
Rethinking SIMD Vectorization for In-Memory Databases

Orestis Polychroniou∗

Columbia University
orestis@cs.columbia.edu

Arun Raghavan
Oracle Labs

arun.raghavan@oracle.com

Kenneth A. Ross†

Columbia University
kar@cs.columbia.edu

ABSTRACT

Analytical databases are continuously adapting to the un-
derlying hardware in order to saturate all sources of par-
allelism. At the same time, hardware evolves in multiple
directions to explore different trade-offs. The MIC architec-
ture, one such example, strays from the mainstream CPU
design by packing a larger number of simpler cores per chip,
relying on SIMD instructions to fill the performance gap.
Databases have been attempting to utilize the SIMD ca-
pabilities of CPUs. However, mainstream CPUs have only
recently adopted wider SIMD registers and more advanced
instructions, since they do not rely primarily on SIMD for
efficiency. In this paper, we present novel vectorized designs
and implementations of database operators, based on ad-
vanced SIMD operations, such as gathers and scatters. We
study selections, hash tables, and partitioning; and com-
bine them to build sorting and joins. Our evaluation on the
MIC-based Xeon Phi co-processor as well as the latest main-
stream CPUs shows that our vectorization designs are up to
an order of magnitude faster than the state-of-the-art scalar
and vector approaches. Also, we highlight the impact of ef-
ficient vectorization on the algorithmic design of in-memory
database operators, as well as the architectural design and
power efficiency of hardware, by making simple cores com-
parably fast to complex cores. This work is applicable to
CPUs and co-processors with advanced SIMD capabilities,
using either many simple cores or fewer complex cores.

1. INTRODUCTION
Real time analytics are the steering wheels of big data

driven business intelligence. Database customer needs have
extended beyond OLTP with high ACID transaction through-
put, to interactive OLAP query execution across the entire
database. As a consequence, vendors offer fast OLAP solu-
tions, either by rebuilding a new DBMS for OLAP [28, 37],
or by improving within the existing OLTP-focused DBMS.

∗Work partly done when first author was at the Oracle Labs.
†Supported by NSF grant IIS-1422488 and an Oracle gift.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’15, May 31 - June 04, 2015, Melbourne, VIC, Australia.

Copyright 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2747645.

The advent of large main-memory capacity is one of the
reasons that blink-of-an-eye analytical query execution has
become possible. Query optimization used to measure blocks
fetched from disk as the primary unit of query cost. Today,
the entire database can often remain main-memory resident
and the need for efficient in-memory algorithms is apparent.

The prevalent shift in database design for the new era
are column stores [19, 28, 37]. They allow for higher data
compression in order to reduce the data footprint, minimize
the number of columns accessed per tuple, and use column
oriented execution coupled with late materialization [9] to
eliminate unnecessary accesses to RAM resident columns.

Hardware provides performance through three sources of
parallelism: thread parallelism, instruction level parallelism,
and data parallelism. Analytical databases have evolved to
take advantage of all sources of parallelism. Thread par-
allelism is achieved, for individual operators, by splitting
the input equally among threads [3, 4, 5, 8, 14, 31, 40],
and in the case of queries that combine multiple operators,
by using the pipeline breaking points of the query plan to
split the materialized data in chunks that are distributed to
threads dynamically [18, 28]. Instruction level parallelism is
achieved by applying the same operation to a block of tu-
ples [6] and by compiling into tight machine code [16, 22].
Data parallelism is achieved by implementing each operator
to use SIMD instructions effectively [7, 15, 26, 30, 39, 41].

The different sources of parallelism were developed as a
means to deliver more performance within the same power
budget available per chip. Mainstream CPUs have evolved
on all sources of parallelism, featuring massively superscalar
pipelines, out-of-order execution of tens of instructions, and
advanced SIMD capabilities, all replicated on multiple cores
per CPU chip. For example, the latest Intel Haswell ar-
chitecture issues up to 8 micro-operations per cycle with
192 reorder buffer entries for out-of-order execution, 256-bit
SIMD instructions, two levels of private caches per core and
a large shared cache, and scales up to 18 cores per chip.

Concurrently with the evolution of mainstream CPUs, a
new approach on processor design has surfaced. The design,
named the many-integrated-cores (MIC) architecture, uses
cores with a smaller area (transistors) and power footprint
by removing the massively superscalar pipeline, out-of-order
execution, and the large L3 cache. Each core is based on a
Pentium 1 processor with a simple in-order pipeline, but
is augmented with large SIMD registers, advanced SIMD
instructions, and simultaneous multithreading to hide load
and instruction latency. Since each core has a smaller area
and power footprint, more cores can be packed in the chip.

The MIC design was originally intended as a GPU [33],
but now targets high performance computing applications.
Using a high FLOPS machine to execute compute-intensive
algorithms with superlinear complexity is self-evident. Ex-
ecuting analytical queries in memory, however, consists of
data-intensive linear algorithms that mostly “move” rather
than“process”data. Previous work to add SIMD in databases
has optimized sequential access operators such as index [41]
or linear scans [39], built multi-way trees with nodes that
match the SIMD register layout [15, 26], and optimized spe-
cific operators, such as sorting [7, 11, 26], by using ad-hoc

vectorization techniques, useful only for a specific problem.
In this paper, we present good design principles for SIMD

vectorization of main-memory database operators, without
modifying the logic or the data layout of the baseline scalar
algorithm. The baseline algorithm is defined here as the
most straightforward scalar implementation. Formally, as-
sume an algorithm that solves a problem with optimal com-
plexity, its simplest scalar implementation, and a vectorized
implementation. We say that the algorithm can be fully vec-

torized, if the vector implementation executes O(f(n)/W)
vector instructions instead of O(f(n)) scalar instructions
where W is the vector length, excluding random memory
accesses that are by definition not data-parallel. We define
fundamental vector operations that are frequently reused
in the vectorizations and are implemented using advanced
SIMD instructions, such as non-contiguous loads (gathers)
and stores (scatters). The fundamental operations that are
not directly supported by specific instructions can be imple-
mented using simpler instructions at a performance penalty.

We implement vectorized operators in the context of main-
memory databases: selection scans, hash tables, and parti-
tioning, which are combined to build more advanced opera-
tors: sorting and joins. These operators cover a large por-
tion of the time needed to execute analytical queries in main
memory. For selection scans, we show branchless tuple selec-
tion and in-cache buffering. For hash tables, we study both
building and probing across using multiple hashing schemes.
For partitioning, we describe histogram generation, includ-
ing all partitioning function types: radix, hash, and range.
We also describe data shuffling, including inputs larger than
the cache. All of the above are combined to build radixsort
and multiple hash join variants that highlight the impact of
vectorization on determining the best algorithmic design.

We compare our vectorized implementations of in-memory
database operators against the respective state-of-the-art
scalar and vector techniques, by evaluating on the Intel Xeon
Phi co-processor and on the latest mainstream CPUs. Xeon
Phi is currently the only available hardware based on the
MIC architecture and is also the only generally available
hardware that supports gathers and scatters, while the lat-
est mainstream CPUs (Intel Haswell) support gathers.

We use the sorting and join operator to compare a Xeon
Phi 7120P co-processor (61 P54C cores at 1.238 GHz, 300
Watts TDP) against four high-end Sandy Bridge CPUs (4×8
Sandy Bridge cores at 2.2 GHz, 4 × 130 Watts TDP), and
found that they have similar performance, but on a different
power budget, since Xeon Phi spends almost half the energy.

The next generation of Xeon Phi will also be available as
a standalone CPU,1 even if the current generation is only

1
newsroom.intel.com/community/intel_newsroom/blog/2014/

06/23/intel-re-architects-the-fundamental-building-
block-for-high-performance-computing

available as a co-processor, and will support more advanced
SIMD instructions (AVX 3), also supported by the next gen-
eration of mainstream CPUs.2 Our work does not focus on
evaluating Xeon Phi as a co-processing accelerator, such as
GPUs, that would also be bound by the PCI-e bandwidth,
but as an alternative CPU design that is suitable and more
power efficient for executing analytical database workloads.

We summarize our contributions:

• We introduce design principles for efficient vectoriza-
tion of in-memory database operators and define fun-
damental vector operations that are frequently reused.

• We design and implement vectorized selection scans,
hash tables, and partitioning, that are combined to
design and build sorting and multiple join variants.

• We compare our implementations against state-of-the-
art scalar and vectorized techniques. We achieve up
to an order of magnitude speedups by evaluating on
Xeon Phi as well as on the latest mainstream CPUs.

• We show the impact of vectorization on the algorith-
mic design of in-memory operators, as well as the ar-
chitectural design and power efficiency of hardware, by
making simple cores comparably fast to complex cores.

The rest of the paper is organized as follows. Section 2
presents related work. Sections 4, 5, 6, and 7 discuss the
vectorization of selection scans, hash tables, Bloom filters,
and partitioning. Sections 8 and 9 discuss algorithmic de-
signs for sorting and hash join. We present our experimental
evaluation in Section 10, we discuss how SIMD vectorization
relates to GPUs in Section 11, and conclude in Section 12.
Implementation details are provided in the Appendix.

2. RELATED WORK
Previous work that added SIMD instructions in database

operators is briefly summarized. Zhou et al. used SIMD for
linear scans, index scans, and nested loop joins [41]. Ross
proposed probing multiple keys per bucket for cuckoo hash-
ing [30]. Willhalm et al. optimized decompression of bit
packed data [39]. Inoue et al. proposed data-parallel comb-
sort and merging [11]. Chhugani et al. optimized bitonic
merging for mergesort [7]. Kim et al. designed multi-way
trees tailored to the SIMD layout [15]. Polychroniou et
al. discussed trade-offs for updating heavy hitter aggregates
[25], fast range partitioning via a range function index [26],
and Bloom filter probing using gathers [27]. Schlegel et al.
described scalable frequent itemset mining on Xeon Phi [32].

Database operators have been extensively optimized for
modern processors. Manegold et al. introduced hash joins
with cache-conscious partitioning [19], which Kim et al. ex-
tended to multi-core CPUs and compared against SIMD
sort-merge joins [14]. Cieslewicz et al. and Ye et al. studied
contention-free aggregation [8, 40]. Blanas et al. and Balke-
sen et al. evaluated hardware-tuned hash joins [3, 5]. Albu-
tiu et al. introduced NUMA-aware joins and Balkesen et al.
evaluated join variants on multiple CPUs [1, 4]. Satish et al.
and Wassenberg et al. introduced buffered partitioning for
radixsort [31, 38]. Polychroniou et al. introduced in-place
and range partitioning for sorting variants [26]. Jha et al.
optimized hash joins on Xeon Phi, but used SIMD partially
only to compute hash functions and load hash buckets [12].
2
software.intel.com/blogs/2013/avx-512-instructions

Compilers partially transform scalar to SIMD code based
on loop unrolling [17] and control flow predication [34]. Our
designs are far more complicated and not strictly equivalent.
Database operators can be compiled directly [22], thus man-
ual vectorization is also desirable to maximize performance.

