
Evolution has led to the development of many 
different strategies for the survival of species. 
The relative evolutionary success of mam-
mals has been made possible by sophisticated 
brains that can combine information from 
current stimuli with memories to predict 
the future and to adapt behaviour accord-
ingly. The healthy human brain segregates 
and integrates information from sensory 
modalities, the body and memories. Take the 
example of a tennis player, who effortlessly 
integrates their memories with the colour, 
movement and shape of a tennis ball and 
segregates this information from the chang-
ing background of the tennis court and the 
crowd. These processes enable the player to 
predict the trajectory of the ball and to plan 
how best to position their body and tennis 
racket to return the ball beyond the reach of 
their opponent. The integrated information 
can be formally defined as the information 
a system has besides the information that is 
available from the sum of its parts1,2. Such 
integration of information has been linked to 
consciousness, but it can also proceed with-
out awareness3. However, we still lack a full 
understanding of the principles that underlie 
this fundamental process.

The most direct way to discover the brain 
mechanisms that underlie segregation and 
integration would be to use neuroimaging 
methods to map whole-brain structure and 
function. Much important progress has been 
made in this regard using sophisticated meta-
analyses that have pooled data from thou-
sands of task-related neuroimaging studies 
that probed and tested the brain in many 

different ways4. However, such meta-analyses 
present many important potential confounds, 
including their cross-sectional nature. 
Instead, neuroimaging methods would ide-
ally be used in the same individual to map 
the structural and functional pathways from 
each of the very large number of possible 
unimodal and multimodal inputs to integrate 
this information in a final common pathway 
and to map the underlying spatiotemporal 
dynamics. However, it is nearly impossible 
for human participants to sit through experi-
ments that could both explore a vast range of 
diverse inputs and control the full dynamics 
of the human brain. The use of direct causal 
brain interference methods such as trans-
cranial magnetic stimulation (TMS) also 
provides a promising approach to study brain 
networks. However, there are notable ethical 
problems associated with causally interfering 
with the human brain5,6.

The difficulty in controlling the full range 
of inputs to an individual brain is another 
reason why neuroimaging-based investiga-
tions of information segregation and integra-
tion have so far focused on the topological 
aspects of brain organization and/or resting-
state activity, which is based on process-
ing and coordinating internal rather than 
external input7. However, the relatively poor 
spatiotemporal resolution (which is typically 
on the timescale of seconds) and the indirect 
nature of whole-brain neuroimaging meas-
ures (such as functional MRI (fMRI)) have 
thus far limited the use of these methods for 
examining the dynamics of segregation and 
integration in the brain.

In this Opinion article, we argue that 
whole-brain computational modelling based 
on and constrained by neuroimaging data 
can be used to gain new insights into seg-
regation and integration. We describe the 
currently available topological measures 
that are obtained from neuroimaging stud-
ies of connectomics using graph theory and 
that support the notion of segregation and 
integration of input information. We propose 
that whole-brain computational modelling 
can improve these measures, and we provide 
a brief description of the fundamental princi-
ples of whole-brain models. By systematically 
perturbing model networks, such models 
can be used to improve our understanding 
of the dynamics of input processing and 
thereby provide new useful measures of 
segregation and integration. These models 
can also provide new information about how 
the processes of segregation and integration 
change over time. In particular, we propose 
new dynamic measures for the integrative 
‘binding’ of information over time (FIG. 1). 
These measures are different from exist-
ing ‘rich clubs’ of structural connectivity 
hubs, which are, by their very nature, more 
static. Importantly, we show how the new 
perturbational measures of segregation and 
integration can be applied to distinguish 
between states of consciousness and between 
health and disease. Finally, we discuss how 
generative whole-brain computational 
models may increase our understanding of 
the fundamental principles of human brain 
function in health as well as their breakdown 
in neuropsychiatric disorders.

Topological brain measures

Neuroimaging methods that can map the 
structural and functional connectivity of 
the human brain have started to map the 
architecture of the structural and functional 
networks in the human brain8. An impor-
tant goal of these studies is to establish the 
human connectome, which is defined as 
“the complete description of the structural 
connectivity (the physical wiring) of an 
organism’s nervous system” (REF. 7). Here, we 
argue that this purely structural description 
could be amended to include the functional 
connectivity of the connectome, and such 
combined knowledge may enable us to 
understand the complex segregation and 
integration of relevant information over time. 

Collecting topological and functional 

data. Neuroimaging methods can be used 
to study brain activity on several time-
scales and with varying degrees of spatial 
precision. In humans, the most popular 
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methods for mapping structure and con-
nectivity in vivo on the scale of millimetres 
include MRI and diffusion imaging (such 
as diffusion-weighted imaging (DWI) or 
diffusion tensor imaging (DTI)), which uses 
methods that are sensitive to the influence 
of the major fibre tracts on the diffusion 
of water9,10. These major tracts can then 
be reconstructed by combining models 
of water diffusion with deterministic or 
probabilistic tract-tracing methods11,12. 
However, there are notable limitations to 
these methods, such as the lack of informa-
tion on the directionality of the connections 
and the indirect nature of the connectivity 
measures13.

