typically have a com-
ponent which is installed on the host machine as a local program.

In the simplest case, the local component consists solely of the
application’s manifest and content caches, but in many applica-
tions it also includes executable code. This local code (1) creates
embedded browser instances that execute the application’s remote
Web code (see below), (2) “links” the platform’s local API and
the browser’s Web API so that the application’s remote code, too,
can access native objects, and/or (3) provides some offline func-
tionality. Depending on the platform, the local code may be imple-
mented in a Web language such as JavaScript, but it runs outside the
browser, is not subject to the standard browser sandboxing policies,
and has direct access to the platform’s local API.

Own remote code. The bulk of the code of a Web-based system
application is typically hosted at a remote, developer-controlled do-
main (we call it the app’s Web-home domain). Hosting application
code remotely allows developers to re-use the same code across
multiple platforms, update it without involving the users, and dy-
namically generate new content.

This code runs on the user’s machine inside an embedded browser
instance (e.g., WebView) created by the application’s local code.
Consequently, it can access native objects via the Web API but not
via the platform’s local API.

Third-party remote code. Web-based system applications may
also incorporate third-party Web code from origins other than the
developer’s own domain. For example, an advertising-supported
application may include an iframe which dynamically fetches ads
from different origins while the application is executing.

2.3 Threat model
For the purposes of this paper, we assume that the hardware,

operating system, and the application (both the local and remote
code written by the application developer, as well as the developer-
specified privilege separation policies) are trusted. The main threat
is third-party remote content included into the application. The ori-
gins of this content are not known statically, e.g., due to syndicated
and auction-based advertising. It may be malicious and attempt to
gain unauthorized access to camera, file system, etc.

The security of the software stack shown in Fig. 1 thus funda-
mentally depends on the platform’s correct separation between the
privileges granted to the application’s local code, application’s own
remote code, and third-party remote code.

3 Existing platforms
Web-based system applications need to expose native objects to

parts of the application’s code (e.g., Web code hosted at the de-



veloper’s own site) while hiding them from other parts (e.g., third-
party ads). Standard OS access control works at the granularity of
individual applications and cannot provide the required privilege
separation. Platforms supporting Web-based system applications
thus implement new access-control mechanisms for native objects.

In this section, we analyze the access-control models and en-
forcement mechanisms in Ubuntu, Google Chrome, Windows, and
Firefox OS (summarized in Table 1). We show that native-access
semantics are inconsistent across the platforms, explain the pros
and cons of each approach, and demonstrate several security prob-
lems caused by the design flaws in access-control models.

3.1 Ubuntu

Overview. Ubuntu provides isolation between the app’s local and
remote Web code and also enforces the same origin policy on the
remote Web code from different origins. The app’s local code is
treated as a distinct origin. Ubuntu uses a mix of install-time and
runtime access control to protect access to native objects.

Figure 2: Ubuntu HTML5 apps: software stack

Privilege hierarchy. Ubuntu supports two classes of applications:
HTML5 apps and regular Web apps. The latter execute inside a
Web browser and have access to a very limited set of native objects.
By contrast, HTML5 apps execute inside a Web “container” with-
out the browser UI elements. The overall architecture of Ubuntu
HTML5 apps is shown in Fig. 2.

Ubuntu supports three different API classes for HTML5 apps:
Ubuntu platform APIs (Unity), W3C APIs, and Cordova APIs.
Ubuntu platform APIs provide access to OS services such as no-
tification, messaging, media player, launcher, etc. The W3C APIs
follow W3C specifications and provide access to a very limited set
of device resources such as geolocation. The Cordova APIs [10]
provide access to a wide range of OS resources such as accelerome-
ter, camera, capture, contacts, device, file, geolocation, and storage.
Cordova uses a plugin framework to expose device-level function-
ality via a JavaScript interface. Ubuntu requires app developers to
either package their own copies of the Cordova runtime with the
app, or use the one offered by the platform.

Principals and access-control implementation. Ubuntu uses the
open-source AppArmor utility to sandbox each app. An app de-
veloper can either use pre-existing templates to configure the sand-
box for the resources her app needs, or customize the templates by
adding her own set of “policy groups,” roughly analogous to An-
droid permissions. Sample policy groups include accounts, audio,
calendar, camera, connectivity, contacts, and location, etc. [3]

The Cordova API is accessible to Web code from any origin [20].
Even though Cordova supports origin whitelisting, Ubuntu does not
expose it to app developers, thus there is no way to restrict native-
object accesses to a particular origin(s). On the other hand, Ubuntu
ensures that most of the Unity API is only accessible to the app’s
local code and not to any Web code. Unfortunately, this policy has
exceptions which lead to serious security vulnerabilities.

Pros. Ubuntu relies on AppArmor and hides most of the fine-
grained, origin-based access control from the user.

Cons. As mentioned above, Ubuntu exposes the Cordova API to
all Web origins, allowing untrusted Web code to access camera, mi-
crophone, etc. [20] Furthermore, Ubuntu lets users link their online
accounts such as Google and Facebook to their OS account. Once
linked, the login credentials are accessible via the OnlineAccounts
API [36]. Even though untrusted Web code inside iframes cannot
query this API directly, it can navigate the top frame to its own ori-
gin, steal the user’s OAuth credentials via the API (since access is
granted to a particular frame, not to a particular Web origin), and
redirect the main frame back to the original page to keep the attack
stealthy. This attack enables malicious Web content to hijack users’
Google and Facebook accounts.