GPUs have also been used in databases for generic queries
[2] and to accelerate operators, such as indexes [15], sorting
[31], joins [13, 24], and selections [36]. SIMT GPU threads
are organized in warps that execute the same scalar instruc-
tion per cycle by predicating all control flow. In SIMD code,
control flow is converted to data flow in software. We discuss
the similarities between SIMD and SIMT code and to what
extent our work is applicable to SIMT GPUs in Section 11.

3. FUNDAMENTAL OPERATIONS
In this section we define the fundamental vector opera-

tions that we will need to implement vectorized database
operators. The first two operations, termed selective load

and selective store, are spatially contiguous memory accesses
that load or store values using a subset of vector lanes. The
last two operations are spatially non-contiguous memory
loads and stores, termed gathers and scatters respectively.

A B C D E F G H I J K L M N O P

B D F G I K N O P

01010110 0100111

vector

memory
mask

Figure 1: Selective store operation

Selective stores write a specific subset of the vector lanes
to a memory location contiguously. The subset of vector
lanes to be written is decided using a vector or scalar register
as the mask, which must not be limited to a constant.

A B C D E F G H I J K L M N O P

R S T U VW X Y Z

0101011010100111

A R C S E T U H V J W L M X Y Z

vector

vector
mask

memory

Figure 2: Selective load operation

Selective loads are the symmetric operation that involves
loading from a memory location contiguously to a subset of
vector lanes based on a mask. The lanes that are inactive
in the mask retain their previous values in the vector.

C J A M % T R @ M ! P B P J ^ X

2 9 0 12 30 19 17 27 12 26 15 1 15 9 31 23

A B C D E F G H I J K L M N O P Q R S T U VW X Y Z ! @ # $ % ^

memory

index
vector

value
vector

Figure 3: Gather operation

Gather operations load values from non-contiguous loca-
tions. The inputs are a vector of indexes and an array
pointer. The output is a vector with the values of the respec-
tive array cells. By adding a mask as an input operand, we
define the selective gather that operates on a subset of lanes.
The inactive mask lanes retain their previous contents.

A B C D E F G H I J K L M N O P

2 9 0 12 30 19 17 27 12 26 15 1 15 9 31 23

C L A N I M G F P J H E O

memory

value
vector

index
vector

Figure 4: Scatter operation

Scatter operations execute stores to multiple locations.
The input is a vector of indexes, an array pointer, and a
vector of values. If multiple vector lanes point to the same
location, we assume that the rightmost value will be written.
By adding a mask as an input we can store lanes selectively.

Gathers and scatters are not really executed in parallel
because the (L1) cache allows one or two distinct accesses
per cycle. Executing W cache accesses per cycle is an im-
practical hardware design. Thus, random memory accesses
have to be excluded from the O(f(n)/W) vectorization rule.

Gathers are supported on the latest mainstream CPUs
(Haswell) but scatters are not. Older mainstream CPUs
(e.g., Sandy Bridge) support neither. Emulating gathers is
possible at a performance penalty, which is small if done
carefully. We discuss more hardware details in Appendix B.

Selective loads and stores are also not supported on the
latest mainstream CPUs, but can be emulated using vector
permutations. The lane selection mask is extracted as a
bitmask and is used as an array index to load a permutation
mask from a pre-generated table. The data vector is then
permuted in a way that splits the active lanes of the mask
to the one side of the register and the inactive lanes to the
other side. In case of a selective store we can store the vector
(unaligned) and in case of a selective load, we load a new
vector (unaligned) and blend the two vectors to replace the
inactive lanes. This technique was first used in vectorized
Bloom filters [27] on CPUs, without defining the operations.
We describe the Xeon Phi instructions in Appendix C.

4. SELECTION SCANS
Selection scans have re-emerged for main-memory query

execution and are replacing traditional unclustered indexes
in modern OLAP DBMSs [28]. Advanced optimizations in-
clude lightweight bit compression [39] to reduce the RAM
bandwidth, generation of statistics to skip data regions [28],
and scanning of bitmaps-zonemaps to skip cache lines [35].

Linear selective scan performance has been associated with
branch mispredictions, if the operator is implemented as
shown in Algorithm 1. Previous work has shown that con-
verting control flow to data flow can affect performance,
making different approaches optimal per selectivity rate [29].
Branches can be eliminated as shown in Algorithm 2 to avoid
misprediction penalties, at the expense of accessing all pay-
load columns and eagerly evaluating all selective predicates.

Algorithm 1 Selection Scan (Scalar - Branching)

j ← 0 ⊲ output index
for i← 0 to |Tkeys in| − 1 do

k ← Tkeys in[i] ⊲ access key columns
if (k ≥ klower) && (k ≤ kupper) then ⊲ short circuit and

Tpayloads out[j]← Tpayloads in[i] ⊲ copy all columns
Tkeys out[j]← k

j ← j + 1
end if

end for

Algorithm 2 Selection Scan (Scalar - Branchless)

j ← 0 ⊲ output index
for i← 0 to |Tkeys in| − 1 do

k ← Tkeys in[i] ⊲ copy all columns
Tpayloads out[j]← Tpayloads in[i]
Tkeys out[j]← k

m←(k ≥ klower ? 1 : 0) & (k ≤ kupper ? 1 : 0)
j ← j +m ⊲ if-then-else expressions use conditional ...

end for ⊲ ... flags to update the index without branching

Vectorized selection scans use selective stores to store the
lanes that satisfy the selection predicates. We use SIMD in-
structions to evaluate the predicates resulting in a bitmask of
the qualifying lanes. Partially vectorized selection extracts
one bit at a time from the bitmask and accesses the corre-
sponding tuple. Instead, we use the bitmask to selectively
store the qualifying tuples to the output vector at once.

When the selection has a very low selectivity, it is de-
sirable to avoid accessing the payload columns due to the
performance drop caused by the memory bandwidth. Fur-
thermore, when the branch is speculatively executed, we is-
sue needless loads to payloads. To avoid reducing the band-
width, we use a small cache resident buffer that stores in-
dexes of qualifiers rather than the actual values. When the
buffer is full, we reload the indexes from the buffer, gather
the actual values from the columns, and flush them to the
output. This variant is shown in Algorithm 3. Appendix A
describes the notation used in the algorithmic descriptions.

When we materialize data on RAMwithout intent to reuse
them soon, we use streaming stores. Mainstream CPUs pro-
vide non-temporal stores that bypass the higher cache levels
and increase the RAM bandwidth for storing data. Xeon
Phi does not support scalar streaming stores, but provides
an instruction to overwrite a cache line with data from a
vector without first loading it. This technique requires the
vector length to be equal to the cache line and eliminates the
need for write-combining buffers used in mainstream CPUs.
All operators that write the output to memory sequentially,
use buffering, which we omit in the algorithmic descriptions.

Algorithm 3 Selection Scan (Vector)

i, j, l← 0 ⊲ input, output, and buffer indexes
~r ← {0, 1, 2, 3, ...,W − 1} ⊲ input indexes in vector
for i← 0 to |Tkeys in| − 1 step W do ⊲ # of vector lanes

~k ← Tkeys in[i] ⊲ load vectors of key columns

m← (~k ≥ klower) & (~k ≤ kupper) ⊲ predicates to mask
if m 6= false then ⊲ optional branch

B[l]←m ~r ⊲ selectively store indexes
l← l + |m| ⊲ update buffer index
if l > |B| −W then ⊲ flush buffer

for b← 0 to |B| −W step W do

~p← B[b] ⊲ load input indexes
~k ← Tkeys in[~p] ⊲ dereference values
~v ← Tpayloads in[~p]

Tkeys out[b+ j]← ~k ⊲ flush to output with ...
Tpayloads out[b+ j]← ~v ⊲ ... streaming stores

end for

~p← B[|B| −W] ⊲ move overflow ...
B[0]← ~p ⊲ ... indexes to start
j ← j + |B| −W ⊲ update output index
l← l − |B|+W ⊲ update buffer index

end if

end if

~r ← ~r +W ⊲ update index vector
end for ⊲ flush last items after the loop

5. HASH TABLES
Hash tables are used in database systems to execute joins

and aggregations since they allow constant time key lookups.
In hash join, one relation is used to build the hash table and
the other relation probes the hash table to find matches. In
group-by aggregation they are used either to map tuples to
unique group ids or to insert and update partial aggregates.

Using SIMD instructions in hash tables has been proposed
as a way to build bucketized hash tables. Rather than com-
paring against a single key, we place multiple keys per bucket
and compare them to the probing key using SIMD vector
comparisons. We term the approach of comparing a single
input (probing) key with multiple hash table keys, horizontal
vectorization. Some hash table variants such as bucketized
cuckoo hashing [30] can support much higher load factors.
Loading a single 32-bit word is as fast as loading an entire
vector, thus, the cost of bucketized probing diminishes to
extracting the correct payload, which requires logW steps.

Horizontal vectorization, if we expect to search fewer than
W buckets on average per probing key, is wasteful. For
example, a 50% full hash table with one match per key needs
to access ≈ 1.5 buckets on average to find the match using
linear probing. In such a case, comparing one input key
against multiple table keys cannot yield high improvement
and takes no advantage of the increasing SIMD register size.

In this paper, we propose a generic form of hash table vec-
torization termed vertical vectorization that can be applied
to any hash table variant without altering the hash table
layout. The fundamental principle is to process a different
input key per vector lane. All vector lanes process different
keys from the input and access different hash table locations.

The hash table variants we discuss are linear probing (Sec-
tion 5.1), double hashing (Section 5.2), and cuckoo hashing
(Section 5.3). For the hash function, we use multiplicative
hashing, which requires two multiplications, or for 2n buck-
ets, one multiplication and a shift. Multiplication costs very
few cycles in mainstream CPUs and is supported in SIMD.

5.1 Linear Probing
Linear probing is an open addressing scheme that, to ei-

ther insert an entry or terminate the search, traverses the
table linearly until an empty bucket is found. The hash ta-
ble stores keys and payloads but no pointers. The scalar
code for probing the hash table is shown in Algorithm 4.