Brain activity is typically measured using 
both indirect methods (such as fMRI and 
positron emission tomography) and direct 
methods (such as high-density electroenceph-
alography (EEG) and magneto encephalography 
(MEG)). Functional connectivity between 
brain regions is defined as the statistical 
dependence between neurophysiological 
signals in different brain areas and is typically 
determined by calculating the relationship 
between regional time series using correla-
tions, mutual information or coherence14,15. 
Traditional functional neuroimaging studies 
measured task-related activity but, in the past 
decade, many studies have measured sponta-
neous resting-state activity in the regions of 

the brain over several minutes16. These rest-
ing-state MRI (rs-MRI) studies have reported 
highly reproducible and organized patterns 
of brain activity17,18, which overlap with task-
related activity patterns19. Combining rs-MRI 
with DTI has helped to build the first drafts of 
the human connectome20–22. Importantly, 
rs-MRI studies offer complementary 
information to task-based fMRI studies, 
especially in exploring the basic principles 
of self-organizing brain dynamics. For 
clinical studies, an advantage of rs-MRI 
is that there is no need for participants to 
engage in tasks that are often boring and 
repetitive. Both rs-MRI studies and task-
based fMRI studies provide multipurpose 
data sets that can be used to study multiple, 
interacting networks23,24.

The primary advantages of the rs-MRI 
approach over the task-based fMRI approach 
are the ease of data acquisition and of data 
analysis, which facilitate large-scale cross-
sectional and longitudinal human studies. As 
mentioned above, approaches that are based 
on rs-MRI are also well suited to many 
different populations, including individu-
als who may not be able to perform tasks. 
Nevertheless, rs-MRI can also include 
important potential confounds (such as 
unstable wakefulness25), and the data can 
be compromised by physiological signals 
(such as cardiac or respiratory signals) 
and head motion26. However, progress has 
been made in addressing these issues: for 
example, by building automated methods 
for the assessment of sleep stages27 and by 
minimizing the effects of head motion and 
physiological signals on rs-MRI data28,29.

Building connectomes and measuring inte-

gration. Neuroimaging data can be further 
processed using tools from, for example, 
graph theory to build the human connec-
tome. Specifically, tools from graph theory 
have proved to be useful for characterizing 
the topology of brain systems as well as that 
of other complex systems, such as social 
networks and the internet30,31. Graph theory 
can be used to analyse nodes (that is, neu-
rons and brain regions) and edges (that is, 
connections and pathways) from DTI and 
rs-MRI data. So far, however, much of this 
research has been largely descriptive32. The 
starting point of a graph theoretical analysis 
of structural data is to create a brain network 
comprising several nodes, which is achieved 
by parcellating the human brain into tens to 
hundreds of small regions20. Measurements 
of connectivity are then calculated as the 
strength of the edges between the nodes of 
the system33.

Figure 1 | Segregation and integration measures can be improved using whole-brain modelling.

Measures of segregation (top row) and integration (bottom row) come from the topological, func-

tional and spatiotemporal domains (columns). Segregation is supported by densely connected net-

work communities, whereas integration is promoted by network hubs that are rich in connections 

between the communities, the so-called rich club, members of which have high graphical measures 

of node degree and betweenness. We argue that functional measures of segregation and integration 

can improve on previous topological measures by using whole-brain computational models that can 

be systematically perturbed by introducing random inputs and in which the functional consequences 

of this perturbation can be measured. The perturbational segregation is a measure of the capacity 

of the brain to convey the amount of information provided by arbitrary external inputs during sys-

tematic perturbation. The arbitrary external inputs are measured in rates: that is, averaged over time. 

Similarly, perturbational integration is a measure of how effective — during systematic perturbation 

— the brain is at integrating (rather than conveying) information from arbitrary external inputs dis-

tributed across different brain regions. Combining spatiotemporal information can yield even more 

precise and sensitive measures of the variability of information processing in the brain over time. 

Spatiotemporal perturbational segregation can measure the ability of the brain to encode informa-

tion over time with varying inputs. Spatiotemporal perturbational integration, or simply ‘binding’, 

can be used to characterize the effectiveness of integration of distributed information across the 

whole brain over time.
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The advances in mapping the human 
connectome have led to the identification 
of some of the features of brain architecture 
that, as a plausible working hypothesis, 
may be necessary and sufficient for segre-
gation and integration in the brain. These 
advances have revealed that the human 
brain can be described as a small-world 
network34,35 that is structured around a 
large number of spatially distributed net-
work communities with clustered connec-
tivity, in which the local computations are 
likely to be highly segregated32,36 (but see 
REF. 37). In this small-world network, the 
integration of the segregated information is 
aided by network hubs, which link network 
communities and ensure efficient commu-
nication and information integration. Some 
of these hubs have high interconnectivity 
and diverse patterns of dense intercon-
nectivity31. This central core or rich club of 

important hubs has been suggested to have 
a key role in global (that is, across the whole 
brain) integration of information38.