3.2 Chrome

Overview. The software stack of Google Chrome apps is shown
in Fig. 3. Chrome provides isolation between the app’s local code,
which it treats as a distinct origin different from all Web origins,
and remote content, to which it applies the same origin policy.
Chrome uses install-time access control for the native objects de-
clared in the app’s manifest, but developers can add stricter run-
time checks by coding them in the app’s JavaScript shim.

Chrome also supports optional permissions,1 which are declared
in the app’s manifest but must be approved by the user at runtime
when the object is accessed. Optional permissions are not the focus
of this paper because they apply only to a handful of native objects,
not including the more sensitive ones such as camera.

Figure 3: Chrome apps: software stack

Privilege hierarchy. Google Chrome supports three different
types of applications. Hosted apps reside on a remote server, with
only a manifest file and an icon installed on the user’s machine.
Hosted apps have access only to "background", "clipboardRead",
"clipboardWrite", "geolocation", "notifications", and "unlimited-
Storage" objects. Chrome apps run inside their own browser in-
stances but without browser UI. Extensions run inside regular brows-
er instances but can integrate more closely with the browser and
bypass the same origin policy. Chrome apps and extensions have
access to most of the native objects.

Principals. The local Web code of Chrome apps cannot include
third-party resources such as scripts and embedded objects. Un-
like Firefox OS (described below), Chrome does not allow iframes
pointing to third-party content. Instead, such content must be put
into WebView tags. Unlike iframes, these WebViews are separate
browser instances, thus their rendering engines run in separate pro-
cesses. Even if malicious content compromises the rendering pro-

1
https://developer.chrome.com/apps/permissions

https://developer.chrome.com/apps/permissions


Platform Privilege hierarchy Install-time access control Runtime access control Each tuple defines a principal

Ubuntu Yes (2 levels) Yes Yes (app, local/remote code)

Chrome Yes (3 levels) Yes (optional) in JavaScript shim (app, local/remote code, Web origin∗)

Windows No Yes Yes (app, local/remote code)

Firefox OS Yes (4 levels) Yes Yes (app, browser instance, Web origin)

Table 1: Access control enforcement on different platforms.
*Code for origin-based access control enforcement is the responsibility of the app developer.

cess of its WebView, the other browser instances are still protected
by the OS-level process isolation.

By default, native objects in Chrome are exposed only to local
app code, but developers can implement JavaScript shims that ex-
pose certain objects via Web API to the remote code executing in-
side WebView instances. The developer is responsible for ensuring
that this access is not abused by untrusted third-party code exe-
cuting in the same WebViews. This is a problem because, when
enabled, a WebView API to a native object can be accessed by any
content inside this WebView, regardless of its origin.

Access-control implementation. Each Chrome app must request
via its manifest the permissions for all native objects it accesses
[9]. Sensitive permissions (videoCapture, audioCapture, etc.) are
shown to the user for approval when the app is installed. Once
approval is granted, the app can access all requested native objects
without any further user interaction.

Pros. Chrome hides its fine-grained, origin-based isolation from
the user. Individual Web APIs are not activated by default, but must
be explicitly requested by the app.

Cons. Conceptually, Chrome relies on delegating native-access
rights not to named principals (explicitly specified Web origins) but
to system components (WebView instances). This is risky because
a given component may include code from untrusted principals.
Security thus completely depends on the developers correctly im-
plementing origin checks for each resource request coming from a
WebView instance. These checks can rely on WebRequestEventIn-
teface,2 or use various match patterns.3 In either case, the access-
control code is subtle and difficult to write correctly [43]. The sam-
ple WebView app distributed by Google Chrome via GitHub [8],
which is supposed to serve as a coding guidance for other apps, is
missing any such checks and consequenly exposes the native ob-
jects to all Web origins.

Furthermore, even correctly implemented checks can be bypassed.
For example, the current implementation of the “pointer lock” ob-
ject incorrectly reports the source of the request to be the origin of
the main frame even when the request comes from inside an iframe,
rendering all origin checks ineffectual.

Another problem inherent in Chrome apps is their use of HTML5
postMessage for communication between the app’s local Web code
and its remote Web code. By design, the remote Web code run-
ning inside WebView does not have a reference to the parent app’s
window. It must first receive a postMessage from the local side of
the application before it can send a message to it. Unfortunately,
the local code of some existing Chrome apps (e.g., Lucidchart Dia-
grams) sends postMessage with “*” as the destination, i.e., without
restricting the receiver’s origin. Malicious third-party Web code
running inside an iframe can “frame-bust” (i.e., navigate the main
frame of its WebView to the attacker’s URL), capture the message
and its contents, and change the main frame to its old URL. Once
2
https://developer.chrome.com/apps/tags/webview.html#

type-WebRequestEventInteface
3
https://developer.chrome.com/apps/match_patterns.html

it obtains a reference to the parent app’s window in this way, ma-
licious code can also send messages to the app’s local code. This
makes content injection attacks possible.

3.3 Windows

Overview. Windows 8.1 supports Windows Runtime apps written
in HTML5 and JavaScript. These apps have access to native ob-
jects such as camera, removable storage, and geolocation via the
Windows.* API. Remote Web content included in an app cannot
access the namespace of these native objects directly. The overall
architecture of Windows Runtime apps is shown in Fig. 4

Figure 4: Windows Runtime apps: software stack

Principals and access-control implementation. A Windows Run-
time HTML5 application can include remote Web content in two
ways: in an iframe embedded into an internal application page or
in a WebView object. If remote content is loaded in an iframe, the
developer must whitelist its domain in order for the content to be
fetched and loaded successfully. Windows allows only HTTPS do-
mains to be whitelisted. No whitelisting is needed if the content
is to be displayed inside WebView. Windows also requires that if
the main WebView frame is fetched over HTTPS, all inner iframes
must be fetched over HTTPS as well.