Algorithm 4 Linear Probing - Probe (Scalar)

j ← 0 ⊲ output index
for i← 0 to |Skeys| − 1 do ⊲ outer (probing) relation

k ← Skeys[i]
v ← Spayloads[i]
h← (k · f) × ↑ |T | ⊲ “× ↑”: multiply & keep upper half
while Tkeys[h] 6= kempty do ⊲ until empty bucket

if k = Tkeys[h] then
RSR payloads[j]← Tpayloads[h] ⊲ inner payloads
RSS payloads[j]← v ⊲ outer payloads
RSkeys[j]← k ⊲ join keys
j ← j + 1

end if

h← h+ 1 ⊲ next bucket
if h = |T | then ⊲ reset if last bucket

h← 0
end if

end while

end for

Algorithm 5 Linear Probing - Probe (Vector)

i, j ← 0 ⊲ input & output indexes (scalar register)
~o← 0 ⊲ linear probing offsets (vector register)
m← true ⊲ boolean vector register
while i+W ≤ |Skeys in| do ⊲ W : # of vector lanes

~k ←m Skeys[i] ⊲ selectively load input tuples
~v ←m Spayloads[i]
i← i+ |m|
~h← (~k · f) × ↑ |T | ⊲ multiplicative hashing
~h← ~h+ ~o ⊲ add offsets & fix overflows
~h← (~h < |T |) ? ~h : (~h− |T |) ⊲ “m ? ~x : ~y”: vector blend
~kT ← Tkeys[~h] ⊲ gather buckets

~vT ← Tpayloads[~h]

m← ~kT = ~k

RSkeys[j]←m
~k ⊲ selectively store matching tuples

RSS payloads[j]←m ~v

RSR payloads[j]←m ~vT
j ← j + |m|
m← ~kT = kempty ⊲ discard finished tuples
~o← m ? 0 : (~o+ 1) ⊲ increment or reset offsets

end while

The vectorized implementation of probing a hash table
using a linear probing scheme is shown in Algorithm 5. Our
vectorization principle is to process a different key per SIMD
lane using gathers to access the hash table. Assuming W
vector lanes, we process W different input keys on each loop.
Instead of using a nested loop to find all matches for the W
keys before loading the next W keys, we reuse vector lanes
as soon as we know there are no more matches in the table,
by selectively loading new keys from the input to replace
finished keys. Thus, each key executes the same number of
loops as in scalar code. Every time a match is found, we use
selective stores to write to the output the vector lanes that
have matches. In order to support each key having executed
an arbitrary number of loops already, we keep a vector of
offsets that maintain how far each key has searched in the
table. When a key is overwritten, the offset is reset to zero.

A simpler approach is to process W keys at a time and use
a nested loop to find all matches. However, the inner loop
would be executed as many times as the maximum number
of buckets accessed by any one of the W keys, underutiliz-
ing the SIMD lanes, because the average number of accessed
buckets of W keys can be significantly smaller than the max-
imum. By reusing vector lanes dynamically, we are reading
the probing input “out-of-order”. Thus, the probing algo-
rithm is no longer stable, i.e., the order of the output does
not always match the previous order of the probing input.

Building a linear probing table is similar. We need to
reach an empty bucket to insert a new tuple. The scalar code
is shown in Algorithm 6 and the vector code in Algorithm 7.

Algorithm 6 Linear Probing - Build (Scalar)

for i← 0 to |Rkeys| − 1 do ⊲ inner (building) relation
k ← Rkeys[i]
h← (k · f) × ↑ |T | ⊲ multiplicative hashing
while Tkeys[h] 6= kempty do ⊲ until empty bucket

h← h+ 1 ⊲ next bucket
if h = |T | then

h← 0 ⊲ reset if last
end if

end while

Tkeys[h]← k ⊲ set empty bucket
Tpayloads[h]← Rpayloads[i]

end for

Algorithm 7 Linear Probing - Build (Vector)

~l← {1, 2, 3, ...,W} ⊲ any vector with unique values per lane
i, j ← 0 , m← true ⊲ input & output index & bitmask
~o← 0 ⊲ linear probing offset
while i+W ≤ |Rkeys| do

~k ←m Rkeys[i] ⊲ selectively load input tuples
~v ←m Rpayloads[i]
i← i+ |m|
~h← ~o+ (k · f) × ↑ |T | ⊲ multiplicative hashing
~h← (~h < |T |) ? ~h : (~h− |T |) ⊲ fix overflows
~kT ← Tkeys[~h] ⊲ gather buckets

m← ~kT = kempty ⊲ find empty buckets

T [~h]←m
~l ⊲ detect conflicts

~lback ←m Tkeys[~h]

m← m & (~l = ~lback)
Tkeys[~h]←m

~k ⊲ scatter to buckets ...

Tpayloads[~h]←m ~v ⊲ ... if not conflicting
~o← m ? 0 : (~o+ 1) ⊲ increment or reset offsets

end while

The basics of vectorized probe and build of linear probing
hash tables are the same. We process different input keys per
SIMD lane and on top of gathers, we now also use scatters to
store the keys non-contiguously. We access the input“out-of-
order” to reuse lanes as soon as keys are inserted. To insert
tuples, we first gather to check if the buckets are empty
and then scatter the tuples only if the bucket is empty. The
tuples that accessed a non-empty bucket increment an offset
vector in order to search the next bucket in the next loop.

In order to ensure that multiple tuples will not try to fill
the same empty bucket, we add a conflict detection step
before scattering the tuples. Two lanes are conflicting if
they point to the same location. However, we do not need
to identify both lanes but rather the leftmost one that would
get its value overwritten by the rightmost during the scatter.
To identify these lanes, we scatter arbitrary values using a
vector with unique values per lane (e.g., [1,2,3,...,W]). Then,
we gather using the same index vector. If the scattered
matches the gather value, the lane can scatter safely. The
conflicting lanes search the next bucket in the next loop.

Future SIMD instruction sets include special instructions
that can support this functionality (vpconflictd in AVX
3), thus saving the need for the extra scatter and gather
to detect conflicts. Nevertheless, these instructions are not
supported on mainstream CPUs or the Xeon Phi as of yet.

If the input keys are unique (e.g., join on a candidate key),
we can scatter the keys to the table and gather them back to
find the conflicting lanes instead of a constant vector with
unique values per lane. Thus, we save one scatter operation.

The algorithmic descriptions show the keys and values of
the hash table on separate arrays. In practice, the hash table
uses an interleaved key-value layout. To halve the number
of cache accesses, we pack multiple gathers into fewer wider
gathers. For example, when using 32-bit keys and 32-bit
payloads, the two consecutive 16-way 32-bit gathers of the
above code can be replaced with two 8-way 64-bit gathers
and a few shuffle operations to split keys and payloads. The
same applies to scatters (see Appendix E for details).

For both probing and building, selective loads and stores
assume there are enough items in the input to saturate the
vector register. To process the last items in the input, we
switch to scalar code. The last items are bounded in number
by 2 ·W , which is negligible compared to the total number
of input tuples. Thus, the overall throughput is unaffected.

5.2 Double Hashing
Duplicate keys in hash tables can be handled by stor-

ing the payloads in a separate table, or by repeating the
keys. The first approach works well when most matching
keys are repeated. The second approach works well with
mostly unique keys, but suffers from clustering duplicate
keys in the same region, if linear probing is used. Double
hashing uses a second hash function to distribute collisions
so that the number of accessed buckets is close to the num-
ber of true matches. Thus, we can use the second approach
for both cases. Comparing multiple hash table layouts based
on the number of repeats is out of the scope of this paper.

Algorithm 8 Double Hashing Function

~fL ← m ? f1 : f2 ⊲ pick multiplicative hash factor
~fH ← m ? |T | : (|T | − 1) ⊲ the collision bucket ...
~h← m ? 0 : (~h+ 1) ⊲ ... is never repeated
~h← ~h+ ((~k × ↓ ~fL) × ↑ ~fH) ⊲ multiplicative hashing
~h← (~h < |T |) ? ~h : (~h− |T |) ⊲ fix overflows (no modulo)

Algorithm 8 shows the double hashing scheme that we
propose. Here, m is the subset of vector lanes that have
probed at least one bucket. If the primary hash function h1

is in [0, |T |), the collision hash function h2 is in [1, |T |), and
|T | is prime, then h = h1+N ·h2 modulo |T | (double hashing)
never repeats the same bucket for N < |T | collisions. To
avoid the expensive modulos, we use h− |T | when h ≥ |T |.

5.3 Cuckoo Hashing
Cuckoo hashing [23] is another hashing scheme that uses

multiple hash functions. and is the only hash table scheme
that has been vectorized in previous work [30], as a means
to allow multiple keys per bucket (horizontal vectorization).
Here, we study cuckoo hashing to compare our (vertical vec-
torization) approach against previous work [30, 42]. We also
show that complicated control flow logic, such as cuckoo ta-
ble building, can be transformed to data flow vector logic.

The scalar code for cuckoo table probing, which we omit
due to space requirements, can be written in two ways. In
the simple way, we check the second bucket only if the first
bucket does not match. The alternative way is to always
access both buckets and blend their results using bitwise
operations [42]. The latter approach eliminates branching
at the expense of always accessing both buckets. Still, it has
been shown to be faster than other variants on CPUs [42].

Algorithm 9 Cuckoo Hashing - Probing

j ← 0
for i← 0 to |S| − 1 step W do

~k ← Skeys[i] ⊲ load input tuples
~v ← Spayloads[i]
~h1 ← (~k · f1) × ↑ |T | ⊲ 1st hash function
~h2 ← (~k · f2) × ↑ |T | ⊲ 2nd hash function
~kT ← Tkeys[~h1] ⊲ gather 1st function bucket

~vT ← Tpayloads[~h1]

m← ~k 6= ~kT
~kT ←m Tkeys[~h2] ⊲ gather 2nd function bucket ...

~vT ←m Tpayloads[~h2] ⊲ ... if 1st is not matching

m← ~k = ~kT
RSkeys[j]←m

~k ⊲ selectively store matches
RSS payloads[j]←m ~v

RSR payloads[j]←m ~vT
j ← j + |m|

end for

Vectorized cuckoo table probing is shown in Algorithm 9.
No inner loop is required since we have only two choices. We
load W keys with an aligned vector load and gather the first
bucket per key. For the keys that do not match, we gather
the second bucket. Cuckoo tables do not directly support
key repeats. Probing is stable by reading the input “in-
order”, but accesses remote buckets when out of the cache.

Building a cuckoo hashing table is more complicated. If
both bucket choices are not empty, we create space by dis-
placing the tuple of one bucket to its alternate location. This
process may be repeated until an empty bucket is reached.

Algorithm 10 Cuckoo Hashing - Building

i, j ← 0 , m← true
while i+W ≤ |R| do

~k ←m Rkeys in[i] ⊲ selectively load new ...
~v ←m Rpayloads in[i] ⊲ ... tuples from the input
i← i+ |m|
~h1 ← (~k · f1) × ↑ |B| ⊲ 1st hash function
~h2 ← (~k · f2) × ↑ |B| ⊲ 2nd hash function
~h← ~h1 + ~h2 − ~h ⊲ use other function if old
~h← m ? ~h1 : ~h ⊲ use 1st function if new
~kT ← Tkeys[~h] ⊲ gather buckets for ...

~vT ← Tpayloads[~h] ⊲ ... new & old tuples

m← m & (~kT 6= kempty) ⊲ use 2nd function if new ...
~h← m ? ~h2 : ~h ⊲ ... & 1st is non-matching
~kT ←m Tkeys[~h] ⊲ selectively (re)gather ...

~vT ←m Tpayloads[~h] ⊲ ... for new using 2nd

Tkeys[~h]← ~k ⊲ scatter all tuples ...

Tpayloads[~h]← ~v ⊲ ... to store or swap
~kback ← Tkeys[~h] ⊲ gather (unique) keys ...

m← ~k 6= ~kback ⊲ ... to detect conflicts
~k ← m ? ~kT : ~k ⊲ conflicting tuples are ...
~v ← m ? ~vT : ~v ⊲ ... kept to be (re)inserted
m← ~k = kempty ⊲ inserted tuples are replaced

end while

Vectorized cuckoo table building, shown in Algorithm 10,
reuses vector lanes to load new tuples from the input. The
remaining lanes are either previously conflicting or displaced
tuples. The newly loaded tuples gather buckets using one
or both hash functions to find an empty bucket. The tuples
that were carried from the previous loop use the alternative
hash function compared to the previous loop. We scatter the
tuples to the hash table and gather back the keys to detect
conflicts. The lanes with newly displaced tuples, which were
gathered earlier in this loop, and the conflicting lanes are
passed through to the next loop. The other lanes are reused.