Taken together, the results of graph 
theoretical analysis of structural brain data 
indicate that segregation and integration of 
information in the brain are reflected in the 
network topology as segregated, spatially 
distributed network communities and the 
integrative network hubs that connect them, 
respectively. However, this is only a descrip-
tion of the network architecture that sup-
ports segregation and integration; it does not 
describe the causal mechanisms that underlie 
functional segregation and integration. In 
particular, a graph theoretical approach 
using structural MRI data does not describe 
the dynamics of functional activity associ-
ated with the integration of information in 
healthy individuals or differentiate between, 
for example, conscious versus non-conscious 
states (for which TMS-induced perturbations 
have shown some promise). Such graph-
theory-based approaches for investigating 
‘structural’ (that is, anatomical) segregation 
and integration have been complemented 
by studies that assess ‘functional’ segrega-
tion and integration (that is, brain activity 
correlations) on the basis of the mutual 
information (that is, a measure of mutual 
dependence between random variables) that 
is derived from functional connectivity data 
between brain regions. In addition to these 
correlational measures, it is possible to per-
turb the brain using, for example, TMS and 
measure the resulting changes in functional 
brain activity to assess the brain’s ‘effective’ 
connectivity. These approaches have led to 
another topological definition of integration 
(using functional data): namely, the overall 
deviation from statistical independence 
across a set of nodes. In turn, this has led to 
a definition of functional clustering as the 
ratio between the integration within a set of 
nodes and the mutual information between 
that set of nodes and the rest of the system39. 
Other possible measures of functional clus-
tering include neural complexity (which 
is defined as the coexistence of functional 
segregation and integration within the same 
network)40 and integrated information 
(which is defined as the mutual information 
across the weakest partition of a system)41–43.

Combining these approaches has led 
to the development of the perturbational 
complexity index44 as a way to quantify the 
amount of information that is contained 
in EEG responses to changes in corti-
cal activity following a brief perturbation 
with TMS. Information can be measured 
as the compressibility of a signal, with 

information-dense responses having 
poorer compressibility than responses 
with less information. The perturbational 
complexity index can be defined as an 
empirical index of segregation (that is, the 
differentiation of responses) and integra-
tion. This index of TMS-induced pertur-
bations of cortical activity has proved to 
be useful for characterizing the changes 
between consciousness states (such as 
wakefulness, sleep and anaesthesia) as 
well as the consequences of various brain 
lesions44. However, it is important to note 
that TMS induces only a very brief perturba-
tion to brain activity and can only be used to 
perturb the cortex and not subcortical areas. 
It is also difficult to map the full conse-
quences of such a brief perturbation in terms 
of changes in spatiotemporal activity.

Here, we further complement these 
functional approaches by proposing that 
substantial progress could be made by using 
whole-brain models to further elucidate the 
candidate brain mechanisms of segregation 
and integration. These models use existing 
spatiotemporal connectomic data combined 
with systematic perturbations to accurately 
simulate and predict brain activity. 

Whole-brain computational models

Accurately modelling brain function using 
computational models is difficult given the 
very large number of neurons and the under-
specified connectivity at the neural level. 
Substantial progress has been made in the 
development of whole-brain computational 
models that can reproduce some of the com-
plexity and important features of the brain 
in vivo. These whole-brain models strive to 
find the right balance between complex-
ity and manageability by taking their lead 
from statistical physics, in which it has been 
shown that macroscopic physical systems 
obey laws independently of their meso-
scopic constituents45. Indeed, the emergent 
collective macroscopic behaviour of brain 
models has been shown to be only weakly 
dependent on the details of individual 
neuron behaviour46. The models therefore 
typically use various mesoscopic top-down 
approximations of brain complexity with 
dynamic networks of local brain area 
attractor networks47. The simplest models 
use basic neural mass or mean-field models 
to capture the changes in mean firing rate48 
— similarly to how the temperature of a 
gas captures the mean local particle veloc-
ity — whereas the most advanced models 
use a dynamic mean-field model derived 
from a proper reduction of a detailed spiking 
neuron model49.

Glossary

Bifurcation

One of the basic tools to analyse dynamic systems. It is 

defined by qualitative changes in the asymptotic behaviour 

of the system (‘attractors’) under parameter variation. 