Windows uses 20 capability groups [51] to protect native objects.
Developers must declare all capabilities needed by their apps in the
manifests. The user is prompted when an app wants to use a given
permission for the first time; all subsequent requests are granted or
denied based on this decision.

The permission prompt shows the name of the app but not the
origin of the request (e.g., “Can TestApp use your location?”). This
does not affect native objects managed by Windows Runtime be-
cause they are not visible to remote Web code, but it affects the
W3C geolocation API which is exposed to Web code by Windows.
If an internal application page requests access to the geolocation
object and the user approves, all third-party Web content included
in this app will implicitly get access to geolocation.

Pros. Windows exposes access to the Windows Runtime library
only to local application code, thus reducing the security risks of
running untrusted remote Web code in embedded browser instances.

Cons. Windows does not provide origin-based access control for
native device resources. This access-control model is inadequate

https://developer.chrome.com/apps/tags/webview.html#type-WebRequestEventInteface
https://developer.chrome.com/apps/tags/webview.html#type-WebRequestEventInteface
https://developer.chrome.com/apps/match_patterns.html


for objects such as geolocation that are available through both Win-
dows Runtime and W3C API. As a result, malicious third-party
content can surreptitiously obtain the user’s location.

Due to lack of built-in mechanisms for intra- and inter-principal
communications, developers of Windows Runtime apps must rely
on custom schemes—for example, the app’s Web code can use the
window.external.notify() API to talk to the app’s local code outside
the browser. The domain of this Web code must be whitelisted; if
there are multiple domains in the whitelist, then each of them can
send a window.external.notify() message. In this case, the devel-
oper must write (error-prone) code that checks sender.callingUri
and disambiguates calls made by different senders.

3.4 Firefox OS

Overview. Firefox OS supports fine-grained access control for
native objects. Principals are defined by the application instance,
embedded browser instance, and Web origin [16]: each combina-
tion of these has its own distinct access rights. Firefox OS uses a
mix of install-time and runtime, prompt-based access control.

The software stack of Firefox OS applications is shown in Fig. 5.
The OS part of the stack (not shown in detail in the picture) con-
sists of three major components: Gaia front-end responsible for
maintaining the UI, the underlying operating system layer called
Gonk that provides abstractions for accessing the device hardware,
and an intermediate layer called Gecko which includes the runtime
engines for HTML, CSS, and JavaScript and is responsible for en-
forcing all security policies regarding access to native objects.

Figure 5: Firefox OS apps: software stack

Privilege hierarchy. There are two types of applications (apps)
in Firefox OS: hosted and packaged. Hosted apps have no local
content and their manifest file is hosted at a remote server. This
file may also contain instructions for caching or offline usage of
the app. Isolation of hosted apps is based on the Web origins [4]
of their manifest files, defined by the protocol, domain, and port
number. Firefox OS allows only one hosted app per origin since it
cannot isolate distinct hosted apps if they have the same origin. To
prevent arbitrary files from being interpreted as manifests, Firefox
OS requires manifest files to be served with a specific MIME type
("application/x-web-app-manifest+json").

Unlike hosted apps, packaged apps store local content on the
user’s machine during installation. Packaged apps can be further
categorized into three categories, in increasing order of privilege:
regular, privileged, and certified apps.

Regular packaged apps have the same privileges as hosted apps.
The only difference is that they can work offline because their con-
tents are stored locally on the user’s machine.

Privileged packaged apps contain an explicit list of assets in a
ZIP archive, reviewed and signed by the app store. All assets are
verified during installation and stored locally.

Certified packaged apps are special apps with elevated privi-
leges, similar to setuid binaries in UNIX. In contrast to privileged
apps, almost all permissions for certified apps are implicit and not
controllable by the user. Certified apps are signed with the same
key as the OS and distributed solely by the device manufacturer.

Principals. As mentioned above, each tuple of (application in-
stance, browser instance, Web origin) defines a unique access-con-
trol principal. Firefox OS allows different browser instances to co-
exist inside a single application. The application can use them to
render Web content from the same origin, yet prevent the sharing
of cookies and other browser state.

The local content of an application is treated by Firefox OS as a
special principal whose origin is different from all Web origins. All
application code is written in HTML5 and JavaScript; Firefox OS
applications do not have local native code. The application’s local
code cannot include content from other origins via tags like embed
or script. It can include third-party content using iframe, but in
this case the included content is isolated from the local content by
the same origin policy [4] since its origin is different from that of
local content. Firefox OS uses content security policies (CSP) to
enforce these restrictions.

Access-control implementation. Depending on the application’s
privilege level (i.e., hosted, regular, privileged, or certified), cer-
tain permissions are implicit and the rest are explicit; also, certain
objects are not available to certain classes of applications. For ex-
ample, contacts and device storage API are not available to reg-
ular applications. The application developer must list all permis-
sions the application needs, whether explicit or implicit, in its man-
ifest. When enumerating individual permissions in the manifest,
the developer must supply a short description of why the applica-
tion needs this permission and how it will be used. This description
is displayed to the user when the user is asked to authorize access
to the underlying object and on other UI screens concerning the
application’s management and integration with the OS.

Once the application is installed, the implicit permissions are
granted without any user interaction. The explicit permissions gen-
erate user prompts when the corresponding objects are requested.
The user grants or denies access and can optionally instruct the sys-
tem to remember her decision for subsequent requests of the same
type coming from the same principal.