6. BLOOM FILTERS
Bloom filters are an essential data structure for applying

selective conditions across tables before joining them, a semi

join. A tuple qualifies from the Bloom filter, if k specific bits
are set in the filter, based on k hash functions. Aborting a
tuple as soon as one bit-test fails is essential to achieve high
performance, because most tuples fail after a few bit tests.

Vectorized Bloom filter probing was recently shown to get
a significant performance boost over scalar code on the lat-
est mainstream CPUs, especially when the Bloom filter is
cache resident [27]. The design and implementation follows
the principle of processing different input keys per lane and
is one of our influences for this paper. However, no fun-
damental vector opeations were explicitly defined. Here, we
evaluate the vectorized Bloom filter design [27] on Xeon Phi.

7. PARTITIONING
Partitioning is a ubiquitous operation for modern hard-

ware query execution as a way to split large inputs into
cache-conscious non-overlapping sub-problems. For exam-
ple, join and aggregation operators can use hash partitioning
to split the input into small partitions that are distributed
among threads and now fit in the cache [3, 4, 5, 14, 19, 26].
We study all types of partitioning: radix, hash, and range.

7.1 Radix & Hash Histogram
Prior to moving any data, in order to partition into con-

tiguous segments, we use a histogram to set the boundaries.
To compute the histogram, we increment a count based on
the partition function of each key. By using multiplicative
hashing, hash partitioning becomes equally fast to radix.

Algorithm 11 Radix Partitioning - Histogram

~o← {0, 1, 2, 3, ...,W − 1}
Hpartial[P ×W]← 0 ⊲ initialize replicated histograms
for i← 0 to |Tkeys in| − 1 step W do

~k ← Tkeys in[i]
~h← (~k << bL) >> bR ⊲ radix function
~h← ~o+ (~h ·W) ⊲ index for multiple histograms
~c← Hpartial[~h] ⊲ increment W counts

Hpartial[~h]← ~c+ 1
end for

for i← 0 to P − 1 do

~c← Hpartial[i ·W] ⊲ load W counts of partition
H[i]← sum across(~c) ⊲ reduce into single result

end for

Vectorized histogram generation, shown in Algorithm 11,
uses gathers and scatters to increment counts. However,
if multiple lanes scatter to the same histogram count, the
count will still be incremented by 1 and all items (over)written
to the same location. To avoid conflicts, we replicate the
histogram to isolate each lane. Thus, lane j increments
H ′[i ·W + j] instead of H[i]. In the end, the W histograms
are reduced into one. If the histograms do not fit in the
fastest cache, we use 1-byte counts and flush on overflow.

7.2 Range Histogram
Radix and hash partitioning functions are significantly

faster than range partitioning functions. In range function,
we execute a binary search over a sorted array of splitters.
Although the array is cache resident, the number of accesses
is logarithmic and all accesses are dependent on each other,
thus the cache hit latency in the critical path is exposed [26].
Branch elimination only marginally improves performance.

Binary search can be vectorized using gather instructions
to load the splitters from the sorted array, as shown in Al-
gorithm 12, by processing W keys in parallel. The search
path is computed by blending low and high pointers. We
can assume without loss of generality that P = 2n, since we
can always patch the splitter array with maximum values.

Algorithm 12 Range Partitioning Function

~l← 0 , ~h← P ⊲ ~l is also the output vector
for i← 0 to logP − 1 do

~a← (~l + ~h) >> 1 ⊲ compute middle
~d← D[~a− 1] ⊲ gather splitters
m← ~k > ~d ⊲ compare with splitters
~l← m ? ~a : ~l ⊲ select upper half
~h← m ? ~h : ~a ⊲ select lower half

end for

Recently, a range index was proposed where each node
has multiple splitters that are compared against one input
key using SIMD comparisons [26]. Each node is at least as
wide as a vector and scalar code is used for index arithmetic
and to access the nodes (without gathers), relying on the
superscalar pipeline to hide the cost of scalar instructions.
The SIMD index can be seen as horizontal vectorization for
binary search and is evaluated on simple and complex cores.

7.3 Shuffling
The data shuffling phase of partitioning involves the actual

movement of tuples. To generate the output partitions in
contiguous space, we maintain an array of partition offsets,
initialized by the prefix sum of the histogram. The offset
array is updated for every tuple transferred to the output.

Vectorized shuffling uses gathers and scatters to increment
the offset array and scatters the tuples to the output. How-
ever, if multiple vector lanes have tuples that belong to the
same partition, the offset would be incremented by one and
these tuples would be (over)written to the same location.

We compute a vector of conflict offsets, by using gathers
and scatters to detect conflicts iteratively, as shown in Algo-
rithm 13. First, we scatter unique values per lane to an array
with P entries. Then, we gather using the same indexes and
compare against the scattered vector to find conflicts. We
increment the conflicting lanes and repeat the process for
these lanes only until no lanes conflict. Even if W iterations
are executed, the total number of accesses to distinct mem-
ory locations is always W , i.e., if ai is the number of accesses
to distinct memory locations in iteration i, then

∑
ai = W .

Algorithm 13 Conflict Serialization Function (~h, A)

~l← {W − 1,W − 2,W − 3, ..., 0} ⊲ reversing mask
~h← permute(~h,~l) ⊲ reverse hashes
~c← 0 , m← true ⊲ serialization offsets & conflict mask
repeat

A[~h]←m
~l ⊲ detect conflicts

~lback ←m A[~h]
m← m & (~l 6= ~lback) ⊲ update conflicting lanes
~c← m ? (~c+ 1) : ~c ⊲ increment offsets ...

until m = false ⊲ ... for conflicting lanes
return permute(~c,~l) ⊲ reverse to original order

Since the rightmost lane is written during conflicts, tuples
of the same partition in the same vector are written in re-
verse order. Also, per group of k conflicting lanes, the right-
most lane will incorrectly increment the offset by 1, not by
k. By reversing the index vector during serialization, we up-
date the offsets correctly and also maintain the input order.
Stable partitioning is essential for algorithms such as LSB
radixsort. Vectorized shuffling is shown in Algorithm 14.

Algorithm 14 Radix Partitioning - Shuffling

O ← prefix sum(H) ⊲ partition offsets from histogram
for i← 0 to |Tkeys in| − 1 step W do

~k ← Tkeys in[i] ⊲ load input tuples
~v ← Tpayloads in[i]
~h← (~k << bL) >> bR ⊲ radix function
~o← O[~h] ⊲ gather partition offsets
~c← serialize conflicts(~h,O) ⊲ serialize conflicts
~o← ~o+ ~c ⊲ add serialization offsets
O[~h]← ~o+ 1 ⊲ scatter incremented offsets
Tkeys out[~o]← ~k ⊲ scatter tuples
Tpayloads out[~o]← ~v

end for

7.4 Buffered Shuffling
Shuffling, as described so far, is fast if the input is cache

resident, but falls into certain performance pitfalls when
larger than the cache. First, it suffers from TLB thrash-
ing when the partitioning fanout exceeds the TLB capacity
[20]. Second, it generates many cache conflicts [31] and in
the worst case, may be bound by the size of the cache as-
sociativity set. Third, using normal stores, we trigger cache
loads to execute the stores and reduce the bandwidth due
to loading cache lines that will only be overwritten [38].

The vectorized implementation of simple non-buffered shuf-
fling improves performance, but suffers from the same per-
formance pitfalls as the scalar version. In general, vector-
ization improves performance compared to its scalar coun-
terpart, but does not overcome algorithmic inefficiencies.

To solve these problems, recent work proposed keeping
the data in buffers and flushing them in groups [31]. If the
buffers are small and packed together, they will not cause
TLB or cache misses. Thus, with W buffer slots per parti-
tion, we reduce cache and TLB misses to 1/W . If the buffers
are flushed with non-temporal stores, we facilitate hardware
write combining and avoid polluting the cache with output
data [38]. The fanout is bounded by the cache capacity to
keep the buffer cache resident. The scalar code for buffered
shuffling is thoroughly described in previous work [4, 26].

The improvement of vectorized buffered shuffling shown in
Algorithm 15 over vectorized unbuffered shuffling shown in
Algorithm 14, is scattering the tuples to the cache resident
buffer rather than directly to the output. For each vector
of tuples, once the tuples are scattered, we iterate over the
partitions that the current W input tuples belong to, and
flush to the output when all available buffer slots are filled.

Algorithm 15 Radix Partitioning - Buffered Shuffling

O ← prefix sum(H) ⊲ partition offsets from histogram
for i← 0 to |Tkeys in| − 1 step W do

~k ← Tkeys in[i] ⊲ load input tuples
~v ← Tpayloads in[i]
~h← (~k << bL) >> bR ⊲ radix function
~o← O[~h] ⊲ gather partition offsets
~c← serialize conflicts(~h,O) ⊲ serialize conflicts
~o← ~o+ ~c ⊲ add serialization offsets
O[~h]← ~o+ 1 ⊲ scatter incremented offsets
~oB ← ~o & (W − 1) ⊲ buffer offsets in partition
m← ~oB < W ⊲ find non-overflowing lanes
m′ ← !m
~oB ← ~oB + (~h ·W) ⊲ buffer offsets across partitions
Bkeys[~oB]←m

~k ⊲ scatter tuples to buffer ...
Bpayloads[~oB]←m ~v ⊲ ... for non-overflowing lanes
m← ~oB = (W − 1) ⊲ find lanes to be flushed
if m 6= false then

H[0]←m
~h ⊲ pack partitions to be flushed

for j ← 0 to |m| − 1 do

h← H[j]
o← (O[h] & −W)−W ⊲ output location
~kB ← Bkeys[h ·W] ⊲ load tuples from buffer
~vB ← Bpayloads[h ·W]

Tkeys out[o]← ~kB ⊲ flush tuples to output ...
Tpayloads out[o]← ~vB ⊲ ... using streaming stores

end for

Bkeys[~oB −W]←m′
~k ⊲ scatter tuples to buffer ...

Bpayloads[~oB −W]←m′ ~v ⊲ ... for overflowing lanes
end if

end for ⊲ cleanup the buffers after the loop

Since multiple tuples can be written to the buffer for
the same partition on each loop, we identify which vector
lanes will not cause overflow and scatter them selectively
before flushing the buffers that are full. After the buffers
are flushed, we scatter the remaining tuples to the buffer.

We identify which vector lanes point to partitions that
have filled their buffers using the output index. Given that
tuples in multiple vector lanes can belong to the same par-
tition, we identify the lanes that wrote to the last partition
slot and ensure that we will not flush the same data twice in
the same loop. Flushing occurs “horizontally” one partition
at a time, after selectively storing the partitions in the stack.

Flushing data from the buffers to the output is done by
streaming stores to avoid polluting the cache with output
data [38]. Note that we are streaming to multiple outputs,
thus, single output buffering (Section 4) does not apply.