Diffusion tensor imaging

(DTI). An MRI technique that takes advantage of the 

restricted diffusion of water through myelinated nerve 

fibres in the brain to enable inference of the anatomical 

connectivity between regions of the brain.

Edges

In a brain graph, edges denote anatomical or functional 

connections between nodes, which may indicate brain 

regions or neurons.

Graph theory

A branch of mathematics that deals with the formal 

description and analysis of graphs. A graph is simply 

defined as a set of nodes (vertices) that are linked by 

connections (edges) and can be directed or undirected.

Magnetoencephalography

(MEG). A method of measuring brain activity that involves 

the detection of minute perturbations in the extracranial 

magnetic field that are generated by the electrical activity 

of neuronal populations.

Mean-field models

Mean-field approximations consist of replacing the 

temporally averaged discharge rate of a cell with an 

equivalent momentary activity of a neural population (the 

ensemble average) that corresponds to the assumption of 

ergodicity. According to these approximations, each cell 

assembly is characterized by its activity population rate. 

Metastability

In dynamic systems, metastability refers to a state that falls 

outside the natural equilibrium state of the system but 

persists for an extended period of time.

Small-world architecture

This term is used to describe complex networks that have 

a combination of random and regular topological 

properties.
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The dynamics of whole-brain models 
rely on reducing the complexity of con-
nectivity by using a given brain parcellation. 
Historically, this has been carried out on the 
basis of careful studies of the properties of 
the underlying brain tissue50, which has been 
supplemented with modern neuroimaging 
parcellations that typically range from tens 
to several hundreds of regions20. The optimal 
parcellation of brain regions is not currently 
clear but could require fine-grained parcel-
lations with hundreds of regions51, although 
current popular choices include fewer 
regions, such as the Desikan–Killiany parcel-
lation52 or Hagmann parcellation53 with 66 
cortical regions, and the automated anatomi-
cal labelling parcellation with 116 regions 
(including cortical and subcortical regions, 
and the cerebellum)54.

Combining a parcellation with struc-
tural connectivity data (obtained from 
tractography from DWI or DTI) provides 
a structural connectivity matrix that can 
be used in the whole-brain computational 
model. The parameters are systematically 
varied to simulate and compare the dynam-
ics and fixed points of the global network 
system of attractors with the neuroimaging 
data (obtained, for example, from rs-MRI) 
(FIG. 1). In other words, the dynamic 
entrainment and correlations between 
different local brain region dynamics are 
essentially shaped by the underlying struc-
tural connectivity55–60. Therefore, whole-
brain computational models can provide a 
mechanistic explanation for the origin of 
resting-state networks, as has been shown 
for resting-state networks derived from 
rs-MRI data61,62 and from MEG data63. An 
important finding from this research is 
that the model that provides the best fit to 
empirical resting-state functional connec-
tivity matrices is obtained when the model 
brain network is subcritical49,58,64 (BOX 1).

Elucidating mechanisms

Combining whole-brain computational 
models with neuroimaging data offers great 
potential for obtaining a better understand-
ing of the computational and biophysical 
mechanisms that underlie the functioning of 
the healthy human brain, which is superior 
to the understanding that can be acquired 
from topological and correlational meas-
ures8. In particular, the ability of whole-brain 
computational models to model spontane-
ous resting-state and task-related activity, 
combined with the possibility to perturb the 
model in specific ways by changing the input 
and connectivity locally, could yield impor-
tant new information.

Measuring perturbational segregation. 
A measure of perturbational segregation can 
be obtained if any node of the brain network 
is perturbed, and the functional conse-
quences are measured in a whole-brain com-
putational model in which local nodal levels 
of excitation and inhibition are rebalanced 
to maintain negligible levels of short-range 
correlations58. Once the dynamic working 
point of the model has been adjusted using 
empirical measures of resting functional 
connectivity57, the model can be perturbed 
by a random set of Gaussian inputs (that 
is, the same variance of Gaussian noise is 
maintained, but a subset of random regions is 
stimulated; see FIG. 2a). The overall statistical 
dependence among all of the nodes can easily 
be estimated from the mutual information 
between nodes for each of the random set of 
inputs (assuming Gaussanity; this is easily 
calculated as minus logarithm of the deter-
minant of correlation matrix). More formally, 
the perturbational segregation is calculated 
through the entropy of the set of evoked 

patterns assuming a Gaussian distribution 
and is defined as65:

where n is the number of evoked patterns 
(typically n = 1,000) and λ

i
 are the eigenval-

ues of the covariance matrix of the evoked 
activity of the excitatory connections. To 
avoid numerical problems in the estima-
tion of the segregation, obfuscating noise of 
variance σ2

noise
 = 0.001 can be introduced66 

so that the perturbational segregation (that 
is, information capability (I

C
)) is finally 

given by:

The novel measure of perturbational seg-
regation can then be defined by normalizing 
this measure by the maximal possible value 
of the mutual information given by random 