Local APIs to some native objects have an additional “access”
property, which lets the developer specify the access rights he wishes
the application to have with respect to the corresponding object,
such as “readonly”, “createonly”, “readcreate”, and “readwrite”.
These properties are specified in the manifest but not shown to the
user. Firefox OS lets users monitor permission state and change
applications’ permissions via special UI. More details about the
Firefox OS permission system can be found in [15].

Pros. The access control mechanism in Firefox OS helps develop-
ers implement flexible, fine-grained isolation between application
components without writing any extra code.

Cons. Firefox OS bombards the user with permission requests for
each (application, browser, origin) tuple. For example, suppose an
app requests access to geolocation from both its local HTML5 code
and remote HTML5 code hosted at the developer’s domain. The
user will be prompted twice: once with the name of the app and
second time with the domain name. To make matters more confus-
ing, suppose that this app uses two different browser instances, both
of which render content from the same domain that needs access to
geolocation (e.g., both show the same geotargeted ad). In this case,
the user will be prompted twice with the same domain name.



4 Design of POWERGATE
The purpose of POWERGATE is to help developers of Web-based

system applications write access-control and privilege separation
policies that (1) support inclusion of untrusted third-party content
such as Web advertising, and (2) restrict this third-party content to
an explicitly enumerated subset of native objects.

The common case in all existing Web-based system applications
is that the application requests native access only for its own code,
which may be hosted on the device itself and/or provided from
the application’s remote Web server. All third-party code included
into these applications is conventional Web content such as ads and
"Like" buttons, intended for conventional browsers without native-
access APIs. Therefore, no third-party code—even if included into
the application’s own code (for example, as a syndicated ad in an
iframe)—should be able to access native objects, except possibly
geolocation which may be needed for geotargeted advertising.

To support this common case, POWERGATE gives developers
an easy way to “name” all external domains so that they can be
blocked en masse from native access. For applications with more
fine-grained native-access policies, POWERGATE can also support
different rights for different third-party domains. This takes a single
line per domain in the application’s policy specification.

Access-control principals. POWERGATE policies are expressed
in terms of native objects and access-control principals, as opposed
to the platform components (shims, browser instances, etc.). We
chose this approach because the distinction between the applica-
tion’s own code and third-party code does not map neatly onto the
platform components. For example, on some platforms the appli-
cation’s own code is split into a local part hosted on the user’s ma-
chine and a remote part hosted on the developer’s server. At the
same time, certain components such as embedded Web browsers
combine the application’s own code with third-party code.

Web origins are natural access-control principals in many sce-
narios—for example, when implementing privilege separation in-
side pure Web applications [2, 29]—but they are often too fine-
grained for developers’ purposes. Consider the developer of an ad-
supported application who wants to allow all ads in her application
to access the user’s location for better geotargeting. In the case of
syndicated or auction-based advertising, the origins of these ads are
determined dynamically and enumerating them in advance as part
of the access-control policy is not feasible.

There are four main principals in POWERGATE: application’s
local native code, application’s local Web code, application’s re-
mote Web code, and third-party Web code. In Section 6.1 we show
that these principals are sufficient to emulate the access-control
models of all existing platforms. Optionally, individual domains
can be specified as sub-principals of “third-party Web code.”

The developer specifies a static “Web-home” domain hosting the
application’s remote Web code. All other Web origins are treated as
sources of untrusted code and thus—for the purposes of native ac-
cess only—are clustered into the “third-party Web code” principal.
This lumping does not introduce any security vulnerabilities be-
cause the same origin policy is still enforced by the browser, thus
individual Web origins within the “third-party Web code” princi-
pal still cannot access each other’s Web resources. Furthermore,
by default, this joint principal is blocked from accessing any na-
tive objects. Therefore, third-party Web origins have strictly fewer
rights when they are combined into this joint principal than they
have individually on any existing platform.

Access-control policies. In a POWERGATE policy, every native
object is associated with an ACL-style list of privileges for each
principal. POWERGATE has a very simple hierarchy of privileges.

The default setting is deny: the principal has no access to the object.
A principal may be allowed to access the object unconditionally,
or the system may prompt the user for permission. For complex
native objects (e.g., contacts, external storage, etc.), POWERGATE
supports the access qualifiers of readonly, readwrite, readcreate,
and createonly, same as stock Firefox OS.

The app’s remote Web code is associated with a specific Web ori-
gin which, by definition, includes the protocol (HTTP or HTTPS).
If the protocol is not specified in the manifest, POWERGATE as-
sumes HTTPS. If access to a particular native object is allowed un-
conditionally for third-party Web code, then POWERGATE restricts
it to HTTPS origins to prevent network attacks.

This simple system of principals and privileges can express rich,
yet conceptually straightforward policies. For example, the appli-
cation’s local native and Web code may access the contacts, videos,
and pictures, the application’s remote Web code may access only
videos and pictures, and third-party code may access geolocation
but only if the user explicitly approves.

To enable secure communication between the app’s local Web
code and its remote Web code, POWERGATE introduces new API
functions sendToAppLocalWebPrincipal(String msg), receiveFrom-
AppLocalWebPrincipal(), sendToAppRemoteWebPrincipal(String
msg), and receiveFromAppRemoteWebPrincipal(). Messaging be-
tween other pairs of principals can be supported in a similar fash-
ion, if needed. These new messaging APIs deliver messages to
explicitly named principals rather than individual system compo-
nents. Therefore, applications that use them do not suffer from
the vulnerabilities affecting current Web-based system applications
whose intra-application communication is based on HTML5 post-
Message. In many such applications, the recipient’s origin is speci-
fied as “*” and messages can thus be intercepted by any third-party
code running in the same browser.