Hash partitioning is used to split the data into groups with
non-overlapping keys and has no need to be stable. Instead
of conflict serialization, we detect and process conflicting
lanes during the next loop. Performance is slightly increased
because very few conflicts normally occur per loop if P > W .

As in hash tables, if the tuples are keys and rids stored
on separate arrays, we do fewer and wider scatters by inter-
leaving the two columns before storing to the buffers.

To partition multiple columns of payloads, we can either
shuffle all the columns together as a unified tuple or shuf-
fle one column at a time. Shuffling unified tuples should
optimally compile specific code for each query at run time.
Otherwise, we can process one column at a time using pre-
compiled type-specialized code. In the latter approach, which
we use here, during histogram generation, we store partition
destinations alongside the conflict serialization offsets in a
temporary array. Thus, we avoid reloading the wider keys
as well as redoing conflict serialization for each column. The
temporary array must be logP + logW bits wide per entry.

8. SORTING
Sorting is used in databases as a subproblem for join and

aggregation. Sorting is also used for declustering, index
building, compression, and duplicate elimination. Recent
work showed that large-scale sorting is synonymous to par-
titioning. Radixsort and comparison sorting based on range
partitioning have comparable performance, by maximizing
the fanout to minimize the number of partition passes [26].

Here, we implement least-significant-bit (LSB) radixsort,
which is the fastest method for 32-bit keys [26]. We do not
evaluate larger keys as Xeon Phi only supports 32-bit inte-
ger arithmetic in vector code. Parallel LSB radixsort splits
the input equally among threads and uses the prefix sum of
the histograms from all threads to interleave the partition
outputs. Histogram generation and shuffling operate shared-
nothing maximizing thread parallelism. By using vectorized
buffered partitioning, we also maximize data parallelism.

9. HASH JOIN
Joins are one of the most frequent operators in analytical

queries that can be expensive enough to dominate query ex-
ecution time. Recent work has focused on comparing main-
memory equi-joins, namely sort-merge join and hash join.
The former is dominated by sorting [4, 14]. In the baseline
hash join, the inner relation is built into a hash table and
the outer relation probes the hash table to find matches.

Partitioning can be applied to hash join forming multi-
ple variants with different strengths and weaknesses. Here,
we design three hash join variants using different degrees of
partitioning that also allow for different degrees of vector-
ization. Because the inputs are much larger than the cache,
we use buffered shuffling during partitioning (Section 7.4).

In the first variant termed no partition, we do not use
partitioning. The building procedure builds a shared hash
table across multiple threads using atomic operations. The
threads are synchronized using a barrier. The read-only
probing procedure then proceeds without atomics. On the
other hand, building the hash table cannot be fully vector-
ized because atomic operations are not supported in SIMD.

In the second variant termed min partition, we use par-
titioning to eliminate the use of atomics by not building a
shared hash table. We partition the inner (building) relation
into T parts, T being the number of threads, and build T
hash tables without sharing across threads. During probing,
we pick both which hash table and which bucket to search.
All parts of the algorithm can be fully vectorized, after we
slightly modify the code to probe across the T hash tables.

In the third variant termed max partition, we partition
both relations until the inner relation parts are small enough
to fit in a cache-resident hash table. In our implementation,
the original partitioning phase splits both relations across
T threads and each part is further partitioned by a single
thread in one or more passes. The resulting partitions are
used to build and probe hash tables in the cache, typically
the L1. All parts of the algorithm can be fully vectorized.

10. EXPERIMENTAL EVALUATION
We use three platforms throughout our evaluation. The

first is a Xeon Phi co-processor based on the MIC design,
the second has one Haswell CPU, and the third has four
high-end Sandy Bridge CPUs. Details are shown in Table 1.

We use the Haswell CPU to compare our vectorized imple-
mentations against scalar and state-of-the-art vectorized im-
plementations, because Haswell has 256-bit SIMD registers
and supports gathers, being the closest to the 512-bit SIMD
registers of Xeon Phi. However, because one CPU cannot
match the scale of Xeon Phi, we use four Sandy Bridge CPUs
with comparable processing power and memory bandwidth
to measure aggregate performance and power efficiency.

Platform 1 CoPU 1 CPU 4 CPUs

Market Name Xeon Phi Xeon Xeon

Market Model 7120P E3-1275v3 E5-4620

Clock Frequency 1.238 GHz 3.5 GHz 2.2 GHz

Cores × SMT 61× 4 4× 2 (4× 8)× 2

Core Architecture P54C Haswell Sandy Bridge

Issue Width 2-way 8-way 6-way

Reorder Buffer N/A 192-entry 168-entry

L1 Size / Core 32+32 KB 32+32 KB 32+32 KB

L2 Size / Core 512 KB 256 KB 256 KB

L3 Size (Total) 0 8 MB 4× 16 MB

Memory Capacity 16 GB 32 GB 512 GB

Load Bandwidth 212 GB/s 21.8 GB/s 122 GB/s

Copy Bandwidth 80 GB/s 9.3 GB/s 38 GB/s

SIMD Width 512-bit 256-bit 128-bit

Gather & Scatter Yes & Yes Yes & No No & No

Power (TDP) 300 W 84 W 4× 130 W

Table 1: Experimental platforms

To compile for Xeon Phi, we use ICC 15 with the -mmic

and the -no-vec flag to avoid automatic vectorization. To
compile for mainstream CPUs, we use either ICC 15 or GCC
4.9, the fastest per case. In all cases we use -O3 optimization.
For the Haswell CPU we use -mavx2 (AVX 2) and for the
Sandy Bridge CPUs we use -mavx (SSE 4 with VEX). Xeon
Phi runs Linux 2.6 as an embedded OS, the Haswell machine
has Linux 3.13 and the Sandy Bridge machine has Linux 3.2.

Unless specified otherwise, we use all hardware threads,
including SMT, to minimize load and instruction latencies.
All data are synthetically generated in memory and follow
the uniform distribution. Uniform data are used in the most
common analytical DBMS benchmarks, such as TPC-H, and
are not particularly favorable to any specific operation. In
fact, previous work has shown that joins, partitioning, and
sorting are faster under skew [5, 26]. Nevertheless, optimiz-
ing for skew efficiency is out of the scope of this paper.

10.1 Selection Scans
Figure 5 shows the performance of selection scans on Xeon

Phi and Haswell. The input table consists of 32-bit keys and
32-bit payloads and the selective condition on the key col-
umn is kmin ≤ k ≤ kmax, as shown in Section 4, where kmin

and kmax are query constants. We vary the selectivity and
measure the throughput of six selection scan versions, two
scalar with and without branching [29], and four vectorized
using two orthogonal design choices. First, we either select
the qualifying tuples by extracting one bit at a time from
the bitmask, or use vector selective stores. Second, we either
access both keys and payloads during predicate evaluation
and buffer the qualifiers, or we load the key column only and
buffer the indexes of qualifiers, which are used to dereference
the actual key and payload values during buffer flushing.

On Xeon Phi, scalar code is almost an order of magnitude
slower than vector code, whereas on Haswell, vector code is
about twice faster. Low selectivities are faster because RAM
loading is faster than copying, and more payload column ac-
cesses are skipped. Branch elimination [29] improves perfor-
mance on Haswell, but decreases performance on Xeon Phi
due to slow set instructions. On Haswell, all vector versions
are almost identical by saturating the bandwidth, while the
branchless scalar code catches up on 10% selectivity. On
Xeon Phi, avoiding payload column accesses dominates low
selectivities, while using selective stores instead of extract-
ing one tuple at a time dominates high selectivities. On the
simple cores of Xeon Phi, vectorization is essential to satu-
rate the bandwidth. On the complex cores of mainstream
CPUs, vectorization remains useful for low selectivities.

0

1

2

3

4

5

6

0

8

16

24

32

40

48

0 1 2 5

1
0

2
0

5
0

1
0

0 0 1 2 5

1
0

2
0

5
0

1
0

0

Xeon Phi Haswell

T
h

ro
u

gh
p

u
t

(b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

)

Selectivity (%)

Scalar (branching) Scalar (branchless [29])

Vector (bit extract, direct) Vector (sel. store, direct)

Vector (bit extract, indirect) Vector (sel. store, indirect)

Figure 5: Selection scan (32-bit key & payload)

10.2 Hash Tables
In this section we evaluate hash table vectorization. The

first set of experiments measures the probing throughput
and compares against state-of-the-art scalar and vectorized
approaches, on both Xeon Phi and Haswell. The second set
evaluates iterative building and probing of shared-nothing
hash tables on Xeon Phi only since Haswell has no scatters.

Figure 6 shows linear probing (LP) and double hashing
(DH). The input is a 32-bit column with 109 keys, the output
is a 32-bit column with the payloads of matches, almost all
keys match, and the hash table is half full. The horizontal
vector code uses bucketized hash table where each input
key is compared against multiple table keys [30]. In our
approach, vertical vector code, we compare multiple input
keys against one hash table key each using gathers. We are
up to 6X faster than everything else on Xeon Phi, and gain
a smaller speedup for cache resident hash tables on Haswell.

0

0.5

1

1.5

2

2.5

3

3.5

0

2

4

6

8

10

12

14

 4
 K

B

 1
6

 K
B

 6
4

 K
B

2
5

6
 K

B

 1
 M

B

 4
 M

B

 1
6

 M
B

 6
4

 M
B

 4
 K

B

 1
6

 K
B

 6
4

 K
B

2
5

6
 K

B

 1
 M

B

 4
 M

B

 1
6

 M
B

 6
4

 M
B

Xeon Phi Haswell

Th
ro

u
gh

p
u

t

(b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

)

Hash table size

LP Scalar DH Scalar

LP Vector (horizontal) DH Vector (horizontal)

LP Vector (vertical) DH Vector (vertical)

Figure 6: Probe linear probing & double hashing
tables (shared, 32-bit key → 32-bit probed payload)

Figure 7 shows the probing throughput of cuckoo hashing,
with the same setting as Figure 6. The scalar versions are
either branching or branchless [42], and the vector versions
are either horizontal (bucketized) [30] or vertical, where we
evaluate two vertical techniques, loading both buckets and
blending them, or loading the second bucket selectively. The
branchless scalar version [42] is slower than branching scalar
code on both Xeon Phi and Haswell. Also, branching scalar
code is faster than branchless on Haswell using ICC, while
GCC produces very slow branching code. Vertically vector-
ized code is 5X faster on Xeon Phi and 1.7X on Haswell.

Bucketized hash table probing is faster by using 128-bit
SIMD (SSE 4) to probe 4 key, rather than use 256-bit SIMD
(AVX 2) to probe 8 keys, due to faster in-register broadcasts.