Box 1 | Multistability and subcriticality

The dynamic interaction of functionally specialized but widely distributed brain regions in humans 

can be analysed by combining structural neuroanatomical data and brain activity data. To this end, 

whole-brain activity can be modelled in terms of a network of local-area attractor networks. The 

connections between brain areas are given by the structural connectivity matrix based on diffusion 

tensor imaging or diffusion-weighted imaging tractography54,80. Specifically, we assume that the 

number of white matter tracts that connect brain areas corresponds to the strength of the 

reciprocal synaptic projections between these areas. In addition, this structural connectivity is 

scaled by a global factor, which is a crucial control parameter and can be varied systematically to 

study the dynamics and fixed points of the whole-brain model. Brain activity data from 

neuroimaging experiments (involving functional MRI, magnetoencephalography and/or electro-

encephalography) reveal highly structured spatiotemporal activity patterns, even in the resting 

brain. This structure is revealed in the functional connectivity matrix, which comprises all pairwise 

correlations between areal activities. Specifically, the so-called resting-state networks emerge as 

segregated submatrices within the functional connectivity matrix.

By incorporating both brain structure (anatomical connectivity) and activity dynamics (functional 

connectivity), a whole-brain neurodynamic model can explain the emergence of resting-state 

networks mechanistically. Some neurodynamic models have used simple oscillatory 

dynamics56,63,81,82, whereas others have used more realistic spontaneous-state dynamics62; even 

more detailed and realistic local models (at the node level) have considered excitatory and 

inhibitory populations of spiking neurons coupled through NMDA, AMPA and GABA synapses61. By 

means of dynamic mean-field modelling49, the activity of detailed spiking models can be reduced 

to a more tractable model of the activity of local neuronal ensembles that allows analytical 

treatment of the equations and consequently the derived segregation and integration58.

As it turns out, simulated functional connectivity best matches the empirical functional 

connectivity when the whole-brain network is subcritical — more specifically, when both a 

spontaneous state (that is, low activity in all areas) and several excited states (that is, high activity 

in selected areas) are stable attractor states of the model. In other words, multistability around a 

spontaneous state defines an operating point, such that system activity stochastically explores the 

dynamic repertoire inherent to the structural connectivity49,61. Similarly, the concept of 

metastability is a measure of how variable brain states are as a function of time: for example, how 

the synchronization between the different brain regions fluctuates across time. The concepts of 

multistability and metastability are possible scenarios for the resting state, and it is an active area 

of research to determine which is a more accurate description76.

Readers can explore these concepts using The Virtual Brain, which is a freely available 

neuroinformatics platform with a user-friendly interface that enables users to perform, simulate, 

analyse and compare models with neuroimaging data83.

H = 0.5(n(1 + log(2 (1)log(∑π λ)) + i))
i = 1

n

IC = 0.5 (2)(1 + log(∑ λ
))i

noise
2

i = 1

n

σ
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inputs. In other words, this is a measure 
of the capability of the brain to process 
information.

Measuring perturbational integration. 
Similarly, integration can be defined using 
perturbations that are applied to whole-brain 
models to measure the effects of systematic 
stimulation on how the brain integrates 
information. This novel measure of pertur-
bational integration can be defined using the 
length of the largest connected component 
— that is, the largest connected graph of 
nodes (described below) — in the binarized 
functional connectivity matrix obtained 
from such a model (after thresholding).

More specifically, for a given absolute 
threshold θ between 0 and 1, the functional 
connectivity matrix (designated FC in the 
criteria below) can be binarized (using the 
criterion |FC

ij
| < θ; which determines whether 

it will be given a value of 0 or 1) and the 
largest component extracted as a measure 
of integration. The largest component is the 
length (number of nodes) of the connected 

sub-graph of the undirected graph defined 
by the binarized matrix (which itself is con-
sidered as an adjacency matrix). This is the 
largest sub-graph in which any two vertices 
are connected to each other by paths and 
that connects to no additional vertices in the 
super-graph (FIG. 2a). Finally, to get a measure 
that is independent of the threshold, this 
curve can be integrated in the range of the 
threshold between 0 and 1. This integra-
tion measure is normalized by the maximal 
number of connected brain areas (that is, all 
N areas) for each integration step and by the 
number of integration steps such that the 
maximal integration is normalized to 1. This 
integration measure is calculated for each 
possible external stimulation. We define 
perturbational integration as the average 
integration over a large amount of instantia-
tions of external stimulations (typically at 
least 1,000). FIGURE 2b shows how perturba-
tional integration evolves as a function of 
changing the global coupling parameter in 
a realistic whole-brain model. Furthermore, 
BOX 2 shows how perturbational segregation 

and integration change in networks with 
very different topological characteristics — 
namely, different degrees of small worldness 
— from a fully ordered lattice structure to a 
completely random graph.