Centralized enforcement and backward compatibility. All access-
control decisions in POWERGATE are made in a single place in the
code. Access-control logic is independent of the actual native ob-
ject being accessed and does not depend on the platform-specific
implementation details. POWERGATE is thus “future-proof”: it
protects access not only to all native objects in today’s platforms,
but also to any objects added in future releases.

POWERGATE ensures that existing applications behave as before
when ported to POWERGATE. In Section 6.1, we show how the
manifest of any existing application can be rewritten to emulate
the access-control semantics of any of the platforms described in
Section 3. In Section 6.2, we show that all existing Web-based
system applications can run without any code modifications on a
POWERGATE-capable platform and, if needed, preserve the same
access-control semantics they currently have.

Limitations. By design, POWERGATE only protects access to
native objects. To protect and isolate Web resources such as DOM,
POWERGATE relies on the Web browser’s implementation of the
same origin policy. Like all other OS and browser access-control
policies, POWERGATE’s policies are binary: access is denied or
allowed, but there is no notion of “rate-limiting” (e.g., allowing an
app to access a certain object only 5 times). We did not observe the
need for such richer policies in the existing apps.

Remote principals are defined by their Web origin or a set of ori-
gins, since this is the only information about them that is readily
available to the host platform. POWERGATE thus cannot express
policies such as “only domains belonging to local businesses can
access geolocation” because there is no feasible way for the plat-
form to determine whether a particular domain truly belongs to a



local business. This is a generic limitation of the entire Web model
and not specific to POWERGATE.

POWERGATE does not control what happens to information after
it has been accessed by an authorized principal. For example, the
user may grant access to the contacts list to the application’s own
code, which then sells this data to an advertiser. This is a generic
limitation of host-based access control and cannot be solved with-
out radically restructuring the existing host and network infrastruc-
ture to enforce Internet-wide information flow control.

5 Implementation of POWERGATE
The design of POWERGATE is platform-independent, but our

proof-of-concept prototype implementation is based on Firefox OS.
Implementations on other platforms would be essentially identi-
cal since all of them, except Chrome, have permission managers
that are similar to Firefox OS and can be modified identically. In
Chrome, native access is controlled inside the app, not the OS, thus
POWERGATE would be provided as a library. The alternative is to
add a Firefox-OS-style permission manager to Chrome.

The key data structure in POWERGATE is PowerGateStore, an
in-memory hash map indexed by app id which stores the access
privileges of currently running apps. We also use the same term for
the file from which this hash map is populated when a new app is
launched. The in-memory PowerGateStore is used to make access-
control decisions at runtime, whereas the PowerGateStore file is
used to persist apps’ access-control settings between host restarts.
PowerGateStore is managed internally by the OS and cannot be
accessed by applications unless the OS is compromised, which is
beyond our threat model.

The implementation of POWERGATE consists of two parts. The
first part parses the app’s manifest when the app is installed and
updates the PowerGateStore file accordingly. The second part de-
cides at runtime whether to unconditionally allow, prompt the user
for permission, or deny a given access request to a native object.

At app installation time. POWERGATE parses the app’s man-
ifest file and creates a Preference object for each (native object,
principal) pair declared in the manifest. This object’s string rep-
resentation is prefixed with the app’s id, which is assigned by the
underlying system at install time. A Preference object is also cre-
ated for the app’s own Web-home domain.

The set of all Preference objects for the app being installed is
then stored in the PowerGateStore file. For example, if the app’s
system id is 32, its Web-home domain is www.example.com, and
the app allows only Web code from adserver.com to access the
geolocation object (with explicit user approval), then POWERGATE
will create the following entries in PowerGateStore:
32.webhome: https://www.example.com
32.geolocation.third-party-web-code.prompt.true.domain:

https://adserver.com

The user can manually overwrite these policies, if needed.

At app runtime. The in-memory representation of the access-
control policies of all apps currently running on the host is kept
in the PowerGateStore hash map, keyed by app id. Each entry in
this map includes the app’s Web-home domain and a Policy object
defining the policies for all native objects to which the app has re-
quested access via its manifest file. These Policy objects are hash
maps keyed by the native object’s name and enumerating the access
rights of each principal.

Access-control policies. The possible values for the principals tag
in a policy are local-native-code, local-web-code, app-web-code,
or third-party-web-code. The current version of Firefox OS does
not allow applications to include native code, thus all existing ap-

Figure 6: PowerGateStore

plications are implemented exclusively in Web languages such as
HTML5, JavaScript, and CSS. On other platforms, however, appli-
cations can include local native code, necessitating support for the
local-native-code principal. Optionally, individual domains can be
specified as sub-principals of the third-party-web-code principal.

The prompt tag allows developers to specify whether the user
should be prompted for permission when access to a given native
object is attempted. The default value of this tag is “yes”. In POW-
ERGATE, the user can instruct the GUI to remember her choice. By
explicitly incorporating user prompts into access-control policies,
POWERGATE can emulate the following access-control semantics:
prompt: no, prompt: always (the user instructs the system to not
remember her choice), prompt: first-time-use (the user instructs the
system to remember her choice).

Access-control enforcement. POWERGATE’s enforcement mech-
anism is shown schematically in Fig. 7. It is implemented in 366
lines of C++ code. Specifically, in nsPermissionManager.cpp, POW-
ERGATE modifies the internal implementation of
CommonTestPermission(nsIPrincipal * aPrincipal,

const char * aType,
uint32_t * aPermission,
bool aExactHostMatch,
bool aIncludingSession)

with a function call to:
uint32_t * aPermission
PowerGate::GetAction(uint32_t appId,

const char * aType,
string prePath)

defined in PowerGate.cpp. Since the CommonTestPermission() func-
tion is the central location used by Firefox OS to make access-
control decisions about any native object, PowerGate::GetAction()
effectively assumes this responsibility.