0

0.5

1

1.5

2

2.5

3

3.5

0

2

4

6

8

10

12

14

 4
 K

B

 1
6

 K
B

 6
4

 K
B

2
5

6
 K

B

 1
 M

B

 4
 M

B

 1
6

 M
B

 6
4

 M
B

 4
 K

B

 1
6

 K
B

 6
4

 K
B

2
5

6
 K

B

 1
 M

B

 4
 M

B

 1
6

 M
B

 6
4

 M
B

Xeon Phi Haswell

T
h

ro
u

gh
p

u
t

(b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

)

Hash table size

Scalar (branching) Scalar (branchless [42])

Vector (horizontal [30]) Vector (vertical blend)

Vector (vertical select)

Figure 7: Probe cuckoo hashing table (2 functions,
shared, 32-bit key → 32-bit probed payload)

0

1

2

3

4

5

LP DH CH LP DH CH LP DH CH

L1 cache L2 cache RAM

Th
ro

u
gh

p
u

t

(b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

)

Scalar Vector

Figure 8: Build & probe linear probing, double
hashing, & cuckoo hashing on Xeon Phi (1:1 build–
probe, shared-nothing, 2X 32-bit key & payload)

Figure 8 interleaves building and probing of shared-nothing
tables, as done in the last phase of partitioned hash join,
using Xeon Phi. The build to probe ratio is 1:1, all keys
match, and we vary the hash table size. The hash tables
are ≈ 4 KB in L1, 64 KB in L2, and 1 MB out of cache.
Both inputs have 32-bit keys and payloads, the output has
the matching keys and the two payloads, the load factor is
50%, and we saturate Phi’s memory. Throughput is defined
as (|R|+ |S|)/t. The speedup is 2.6–4X when the hash table
resides in L1, 2.4–2.7X in L2, and 1.2–1.4X out of the cache.

0

1

2

3

4

5

6

7

LP DH CH LP DH LP DH LP DH

no repeats allowed

100% of keys match

1.25 repeats

80% match

2.5 repeats

40% match

5 repeats

20% match

T
h

ro
u

g
h

p
u

t

(b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

)

Scalar Vector

Figure 9: Build & probe linear probing, double
hashing, & cuckoo hashing on Xeon Phi (1:10 build–
probe, L1, shared-nothing, 2X 32-bit key & payload)

In Figure 9, we modify the experiment of Figure 8 by
varying the number of key repeats with the same output
size. All tables are in L1 and the build to probe ratio is
1:10. The other settings are as in Figure 8. With no key
repeats, the speedup is 6.6–7.7X, higher than Figure 8, since
building is more expensive than probing and also detects
conflicts. Here, building alone gets a speedup of 2.5–2.7X.
With 5 key repeats, the speedup is 4.1X for DH and 2.7X
for LP. Thus, DH is more resilient to key repeats than LP.

10.3 Bloom Filters
In Figure 10, we measure Bloom filter probing throughput

using the design of [27] with selective loads and stores for
Xeon Phi. We disable loop unrolling and add buffering. The
speedup is 3.6–7.8X on Xeon Phi and 1.3–3.1X on Haswell

0

0.5

1

1.5

2

2.5

3

0

2

4

6

8

10

12

4
 K

B

1
6

 K
B

6
4

 K
B

2
5

6
 K

B

1
 M

B

4
 M

B

1
6

 M
B

6
4

 M
B

4
 K

B

1
6

 K
B

6
4

 K
B

2
5

6
 K

B

1
 M

B

4
 M

B

1
6

 M
B

6
4

 M
B

Xeon Phi Haswell

Th
ro

u
gh

p
u

t

(b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

)

Bloom filter size

Scalar

Vector

Figure 10: Bloom filter probing (5 functions, shared,
10 bits / item, 5% selectivity, 32-bit key & payload)

10.4 Partitioning
Figure 11 shows radix and hash histogram generation on

Xeon Phi. On mainstream CPUs, the memory load band-
width is saturated [26]. Scalar code is dominated by the
partition function. By replicating each count W times, we
get a 2.55X speedup over scalar radix. A slowdown occurs
when we exceed the L1, but we can increase P by compress-
ing to 8-bit counts. Conflict serialization does not replicate
but is slower, especially if P ≤ W . If P is too large, both
count replication and conflict serialization are too expensive.

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12 13

T
h

ro
u

g
h

p
u

t

(b
il

li
o

n
 t

u
p

le
s

/

se
co

n
d

)

Fanout (log # of partitions)

Vector hash/radix

(repl. & compress)

Vector hash/radix

(replicate counts)

Vector hash/radix

(serialize conflicts)

Scalar radix

Scalar hash

Figure 11: Radix & hash histogram on Xeon Phi

Figure 12 shows the performance of computing the range
partition function. The binary search vectorization speedup
is 7–15X on Xeon Phi and 2.4–2.8X on Haswell. SIMD range
indexes [26] are even faster on Haswell but are slower on
Xeon Phi, where the pipeline is saturated by scalar instruc-
tions. Each node has W keys and the root stays in registers.

17

17x17
17x17x17

9

9x9
9x9x9

9x9x9x9

0

1

2

3

4

5

6

0

4

8

12

16

20

24

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

Xeon Phi Haswell

T
h

ro
u

g
h

p
u

t

(b
il

li
o

n
 t

u
p

le
s

/
se

co
n

d
)

Fanout

Scalar (branching) Scalar (branchless)

Vector (binary search) Vector (tree index [26])

Figure 12: Range function on Xeon Phi (32-bit key)

Figure 13 measures shuffling on Xeon Phi using inputs
larger than the cache. On mainstream CPUs, shuffling can-
not be fully vectorized without scatters, but saturates the
memory copy bandwidth at higher fanout [4, 26]. On Xeon
Phi, among the unbuffered versions, vectorization achieves
up to 1.95X speedup. Among the scalar versions, buffering
achieves up to 1.8X speedup. Among the buffered versions,
vectorization achieves up to 2.85X speedup, using up to 60%
of the bandwidth. The optimal fanout, maximizing through-
put × bits, is 5–8 radix bits per pass. Unstable hash parti-
tioning, shown here, is up to 17% faster than stable radix.

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13

T
h

ro
u

gh
p

u
t

(b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

)

Fanout (log # of partitions)

Vector hash

(buffered)

Vector radix

(buffered)

Vector radix

(unbuffered)

Scalar radix

(buffered)

Scalar radix

(unbuffered)

Figure 13: Radix shuffling on Xeon Phi (shared-
nothing, out-of-cache, 32-bit key & payload)

10.5 Sorting & Hash Join
We now evaluate sorting and hash joins in three stages:

first, we measure performance on Xeon Phi and highlight the
impact of vectorization on algorithmic designs; second, we
compare against 4 high-end CPUs to highlight the impact
on power efficiency; and third, we study the cost of a generic
implementation and materialization of multiple columns.

10.5.1 Vectorization Speedup & Algorithmic Designs

Figure 14 shows the performance of LSB radixsort on
Xeon Phi. The vectorization speedup is 2.2X over state-
of-the-art scalar code and time scales with size. In main-
stream CPUs, we are already almost saturated, since each
partitioning pass runs close to the bandwidth [31, 26, 38].

0

0.5

1

1.5

2

2.5

100 200 400 800 100 200 400 800

32-bit key 32-bit key & payload

T
im

e
 (

se
co

n
d

s)

Tuples (in millions)

Scalar

Vector

Figure 14: Radixsort on Xeon Phi (LSB)

Figure 15 shows the performance of the three hash join
variants as described in Section 9, on Xeon Phi. We assume a
foreign key join but our implementation is generic. The “no-
partition” and the “min-partition” methods get small 1.05X
and 1.25X speedups, while the fully partitioned gets a 3.3X
speedup and becomes the fastest overall by a 2.25X gap,
which is too large to justify hardware-oblivious joins [12].
Hash join is faster than sort-merge join [4, 14], since we sort
4·108 in 0.6 seconds and join 2×2·108 tuples in 0.54 seconds.

0

0.5

1

1.5

2

Scalar Vector Scalar Vector Scalar Vector

T
im

e
 (

se
co

n
d

s)

No partition Min partition Max partition

Build & Probe Probe Build Partition

Figure 15: Multiple hash join variants on Xeon Phi
(2 · 108 ⊲⊳ 2 · 108 32-bit key & payload)

Figure 16 shows the thread scalability of radixsort and
partitioned hash join on Xeon Phi. The speedup is almost
linear, even when using 2-way and 4-way SMT due to hiding
load and instruction latencies. On Xeon Phi, using 4-way
SMT is essential to hide the 4-cycle vector instruction la-
tencies. On mainstream CPUs, LSB radixsort is again satu-
rated, gaining only marginal speedup from 2-way SMT [26].

0.5

5

50

500

1 3 7

1
5

3
0

6
1

1
2

2

2
4

4 1 3 7

1
5

3
0

6
1

1
2

2

2
4

4

Radixsort Hash Join

T
im

e
 (

se
co

n
d

s)

[l
o

g
sc

a
le

]

Threads

Scalar Vector

Figure 16: Radixsort & hash join scalability (4 · 108

& 2 · 108 ⊲⊳ 2 · 108 32-bit key & payload, log/log scale)

10.5.2 Aggregate Performance & Power Efficiency

We now compare Xeon Phi to 4 Sandy Bridge (SB) CPUs
in order to get comparable performance, using radixsort and
hash join. On the SB CPUs, we implemented partitioned
hash join and use the source code of [26] for LSB radixsort.

Partitioning passes on the SB CPUs are memory bound,
thus cannot benefit from full vectorization. Both radixsort
and hash join on SB are NUMA aware and transfer the data
at most once across CPUs [26]. To join the partitions in
cache, we use horizontal linear probing, shown in Figure 6.

0

0.2

0.4

0.6

0.8

1

Sort Join Sort Join Sort Join Sort Join

T
im

e
 (

se
co

n
d

s)

Build & Probe (join) Partition (join) NUMA Split

Shuffling (sort) Histogram (sort)

32 S.B. cores

@ 2.201 GHz

(38 GB/s)

32 S.B. cores

@ 1.200 GHz

(38 GB/s)

61 P54C cores

@ 1.238 GHz

(80 GB/s)

61 P54C cores

@ 1.238 GHz

(40 GB/s)

Figure 17: Radixsort & hash join on Xeon Phi 7120P
versus 4 Xeon E5 4620 CPUs (sort 4 ·108 tuples, join
2 ·108 ⊲⊳ 2 ·108 tuples, 32-bit key & payload per table)

As shown in Figure 17, radixsort and hash join are both
≈ 14% slower on the Phi compared to the 4 SB CPUs. If we
assume the operating power of both platforms to be equally
proportional to TDP, both radixsort and hash join are ≈
1.5X more power efficient on the Phi. We also include results
after equalizing the two platforms. We set the frequency of
the SB CPUs to 1.2 GHz and halve the bandwidth of the
Phi to 40 GB/s for copying, which is done by adjusting the
code to access twice as many bytes as are processed. Phi is
then 7% faster for radixsort and 8% slower for hash join.

As shown in previous work [4, 14], hash joins outperform
sort-merge joins. Here, we join 2× 2 · 108 tuples faster than
sorting 4·108 tuples alone, also materializing the join output.

10.5.3 Multiple Columns, Types & Materialization

Vector code cannot handle multiple types as easily as
scalar code. So far we used 32-bit columns, which suffices
for sorting orders and join indexes of 32-bit keys. Also, type-
generic materialization methods, such as radix-decluster [21],
can only do a single pass that is bounded by the cache capac-
ity. Type-generic buffered shuffling can solve both problems.