Binding information over time

The measures of information segregation 
and integration using the methods of pertur-
bational segregation and integration rely on 
using grand-averaged connectivity measures 
over time to calculate the functional activ-
ity. However, the evolution of activity over 
time also clearly influences information 
segregation and integration. It is a key goal 
of neuroscience to describe the temporal 
changes that occur in segregation and inte-
gration. Such a description would increase 
our understanding of fundamental brain 
function and of concepts such as awareness 
and consciousness.

The generalization from static grand 
averages to dynamic temporal measures of 
perturbational segregation and integration 
described above is fairly straightforward: 
instead of taking the grand average of the 
functional connectivity collapsed over time, 
the functional connectivity can be split into 
smaller windows of time67, so that the per-
turbational integration can be calculated for 
each sliding window. Here, we use between 
30 seconds and 120 seconds, as smaller time 
windows on the scale of, for example, 4 sec-
onds can yield spurious fluctuations68 (see the 
bottom right panel of FIG. 1). Specifically, for 
each brain region, the largest component that 
includes this region can be calculated and 
integrated over all thresholds used to binarize 
the functional connectivity in a similar way 
as before, but now separately for each sliding 
window. This yields the amount of pertur-
bational integration involving a given brain 
region as a function of time. Assimilating 
perturbational integration over all time 
windows yields a measure of perturbational 
spatiotemporal integration: that is, temporal 
binding. (Temporal binding is related to the 
binding problem69: that is, how distributed 
information is bound and made available to 
consciousness70.) FIGURE 2b shows that the 
amount of temporal binding increases as the 
model is approaching the optimal dynamic 
working point.

The evaluation of temporal binding 
reveals which nodes within the network are 
more integrative, or binding, across both 
space and time. These nodes can be said 
to comprise the ‘binding club’ of the brain, 
by analogy with the ‘rich-club’ regions that 
were identified on the basis of measures of 
topological integration32. Note, however, 

Figure 2 | Using whole-brain computational modelling. a | Whole-brain computational modelling 

of empirical neuroimaging data uses structural connectivity (SC) data obtained from diffusion tensor 

imaging (DTI) tractography between a parcellation of the human brain, and functional connectivity 

(FC) data obtained, for example, from blood oxygenation level-dependent (BOLD) functional MRI. A 

whole-brain model can be constructed using a set of stochastic differential equations coupled accord-

ing to the connectivity matrix (global and individual coupling). b | An example of how measures of 

perturbational segregation and integration can be obtained from whole-brain computational model-

ling. The coupling parameter linearly scales the empirically obtained SC (from DTI tractography), cor-

responding to the assumption that each fibre has the same biophysical conductivity: that is, similar 

postsynaptic currents. The simulations show that perturbational segregation and integration are 

complementary measures: segregation decreases and integration increases as global coupling (or 

conductivity) increases. When global coupling is weak, there is high segregation and low integration, 

because perturbed nodes are disconnected and behave independently. By contrast, when global cou-

pling is strong, integration is high and segregation is low, because perturbed nodes are coupled. The 

black line indicates the correspondence (Pearson correlation) between the simulated FC and the 

empirical FC matrix (based on spatiotemporal BOLD activity). Intriguingly, the point at which segrega-

tion and integration have similar normalized values is when the simulated and empirical FC match 

each other (at global coupling of around 0.8), suggesting that the optimal working point of a brain 

network occurs when segregation and integration are balanced.
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that there could be many possible defini-
tions of binding, and future research will 
need to determine the most appropriate. For 
example, one alternative is to define bind-
ing as the variability of correlations between 
pairs of regions (in terms of connectivity at 
the edge level). FIGURE 3 shows this alterna-
tive temporal binding for each edge and for 
each node (summed over the edges) at the 
dynamic working point of the model, using 
data from participants going from wakeful-
ness to sleep.

Future areas of research will include 
establishing whether there is substantial 
overlap between nodes that participate in the 

temporal-binding club and in the rich club. 
This is important, as the nodes belonging to 
the rich club are thought to be important in 
information integration among distributed 
brain regions32, where recent graph-based 
analyses of windowed ‘dynamic’ resting-state 
fMRI data have found an overlap between 
the rich-club regions and regions that show 
maximum dynamic functional connectiv-
ity. We hypothesize that nodes belonging 
to the temporal-binding club could be 
important for mediating the concatenation 
of different brain states during cognitive 
sequences and, as such, may be important 
for facilitating awareness.

Brain states in health and disease

The measures of perturbational segregation, 
integration and temporal binding intro-
duced above reveal important features of 
brain organization. However, their use has 
to be assessed in terms of their ability to dis-
tinguish between changes in different states, 
such as sleep and wakefulness, and to dis-
tinguish between the human brain in health 
and in disease.