In POWERGATE, the decision to allow or deny access is based on
the app id, the name of the object being requested, and the request-
ing principal. The app id and the principal are determined from the
information provided by the platform’s runtime environment for ev-
ery request. The name of the object is conveyed by the platform’s
local API. Specifically, POWERGATE derives the values of appId
and prePath from the aPrincipal object and uses aType as the na-
tive object name. POWERGATE does not use ExactHostMatch be-

www.example.com
adserver.com


Figure 7: Access-control enforcement at runtime

cause it always assumes this flag to be true when the request comes
from the app’s Web code or a third-party origin explicitly defined
in the app’s manifest, and false in all other cases. POWERGATE
then looks up the app id in PowerGateStore. If a match is found,
POWERGATE retrieves the app’s policy object. POWERGATE inter-
nally computes the value of aIncludingSession based on the prompt
part of the policy and/or user’s choice (if the user was previously
prompted). Finally, POWERGATE uses the policy to decide whether
to allow the request, deny it, or prompt the user.

Inter-principal communication. To enable secure communica-
tion between the app’s local Web code and its remote Web code,
POWERGATE provides a new messaging API. This API can be im-
plemented via a new, distinct native object, but our current proof-
of-concept prototype implementation is based on a sandboxed vari-
ant of the existing Alarms object, which we called Communicator.
When the local Web code wants to talk to its remote counterpart,
it invokes sendToAppRemoteWebPrincipal(String msg). The local
Web code then sends a postMessage("pending message", "*") to
the browser instance executing remote code to notify the latter that
a message is waiting for it. Upon receiving this notification, the
remote Web code retrieves the pending message by invoking re-
ceiveFromAppLocalWebPrincipal(). Note that there is no need to
protect the content of the postMessage since it does not contain
any sensitive information. Even if malicious third-party code in-
tercepts this postMessage, the POWERGATE access-control mech-
anism will prevent it from retrieving the actual message since it
is not the app-web-code principal. Messaging from the app’s re-
mote Web code to the app’s local Web code works similarly by
using the sendToAppLocalWebPrincipal(String msg) and receive-
FromAppRemoteWebPrincipal() API.

6 Evaluation
For the evaluation of the existing platforms described in Sec-

tion 3, we used a Dell Latitude E6500 laptop executing Windows
8.1 with Windows Phone Simulator; a MacBook Pro laptop execut-
ing OS X 10.9.4 with Google Chrome 34.0.1847 and two virtual
machines installed inside VMware Fusion 5.0.4, running Ubuntu
13.10 and Ubuntu 14.04, respectively; and a Dell PowerEdge 2950
running Ubuntu 12.10 LTS and the Firefox OS version 1.3 simula-
tor. To evaluate our proof-of-concept implementation of POWER-
GATE, we modified the Firefox OS simulator with scripts that au-

tomate user interaction and thus generate deterministic sequences
of native-access requests. All performance evaluation of POWER-
GATE was done on the Dell PowerEdge 2950 running Ubuntu 12.10
LTS.

6.1 Backward compatibility
POWERGATE can emulate the access-control policies of all four

platforms analyzed in our study. This is done by automatically
rewriting the application’s manifest, without any changes to the ap-
plication’s code.

Ubuntu. In Ubuntu HTML5 apps (see Section 3.1), local code has
access to the Unity API [49], allowing apps to reserve a spot on the
Launcher or integrate with Messaging and Music menus. This API
is not available to either the app’s own, or third-party Web code.
The corresponding POWERGATE policy is as follows:
In Ubuntu:
Allowed

In PowerGate:
"policy_groups": [
"unity": {
"principals": {
"local-web-code": {"prompt": "no"}}}]

For objects that are likely to be useful to HTML5 apps, such
as the OnlineAccounts object, Ubuntu grants access (without user
interaction) to all Web content loaded in the main frame of the app’s
WebView, but not to third-party content loaded in iframes. This
corresponds to the following POWERGATE policy:
In Ubuntu:
"policy_groups": ["accounts"]

In PowerGate:
"policy_groups": [
"accounts": {
"principals": {
"local-web-code": {"prompt": "no"},
"app-web-code": {"prompt": "no"}}}]

Cordova on Ubuntu (see Section 3.1) comes with a set of 16
plugins [10], enabled by default. Access is implicitly granted to all
Web content regardless of its origin [20]. In POWERGATE-enabled
Ubuntu, this policy is implemented by instrumenting each plugin’s
native object with the appropriate access attributes. For example,
the policy for the camera object is expressed as:
In Ubuntu:
"policy_groups": ["camera"]

In PowerGate:
"policy_groups": [
"camera": {
"principals": {
"local-web-code": {"prompt": "no"},
"app-web-code": {"prompt": "no"},
"third-party-web-code": {"all": {"prompt": "no"

}}}}]

Chrome. In Chrome (see Section 3.2), the application’s local
Web code—but not its remote code—has access to the local API.
Chrome does not require that application developers declare their
intention to use the local API in the manifest. In POWERGATE, a
new object called “locals” represents the local API in Chrome. The
declaration in the manifest is as follows:
In Chrome:
Allowed

In PowerGate:
"locals": {
"principals": {

"local-web-code": {"prompt": "no"}}}



Using its access to the local API, the application’s local Web code
can enable Web API for individual native objects. If this API is
enabled, the application’s remote Web code—as well as any third-
party Web code in the same browser—can use it to access the cor-
responding object. For instance, the access policy for the video
capture object can be expressed as:
In Chrome:

"permissions": {"videoCapture"}

In PowerGate:
"permissions": {
"videoCapture": {

"principals": {
"local-web-code": {"prompt": "no"},
"app-web-code": {"prompt": "no"},
"third-party-web-code": {"all": {"prompt": "no"

}}}}}

Windows. In Windows Runtime apps (see Section 3.3), only
local application files have access to the Windows.* native objects
and the user is prompted on the first use of each native object [51].
Therefore, in POWERGATE-enabled Windows, the access policy
for each object is listed individually. For instance, the manifest
entry for the camera object is expressed as:
In Windows:
<DeviceCapability Name="webcam" />

In PowerGate:
<DeviceCapability Name="webcam"
Principal="local-native-code" Prompt="Yes"/>

<DeviceCapability Name="webcam"
Principal="local-web-code" Prompt="Yes"/>

Firefox OS. In Firefox OS (see Section 3.4), all requests to native
objects can be categorized into four categories: denied, granted,
prompt: first-time-use, and prompt: always. While different native
objects have different access policies [15], they can all be expressed
in POWERGATE’s terms using one of the local-web-code, app-web-
code, or third-party-web-code principals. For example, here is the
policy for the desktop-notification object:
In Firefox OS:
"permissions": {
"desktop-notification": {
"description": "Notify the user.", }}

In PowerGate:
"permissions": {

"desktop-notification": {
"description’’: "Notify the user.",

"principals": {
"local-web-code": {"prompt": "no"},
"app-web-code": {"prompt": "yes"},
"third-party-web-code": {"all": {"prompt" : "yes

"}}}}}

6.2 Deployment
By design, POWERGATE augments the application’s manifest on

all platforms with information about the application’s Web home
and the access rights it grants to various principals with respect
to the platform’s native objects. To disambiguate between mani-
fest formats, POWERGATE increments the version number of the
manifest file by 1. For instance, the current version number of the
manifest in Chrome apps is 2, whereas POWERGATE-compatible
Chrome apps have manifest version 3. Similarly, current Ubuntu
HTML5 apps have policy group version 1, whereas POWERGATE-
compatible Ubuntu HTML5 apps have policy group version 2.

At application installation time, POWERGATE checks the version
number of the application’s manifest. If it matches POWERGATE’s
manifest version number for the given platform, the manifest is
parsed as described in Section 5. Otherwise, POWERGATE assumes

that the application is not aware of POWERGATE and cannot take
advantage of its facilities. In this case, POWERGATE rewrites the
manifest with appropriate settings to ensure backward compatibil-
ity with the original platform, as described in Section 6.1.

POWERGATE does not change the API used to access native ob-
jects and is thus fully transparent to all existing applications. Any
application that currently runs on stock Firefox OS will run on
POWERGATE, too. We developed a test suite and verified that in
100% of the tests, API access to native objects from legacy code
returns exactly the same results with and without POWERGATE.

6.3 Performance

Micro benchmarks. Table 2 compares how long it takes to make
access-control decisions in POWERGATE vs. stock Firefox OS on
individual accesses to native objects. All numbers are in microsec-
onds and averaged over 3000 runs.

Firefox OS PowerGate Overhead
ALLOW_ACTION 39.76 µs 42.34 µs 1.0649X

DENY_ACTION 18.19 µs 18.65 µs 1.0253X

Table 2: Micro benchmark: Performance overhead per native-object access
as visible to the Permissions Manager

Macro benchmarks. Table 3 compares the overall performance
of POWERGATE with stock Firefox OS on individual accesses to
native objects from JavaScript. All numbers are in milliseconds
and averaged over 3000 runs.

Firefox OS PowerGate Overhead
ALLOW_ACTION 66.5733 ms 67.3916 ms 1.0123X

DENY_ACTION 1.0527 ms 1.0533 ms 1.0006X

Table 3: Macro benchmark: Performance overhead per native-object access
as visible to JavaScript

7 Related work
Origin-based access control for Web content. Origin-based ac-
cess control [4] in Web browsers isolates content from different
origins, defined by domain, protocol, and port. Zalewski [52] and
Singh et al. [42] describe several flaws in browsers’ implementa-
tions of origin-based access control.

Browsers conforming to the HTML5 specifications provide the
postMessage API for communication between frames from differ-
ent origins. Prior work [5, 43] found security flaws in cross-origin
communication that can be used to bypass origin-based access con-
trol by exploiting incorrect authentication of the sender, certain
frame navigational policies, etc..

Wang et al. [50] investigated cross-origin communication chan-
nels, such as intent, scheme, and Web-accessing utility classes, on
Android and iOS, and found that they are vulnerable to cross-origin
attacks from malicious apps and malicious links clicked by users.
Their proposed defense, Morbs, labels every message with its ori-
gin and uses this information to enforce developer-specified secu-
rity policies. In contrast to Morbs, which protects Web resources
from malicious apps, POWERGATE protects native resources from
malicious third-party content inside benign apps.

Origin-based access control for native-access APIs. Modern mo-
bile platforms, including Android and iOS, allow applications to
embed instances of Web browsers and equip them with interfaces
or “bridges” that let Web code access resources outside the browser.
For example, ‘addJavascriptInterface’ is used to add such interfaces
to Android’s WebView. In older versions of Android, these inter-
faces can be exploited by malicious Web code to compromise the
host via reflection attacks [1, 34, 39]. Luo et al. [31] observed that



these WebView interfaces can be accessed by any script regard-
less of its origin. Chin et al. [7] found instances of this problem
in several Android applications. Other papers [22, 44] investigated
how Android advertising libraries expose device resources via ‘ad-
dJavascriptInterface’ to Web advertisements.