Figure 18 measures radixsort with 32-bit keys by varying
the number and width of payload columns. Per pass, we
generate the histogram once and shuffle one column at a
time. Shuffling 8-bit or 16-bit columns costs as much as 32-
bit columns since we are compute-bound. Also, Xeon Phi
upcasts 8-bit and 16-bit operations to 32-bit vector lanes.
This approach scales well with wider columns, as we sort
8-byte tuples in 0.36 seconds and 36-byte tuples in 1 second.

0

0.5

1

T
im

e

(s
e

co
n

d
s)

Figure 18: Radixsort with varying payloads on Xeon
Phi (2 · 108 tuples, 32-bit key)

0

0.2

0.4

4:1 3:1 2:1 1:1 1:2 1:3 1:4

T
im

e

(s
e

co
n

d
s)

Number of 64-bit payload columns (R : S)

Figure 19: Hash join with varying payload columns
on Xeon Phi (107 ⊲⊳ 108 tuples, 32-bit keys)

Figure 19 shows partitioned hash join with 32-bit keys
and multiple 64-bit payload columns. Out of the cache, we
shuffle one column at a time as in Figure 18. In the cache, we
store rids in hash tables and then dereference the columns.

A different materialization strategy would be, after joining
keys and rids, to cluster to the order of the side with shorter
payloads, and then re-partition to the order of the other
side. Thus, instead of using radix-decluster [21] that is done
in a single pass, we partition the shorter payloads in one or
more passes to remain cache-conscious. Neverthless, finding
the fastest strategy per case is out of the scope of this paper.

11. SIMD CPUS & SIMT GPUS
The SIMT model in GPUs exhibits some similarity to

SIMD in CPUs. SIMT GPUs run scalar code, but “tie” all
threads in a warp to execute the same instruction per cycle.
For instance, gathers and scatters are written as scalar loads
and stores to non-contiguous locations. Horizontal SIMD in-
structions can be supported via special shuffle instructions
that operate across the warp. Thus, CPU threads are analo-
gous to GPU warps and GPU threads are analogous to SIMD
lanes. However, while conditional control flow is eliminated
in SIMD code “manually”, SIMT transforms control flow to
data flow automatically, by executing all paths and nullify-
ing instructions from paths that are not taken per thread.

One-to-one conversion from SIMD to SIMT code is of lim-
ited use for in-memory database operators, due to the vastly
different memory hierarchy dynamics. The speedup from
SIMD vectorization is maximized for cache-conscious pro-
cessing, which is achieved by partitioning. On the other
hand, GPUs are fast even without partitioning [13, 24], due
to good memory latency hiding. Sequential operators, such
as selection scans, have already been studied in detail [36].

A comparison of GPUs and Xeon Phi is out of the scope
of this paper. We view Xeon Phi as a potential CPU design
and study the impact of vectorization on making it more
suitable for analytical databases. Thus, we do not transfer
data through the PCI-e bus of Xeon Phi in our evaluation.

12. CONCLUSION
We presented generic SIMD vectorized implementations

for analytical databases executing in-memory. We defined
fundamental vector operations and presented good vector-
ization principles. We implemented selection scans, hash
tables, and partitioning using entirely vector code, and then
combined them to build sorting and join operators. Our
implementations were evaluated against scalar and state-
of-the-art vector code on the latest mainstream CPUs, as
well as the Xeon Phi co-processor that is based on many
simple cores with large SIMD vectors. In the context of in-
memory database operators, we highlighted the impact of
vectorization on algorithmic designs, as well as the archi-
tectural designs and power efficiency, by making the simple
cores comparable to complex cores. Our work is applicable
to all SIMD processors, using either simple or complex cores.

13. REFERENCES
[1] M.-C. Albutiu et al. Massively parallel sort-merge joins in

main memory multi-core database systems. PVLDB,
5(10):1064–1075, June 2012.

[2] P. Bakkum et al. Accelerating SQL database operations on
a GPU with CUDA. In GPGPU, pages 94–103, 2010.

[3] C. Balkesen et al. Main-memory hash joins on multi-core
CPUs: Tuning to the underlying hardware. In ICDE, pages
362–373, 2013.

[4] C. Balkesen et al. Multicore, main-memory joins: Sort vs.
hash revisited. PVLDB, 7(1):85–96, Sept. 2013.

[5] S. Blanas et al. Design and evaluation of main memory
hash join algorithms for multi-core CPUs. In SIGMOD,
pages 37–48, 2011.

[6] P. Boncz et al. MonetDB/X100: Hyper-pipelining query
execution. In CIDR, 2005.

[7] J. Chhugani et al. Efficient implementation of sorting on
multi-core SIMD CPU architecture. In VLDB, pages
1313–1324, 2008.

[8] J. Cieslewicz et al. Automatic contention detection and
amelioration for data-intensive operations. In SIGMOD,
pages 483–494, 2010.

[9] D. J. DeWitt et al. Materialization strategies in a
column-oriented DBMS. In ICDE, pages 466–475, 2007.

[10] J. Hofmann et al. Comparing the performance of different
x86 SIMD instruction sets for a medical imaging
application on modern multi- and manycore chips. CoRR,
arXiv:1401.7494, 2014.

[11] H. Inoue et al. AA-sort: A new parallel sorting algorithm
for multi-core SIMD processors. In PACT, pages 189–198,
2007.

[12] S. Jha et al. Improving main memory hash joins on Intel
Xeon Phi processors: An experimental approach. PVLDB,
8(6):642–653, Feb. 2015.

[13] T. Kaldewey et al. GPU join processing revisited. In
DaMoN, 2012.

[14] C. Kim et al. Sort vs. hash revisited: fast join
implementation on modern multicore CPUs. In VLDB,
pages 1378–1389, 2009.

[15] C. Kim et al. Fast: fast architecture sensitive tree search on
modern CPUs and GPUs. In SIGMOD, pages 339–350,
2010.

[16] K. Krikellas et al. Generating code for holistic query
evaluation. In ICDE, pages 613–624, 2010.

[17] S. Larsen et al. Exploiting superword level parallelism with
multimedia instruction sets. In PLDI, pages 145–156, 2000.

[18] V. Leis et al. Morsel-driven parallelism: A NUMA-aware
query evaluation framework for the many-core age. In
SIGMOD, pages 743–754, 2014.

[19] S. Manegold et al. Optimizing database architecture for the
new bottleneck: Memory access. J. VLDB, 9(3):231–246,
Dec. 2000.

[20] S. Manegold et al. What happens during a join? dissecting
CPU and memory optimization effects. In VLDB, pages
339–350, 2000.

[21] S. Manegold et al. Cache-conscious radix-decluster
projections. In VLDB, pages 684–695, 2004.

[22] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. PVLDB, 4(9):539–550, June 2011.

[23] R. Pagh et al. Cuckoo hashing. J. Algorithms,
51(2):122–144, May 2004.

[24] H. Pirk et al. Accelerating foreign-key joins using
asymmetric memory channels. In ADMS, 2011.

[25] O. Polychroniou et al. High throughput heavy hitter
aggregation for modern SIMD processors. In DaMoN, 2013.

[26] O. Polychroniou et al. A comprehensive study of
main-memory partitioning and its application to large-scale
comparison- and radix-sort. In SIGMOD, pages 755–766,
2014.

[27] O. Polychroniou et al. Vectorized Bloom filters for
advanced SIMD processors. In DaMoN, 2014.

[28] V. Raman et al. DB2 with BLU acceleration: So much
more than just a column store. PVLDB, 6(11):1080–1091,
Aug. 2013.

[29] K. A. Ross. Selection conditions in main memory. ACM
Trans. Database Systems, 29(1):132–161, Mar. 2004.

[30] K. A. Ross. Efficient hash probes on modern processors. In
ICDE, pages 1297–1301, 2007.

[31] N. Satish et al. Fast sort on CPUs and GPUs: a case for
bandwidth oblivious SIMD sort. In SIGMOD, pages
351–362, 2010.

[32] B. Schlegel et al. Scalable frequent itemset mining on
many-core processors. In DaMoN, 2013.

[33] L. Seiler et al. Larrabee: A many-core x86 architecture for
visual computing. ACM Trans. Graphics, 27(3), Aug. 2008.

[34] J. Shin. Introducing control flow into vectorized code. In
PACT, pages 280–291, 2007.

[35] L. Sidirourgos et al. Column imprints: A secondary index
structure. In SIGMOD, pages 893–904, 2013.

[36] E. A. Sitaridi et al. Optimizing select conditions on GPUs.
In DaMoN, 2013.

[37] M. Stonebraker et al. C-store: A column-oriented DBMS.
In VLDB, pages 553–564, 2005.

[38] J. Wassenberg et al. Engineering a multi core radix sort. In
EuroPar, pages 160–169, 2011.

[39] T. Willhalm et al. SIMD-scan: ultra fast in-memory table
scan using on-chip vector processing units. PVLDB,
2(1):385–394, Aug. 2009.

[40] Y. Ye et al. Scalable aggregation on multicore processors.
In DaMoN, 2011.

[41] J. Zhou et al. Implementing database operations using
SIMD instructions. In SIGMOD, pages 145–156, 2002.

[42] M. Zukowski et al. Architecture-conscious hashing. In
DaMoN, 2006.

APPENDIX

A. NOTATION
We now explain the notation of the vectorized algorithmic

descriptions. Boolean vector operations result in boolean
vector bitmasks that are shown as scalar variables. For ex-
ample, m ← ~x < ~y results in the bitmask m. Assignments
such as m← true, set the W bits of m. Vectors as array in-
dexes denote a gather or a scatter. For example, ~x← A[y] is
a vector load, while ~x← A[~y] is a gather. Selective loads and
stores as well as selective gathers and scatters use a bitmask
as a subscript in the assignment. For example, ~x ←m A[y]
is a selective load, while ~x ←m A[~y] is a selective gather.
|m| is the bit population count of m and |T | is the size of
array T . If-then-else statements, such as ~x← m ? ~y : ~z, use
vector blending. Finally, scalar values in vector expressions
use vectors generated before the main loop. For example,
~x← ~x+ k and m← ~x > k use a vector with k in all lanes.

B. GATHER & SCATTER
In the latest mainstream CPUs (AVX 2), gathers and scat-

ters are executed in one instruction. On Xeon Phi, each in-
struction call accesses one cache line and is called repeatedly
until all W lanes are processed. If N distinct cache lines are
accessed, the instructions are issued N times with N ≤W .
An implementation for 16-way gather on Xeon Phi is shown

below. The rax scalar register holds the array pointer. The
512-bit zmm0 vector holds the indexes and zmm1 vector holds
the loaded values. k1 is a 16-bit boolean vector set by kxnor.
Each call to vpgatherdd finds the leftmost set bit in k1, ex-
tracts the index from zmm0, identifies other lanes pointing to
the same cache line, loads the values in zmm1, and resets the
bits in k1. The jknzd branches back if k1 has more set bits.

kxnor %k1, %k1
loop: vpgatherdd (%rax, %zmm0, 4), %zmm1 {%k1}

jknzd loop, %k1

Scatters are symmetric to gathers. If multiple lanes of the
index vector have the same value, the value in the rightmost
lane is written but all respective bits in k1 are reset. We can
detect multiple references to the same cache line by checking
if multiple bits of k1 were reset, but we cannot distinguish
between conflicts and distinct writes in the same cache line.