As a proof of principle of this ability, 
our proposed measures were able to track 
changes in functional connectivity over 
time as healthy participants were either 
awake or asleep, and showed marked differ-
ences in binding and functional connectiv-
ity between these two behavioural states71 
(FIG. 3). Interestingly, when comparing sleep 
with wake, the binding measure decreased 
to capture the functional disconnection over 
time, whereas mean functional connectivity 
increased. This is consistent with the obser-
vation that binding of external information 
is clearly decreased during sleep as well as 
existing evidence showing that the sleeping 
brain is more functionally connected owing 
to synchronization of the slow sleep waves72. 
Furthermore, the results suggest that there 
are specific brain regions that are important 
for temporal binding within the cortex.

The new measures of segregation and 
integration have also been applied to rare 
structural neuroimaging data obtained from 
a patient with Parkinson disease to examine 
changes in functional connectivity that may 
be triggered by structural reorganization 
following deep brain stimulation (DBS)73. 
We modelled the structural changes using 
a whole-brain computational model74 and 
showed that the effect of DBS-induced 
structural alterations on functional brain 
changes (following 6 months of DBS of the 
subthalamic nucleus) was to shift the neural 
dynamics back towards a healthy regime 
(FIG. 4a,b). As shown in FIG. 4c, the perturba-
tional measures of segregation and integra-
tion were also sensitive to the improvements 
(that is, an alleviation of symptoms) fol-
lowing DBS. This finding could potentially 
shed light on the underlying mechanisms 
for DBS in rebalancing functional brain 
networks75.

Conclusions

In this Opinion article, we have shown that 
whole-brain computational modelling can 
be used to improve our understanding of the 
segregation and integration of information in 
the human brain. One of the key possibilities 
that is offered by whole-brain computational 
models is the ability to systematically perturb 

Box 2 | Segregation and integration in small-world architectures

It is informative to consider how varying degrees of small-world architecture in the structural 

connectivity affect the ability of a network to segregate and integrate information. To answer this 

question, a realistic whole-brain model can be outfitted with different artificial connectivities, 

ranging from a structured lattice to completely random connectivity (see the figure, part a). In this 

model, all artificial connectivities use the same parcellation (116 regions in the automated 

anatomical labelling parcellation) and the same number of edges, and the degree of small worldness 

is manipulated using the procedure designed by Watts and Strogatz84. In brief, this procedure yields 

networks with defined structural features, such as the clustering coefficient or the average shortest 

path length. The well-known Watts and Strogatz connectivity combines a large clustering 

coefficient with a small average shortest path length. The key idea is to depart from a regular lattice 

and to redefine the links between two nodes according to the probability of rewiring; that is, if two 

nodes are linked, that link will be maintained or reallocated to another node according to such 

probability.

Simulations of such networks demonstrate that as the connectivity gradually changes from an 

ordered lattice to complete randomness, perturbational integration decreases, whereas 

perturbational segregation increases (see the figure, part a). Intuitively, integration decreases 

because randomness destroys the level of clustering and therefore the length of the largest 

component, whereas segregation increases because randomness increases the capability to 

distinguish between two different external inputs. This increase in segregation is a consequence of 

how the increase in disconnection generates different patterns and therefore increases the entropy. 

The optimal function (that is, achieving a balance between segregation and integration) is obtained 

at an intermediate level of connectivity, between order and randomness. Part b of the figure shows 

the results of measuring integration and segregation as a function of the probability of rewiring in 

whole-brain computational modelling. Note that the perturbational integration is normalized to a 

maximum of 1 and that the segregation is normalized to a minimum of 0. The error bars in part b 

represent the s.e.m. across 100 instantiations of possible rewirings. Part a of the figure is adapted 

with permission from REF. 8, Elsevier.
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the inputs and measure the functional con-
sequences of this perturbation. This provides 
novel insights into the fundamental princi-
ples of brain function. In particular, a better 
understanding of segregation and integration 
of information can lead to novel ways to 
distinguish between different states of con-
sciousness and between the brain in health 
and in disease.

However, despite the current exciting 
progress, many challenges and limitations 
to whole-brain computational modelling 
remain. Broadly speaking, more research 
is needed: first, to make the models more 
realistic (for example, by taking into account 
the unfolding of activity across many tem-
poral timescales) and, second, to further 
refine the models so that they can be reli-
ably used in individual participants based 
on the empirical data obtained from that 
individual (rather than working at a group 
level). However, before being able to deliver 
individual biomarkers, the models will have 
to able to identify biomarkers that stratify a 
broad illness phenotype into a finite number 
of treatment-relevant subgroups.