Hybrid application development frameworks such as PhoneGap
and Web Marmalade use these bridges to equip apps written mostly
in JavaScript and HTML5 with native access to the host platform.
Hybrid apps are somewhat similar to Web-based system applica-
tions, but the native-access capabilities and the corresponding ac-
cess control are provided by an application-level framework, not by
the platform itself. Georgiev et al. [20] showed how untrusted Web
content can bypass this access control in popular hybrid frame-
works. Jin et al. [26, 27] demonstrated how naive uses of the
framework-supplied functionality, such as reading from 2D bar-
codes and scanning Wi-Fi access points, can expose hybrid apps to
code injection attacks. MobileIFC [41] leverages hybrid-framework
APIs to enforce a fine-grained, information flow-based permission
model that controls what an untrusted application can do with the
data received through the framework API.

In this paper, we consider a different layer of the software stack
and investigate the native-access APIs provided by the platform to
the applications, not compiled into the application via a third-party
library. The APIs we study (1) are not based on ‘addJavaScriptIn-
terace’, (2) are exposed to code outside the Web browser, and (3)
access control is performed by the platform, not by the applica-
tion. Since the platform is responsible for access-control enforce-
ment, defenses that are suitable for hybrid frameworks (such as
NoFrak [20]) do not apply, necessitating modifications to the plat-
form. In general, platform-level native access is more attractive for
app developers than relying on hybrid frameworks because the de-
velopers do not need to update, repackage, and redistribute their
applications every time the framework is updated. Furthermore,
platform support obviates the need to include a copy of the frame-
work in every application, thus reducing code bloat.

As an alternative to browser interfaces for native access, Gibral-
tar [28] exposes hardware resource via a Web server hosted on lo-
calhost and accessible via AJAX.

Isolating untrusted advertisements. Several privilege separation
techniques aim to minimize the risks of untrusted advertisements
included into Web applications [2, 29, 40, 44]. These approaches
either isolate advertisements inside iframes, or else run them in sep-
arate processes and control communication between the application
and the confined content using developer-specified policies. For ex-
ample, AdSplit [40] puts Web-based advertisements into separate
WebView instances and relies on the application to restrict invoca-
tions of privileged APIs from these WebViews.

A key purpose of Web-based system applications studied in this
paper is to enable the developers to integrate already deployed Web
applications with new Web code that accesses system resources.
Web-based system applications are thus effectively mashups, with
multiple principals executing together in the same browser instance.
Applying solutions like [2, 29, 40, 44] requires re-engineering of
the existing code. By contrast, POWERGATE does not require mod-
ifications to advertising-supported legacy Web code.

An alternative to platform-based isolation is language-based iso-
lation [17, 32, 37, 48]. Language-based solutions, such as Caja [33],
require the app developer to fetch all third-party JavaScript and
rewrite it to satisfy the developer’s security policy before serving
it to the client. In contrast to language-based approaches, POW-
ERGATE works with legacy apps and lets unmodified third-party
JavaScript execute directly on the client machine. This reduces the
burden on the app since the app’s server does not need to fetch,

rewrite, and serve all ads shown to the users. Note that deploying
language-based isolation on the platform (as opposed to the server)
would have been challenging because different apps have different
isolation policies for native objects, while the platform presumably
has a single JavaScript rewriting engine.

Vulnerable Firefox OS applications. DeFreez et al. [12] used
lightweight static analysis to automatically find XSS (cross-site
scripting) and other vulnerabilities in Firefox OS applications. Their
focus and techniques are complementary to this paper, which in-
vestigates access control for native objects exposed to Firefox OS
applications and similar applications on other platforms. We do an-
alyze the exposure of native objects to untrusted Web origins, but
the vulnerabilities we found are related to the unintended delega-
tion of access rights, not XSS bugs in individual applications.

Permission re-delegation on Android. Many Android applica-
tions suffer from permission re-delegation vulnerabilities [11, 14].
This is an instance of the “confused deputy” problem [24], caused
by a privileged application exposing sensitive operations without
properly checking the credentials of the invoking application and
thus enabling the latter to bypass the permission system.

While vulnerabilities analyzed in this paper are also of the gen-
eral “confused deputy” type, they involve exposure of sensitive na-
tive APIs at the OS level, not at the application level. Further-
more, they are unrelated to Android permissions and affect plat-
forms other than Android. Consequently, previously proposed de-
fenses against re-delegation [6, 13, 14, 23, 30] do not solve the
problems investigated in this paper.

Sandboxing for protecting OS resources. Many research projects
[18, 19, 21, 25, 38, 45] and commercial products [35, 46] provide
solutions for restricting an untrusted application to a subset of sys-
tem resources. Unlike POWERGATE, these approaches do not dif-
ferentiate between content from different Web origins as long as it
is running inside the same application.

8 Conclusions
We analyzed the access-control models of the existing platforms

for Web-based system applications and demonstrated semantic in-
consistencies between the platforms, as well as design flaws that re-
sult in security vulnerabilities such as unauthorized access to OAuth
tokens from untrusted Web code.

We then designed and implemented POWERGATE, a new access-
control mechanism for Web-based system applications that allows
developers to specify access policies for native objects in terms of
high-level principals. POWERGATE policies are platform-independ-
ent and enforced uniformly and securely on all platforms. POWER-
GATE imposes a tiny performance overhead and is backward-com-
patible with all existing Web-based system applications.
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