The temporal description and prediction 
of functional activity derived from whole-
brain computational models are becoming 
even more important67. As shown in this 
Opinion article, it is important to move 
beyond grand-average functional connec-
tivity matrices and to start measuring the 
temporal binding of information. The study 
of the temporal evolution of functional cor-
relations across time reveals aspects of brain 
dynamics that can never be expressed in a 
grand-average-based description of func-
tional connectivity over time. The concept 
of metastability has also been introduced to 
accurately describe the dynamic regime of 
models inferred from empirical data and can 
therefore be used to describe how self-assem-
bling processes of the brain are engaging and 
disengaging over time76. Further research is 
needed to identify the relationship between 
metastability and multistability, as described 
in this Opinion article (BOX 1). A practical 
application of investigating the temporal 
dynamics could be the identification of novel 
types of biomarkers, such as an information 
theoretical (that is, entropic) measure of the 

time dynamics of correlation pairs of brain 
regions. This temporal measure of variabil-
ity could be a complementary biomarker 
that segregates disease progression and the 
response to treatment.

The overall goal of computational neuro-
science is to create models of the brain 
that are sufficiently powerful and precise 
to infer a large range of detailed underly-
ing processes from neuroimaging data in 
individuals in both health and disease. This 
mechanistic information could potentially 
be useful for understanding the breakdown 
of information processing in neuropsychiat-
ric disorders8,77, and as such it could identify 
biologically homogenous subtypes that cover 
more than one phenotypic diagnosis78 and 
thereby aid in the development of stratified 
neuropsychiatry79.

Most importantly, further research into 
the principles of information segregation and 
integration in the human brain may offer 
fundamental insights into the very nature 
of awareness and consciousness. It has been 
proposed that integration can happen with-
out awareness and that consciousness may 

Figure 3 | Using the binding to extend our understanding of integration in the human brain. We used a binding measure on previously published 

neuroimaging data obtained from subjects who were either awake or asleep71,85,86 and show that the new measure is both sensitive and accurate in map-

ping this important and common change in consciousness. The figure plots the analysis of changes between automated anatomical labelling (AAL) regions 

in binding measurements (top row) and functional connectivity (FC; bottom row). For each row, the first column shows the matrices for the awake condition 

(averaged over participants), whereas the second column shows the matrices for the sleep condition. The colours indicate binding and FC from low (blue) 

to high (red). The third column plots the significantly different pair connections in both conditions (dots in the matrices): that is, the pairs that passed 

significance testing corrected for multiple comparisons (P < 0.05). The fourth column plots the mean value for each area (for FC and binding), with the blue 

line corresponding to the sleep condition and the red line corresponding to the awake condition. As can be seen by comparing column 1, column 2 and 

column 4, the binding decreases in sleep, whereas the mean FC increases. This result complements existing evidence that the sleeping brain is more glob-

ally connected functionally because it is more synchronized owing to the slow sleep waves72, whereas the binding measure instead captures the functional 

disconnection over time. The fifth column shows significant differences between the sum for each area of the number of connections with the rest of the 

nodes. Note that the new binding measure shows significance levels that are much more sensitive than those for the FC.
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Figure 4 | Using perturbational segregation and integration measures 

to characterize health and disease. a | Changes in structural connectiv-

ity (SC) following 6 months of deep brain stimulation (DBS) of the sub­
thalamic nucleus to alleviate the symptoms of Parkinson disease74. The 

column on the left shows the SC matrices — derived from diffusion tensor 

imaging scans — between 45 brain regions (x and y axes) for an individual 

with Parkinson disease pre-DBS and post-DBS versus those from healthy 

individuals. The colours in the matrices indicate the connectivity strength 

from low (blue) to high (dark red). The middle column shows the corre-

sponding functional connectivity (FC) matrices produced by the model 

from the SC, which is then fitted (two-way arrow) to the empirically 

obtained FC matrix from these individuals (right column). b | The fit quality 

is plotted as a function of coupling strength, for the preoperative and 

postoperative DBS patient and healthy individuals74. The optimal operating 

point for the whole-brain computational model is defined as the point at 

which modelled and empirical FC match; this is reflected in the region of 

the graph just before the bifurcation point (sudden dip), which is very differ-

ent between healthy individuals and pre-DBS individuals. DBS shifts the 

operating regime of the model closer to that of healthy individuals, provid-

ing evidence that DBS induces plasticity and allows recovery of cortical 

function. It was shown that this functional recovery in Parkinson disease 

affected cortical connectivity, even though the source of the disease and 

the area of DBS is subcortical74. c | Measures of perturbational segregation 

and integration are also sensitive to functional improvements following DBS 

surgery, as shown by the increase in both measures between pre-DBS and 

post-DBS individuals. Adapted from REF. 74.
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only be needed for the integration of novel 
information3. The underlying mechanisms for 
information segregation and integration are 
not fully understood, but it is likely that causal 
whole-brain computational models may help 
to elucidate the fundamental principles.
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