Non-selective gathers and scatters initially have all bits in
k1 set. Selective gathers and scatters, use k1 and zmm1 as
both inputs and outputs to load a subset of lanes determined
by k1. The rest lanes in zmm1 not set in k1 are unaffected.

The latency and throughput of each gather or scatter op-
eration is determined by the number of cache lines accessed.
Assuming all cache lines are L1 resident, the operation is
faster if assembled in fewer cache lines. For the same cache
lines, accessing fewer items reduces the total latency [10].

In Haswell gathers, k1 is a vector. The asymmetry be-
tween Xeon Phi and Haswell on how gather instructions
work, is possibly due to the fact that out-of-order CPUs can
overlap a single high-latency branchless gather with other in-
structions more effectively. Haswell gathers have been shown
to perform almost identically in L1 and L2. Also, loading W
items from distinct cache lines in L1 or L2 has been shown
to be almost as fast as loading the same item W times [10].

On Xeon Phi, mixing gather and scatter instructions in
the same loop reduces performance. Thus, executing gather
and scatter operations in a loop of gather and scatter in-
structions offers no performance benefit. Ideally, we would
like to combine the spatial locality aware gathers and scat-
ters of Xeon Phi with the single instruction of Haswell, also
implementing the logic to iterate over W ′ ≤ W distinct
cache lines inside the execution unit without branching.

Gathers and scatters can be emulated, if not supported.
We did a careful implementation of gathers using other vec-
tor instructions and used it in linear probing and double
hashing tables. We found that we lose up to 13% probing
performance compared to the hardware gathers (Figure 6),
which reduces as the table size increases. When the loads are
not cache resident, there is no noticeable difference, which
is expected since gathers and scatters go through the same
memory access path as loads and stores to a single location.

C. SELECTIVE LOAD & STORE
Selective loads and stores must be able to access unaligned

memory. Thus, a load can span across two cache lines. Xeon
Phi provides two instructions for these two cache lines. In
Haswell, we use unaligned vector accesses and permutations,
which are shown in the code examples of Appendix D and E.

void _mm512_mask_packstore_epi32(int32_t *p, // pointer
__mmask16 m, // mask

__m512i v) // vector
{ _mm512_mask_packstorelo_epi32(&p[0], m, v):

_mm512_mask_packstorehi_epi32(&p[16], m, v); }

The selective load of 16 32-bit data for Xeon Phi is shown
above. The symmetric selective store is shown below. The
functions with prefix _mm are intrinsics available online.3

__m512i _mm512_mask_loadunpack_epi32(__m512i v,
__mmask16 m,

const int32_t *p)
{ v = _mm512_mask_loadunpacklo_epi32(v, m, &p[0]):

v = _mm512_mask_loadunpackhi_epi32(v, m, &p[16]);
return v; }

3
software.intel.com/sites/landingpage/IntrinsicsGuide/

D. SELECTION SCANS
The code for selection scans assuming 32-bit keys and pay-

loads in Xeon Phi is shown below. We use the version that
was described in Section 4 that stores input pointers of qual-
ifiers in a cache resident buffer and then gather the data from
the input. The selective condition is klower ≤ k ≤ kupper.
The buffer must be small enough to be L1 resident. The
streaming store instruction (_mm512_storenrngo_ps) mech-
anism is to not read back the cache line that is overwritten.
The input and output here must be aligned in cache lines.

for (i = j = k = 0; i < tuples; i += 16) {
/* load key column and evaluate predicates */
key = _mm512_load_epi32(&keys[i]);
m = _mm512_cmpge_epi32_mask(key, mask_lower);
m = _mm512_mask_cmple_epi32_mask(k, key, mask_upper);
if (!_mm512_kortestz(m, m)) { // jkzd

/* selectively store qualifying tuple indexes */
_mm512_mask_packstore_epi32(&rids_buf[k], m, rid);
k += _mm_countbits_64(_mm512_mask2int(m)); }
if (k > buf_size - 16) {
/* flush the buffer */
for (b = 0; b != buf_size - 16; b += 16) {
ptr = _mm512_load_epi32(&rids_buf[b]);
/* dereference column values and stream */
key_f = _mm512_i32gather_ps(ptr, keys, 4);
pay_f = _mm512_i32gather_ps(ptr, pays, 4);
_mm512_storenrngo_ps(&keys_out[b + j], key_f);
_mm512_storenrngo_ps(&pays_out[b + j], pay_f);}

/* move extra items to the start of the buffer */
ptr = _mm512_load_epi32(&rids_buf[b]);
_mm512_store_epi32(&rids_buf[0], ptr);
j += buf_size - 16;
k -= buf_size - 16; } }

rid = _mm512_add_epi32(rid, mask_16); }

We now show the same code in Haswell using AVX 2 in-
trinsics. The selective store is replaced by a 2-way partition
that loads the permutation mask from a lookup array [27].

for (i = j = k = 0; i < tuples; i += 8) {
/* load key columns and evaluate predicates */
key = _mm256_load_si256((__m256i*) &keys[i]);
cmp_lo = _mm256_cmpgt_epi32(mask_lower, key);
cmp_hi = _mm256_cmpgt_epi32(key, mask_upper);
cmp = _mm256_or_si256(cmp_lo, cmp_hi);
cmp = _mm256_xor_si256(cmp, mask_minus_1);
if (!_mm256_testz_si256(cmp, cmp)) {

/* load permutation mask for selective store */
m = _mm256_movemask_ps(_mm256_castsi256_ps(cmp));
perm_comp = _mm_loadl_epi64(&perm[m]);
perm = _mm256_cvtepi8_epi32(perm_comp);
/* permute and store the input pointers */
cmp = _mm256_permutevar8x32_epi32(cmp, perm);
ptr = _mm256_permutevar8x32_epi32(rid, perm);
_mm256_maskstore_epi32(&rids_buf[k], cmp, ptr);
k += _mm_popcnt_u64(m);
if (k > buf_size - 8) {
/* flush the buffer */
for (b = 0; b != buf_size - 8; b += 8) {
/* dereference column values and store */
ptr = _mm256_load_si256(&rids_buf[j]);
key = _mm256_i32gather_epi32(keys, ptr, 4);
pay = _mm256_i32gather_epi32(pays, ptr, 4);
_mm256_stream_si256(&keys_out[b + j], key);
_mm256_stream_si256(&pays_out[b + j], pay); }

/* move extra items to the start of the buffer */
ptr = _mm256_load_si256(&rids_buf[b]);
_mm256_store_si256(&rids_buf[0], ptr);
j += buf_size - 8;
k -= buf_size - 8; } }

rid = _mm256_add_epi32(rid, mask_8); }

E. HASH TABLES
The code for probing a hash table using linear probing for

Xeon Phi is shown below. The probing input has 32-bit keys
and payloads and the table stores 32-bit keys and payloads.
The output includes keys and the two payload columns.

m = _mm512_kxnor(m, m); // set mask
off = _mm512_xor_epi32(off, off); // reset vector
for (i = j = 0; i + 16 <= S_tuples;) {

/* replace invalid keys & payloads */
key=_mm512_mask_loadunpack_epi32(key, m, &S_keys[i]);
pay=_mm512_mask_loadunpack_epi32(pay, m, &S_pays[i]);
i += _mm_countbits_64(_mm512_mask2int(m));
/* hash keys and add linear probing offset */
hash = _mm512_mullo_epi32(key, mask_factor);
hash = _mm512_mulhi_epu32(hash, mask_buckets);
hash = _mm512_add_epi32(hash, off);
/* gather key-payload pairs (buckets) */
lo = _mm512_i32logather_epi64(hash, table, 8);
hash =_mm512_permute4f128_epi32(hash, _MM_PERM_BADC);
hi = _mm512_i32logather_epi64(hash, table, 8);
/* unpack keys and payloads from pairs */
_MM512_UNPACK_EPI32(lo, hi, table_key, table_pay);
/* selectively store matches to output (or buffer) */
m = _mm512_cmpeq_epi32_mask(key, table_key);
_mm512_mask_packstore_epi32(&keys_out[j], m, key);
_mm512_mask_packstore_epi32(&S_pays_out[j], m, pay);
_mm512_mask_packstore_epi32(&R_pays_out[j], m,
/* update output index */ table_pay);
j += _mm_countbits_64(_mm512_mask2int(m));
/* search empty buckets using special key value */
m = _mm512_cmpeq_epi32_mask(table_key, mask_empty):
/* increment or reset linear probing offsets */
off = _mm512_add_epi32(off, mask_1);
off = _mm512_mask_xor_epi32(off, m, off, off); }

The code for building linear probing hash tables with 32-
bit keys and payloads for Xeon Phi is shown below. The
implementation of double hashing is very similar with the
difference being in the way the hash index is computed.

m = _mm512_kxnor(m, m); // set mask
off = _mm512_xor_epi32(off, off); // reset vector
for (i = 0; i + 16 <= R_tuples;) {

/* replace invalid keys & payloads */
key=_mm512_mask_loadunpack_epi32(key, m, &R_keys[i]);
pay=_mm512_mask_loadunpack_epi32(pay, m, &R_rids[i]);
i += _mm_countbits_64(_mm512_mask2int(m));
/* hash keys and add linear probing offsets */
hash = _mm512_mullo_epi32(key, mask_factor);
hash = _mm512_mulhi_epu32(hash, mask_buckets);
hash = _mm512_add_epi32(hash, off);
/* gather keys from buckets */
tab = _mm512_i32gather_epi32(hash, table, 8);
/* check if buckets are empty */
m = _mm512_cmpeq_epi32_mask(tab, mask_empty);
/* scatter unique values per vector lane */
_mm512_mask_i32scatter_epi32(table, m, hash,
/* gather back values */ mask_unique, 8);
tab = _mm512_mask_i32gather_epi32(tab, m, hash,
/* detect non-conflicting */ table, 8);
m=_mm512_mask_cmpeq_epi32_mask(m, tab, mask_unique);
/* packs keys and payloads in pairs */
_MM512_PACK_EPI32(key, pay, lo, hi);
/* scatter key-payload pairs 1-8 */
_mm512_mask_i32loscatter_epi32(table, m, hash,
/* scatter key-payload pairs 9-16 */ lo, 8);
hash =_mm512_permute4f128_epi32(hash, _MM_PERM_BADC);
mt = _mm512_kmerge2l1h(m, m);
_mm512_mask_i32loscatter_epi32(table, mt, hash,
/* increment or reset offsets */ hi, 8);
off = _mm512_add_epi32(off, mask_1);
off = _mm512_mask_xor_epi32(off, m, off, off); }

The constants used in the procedures are the multiplica-
tive hashing factor (mask_factor), the number of hash ta-
ble buckets (mask_buckets), a special key for empty buckets
(mask_empty), and constant numbers. The tuples are stored
in the table using an interleaved layout, thus, we access the
hash table buckets using 64-bit gathers. The code used to
unpack the 32-bit keys and payloads from registers with 64-
bit pairs (_MM512_UNPACK_EPI32) as well as the code for the
inverse packing (_MM512_PACK_EPI32), are omitted.

Conflict detection, used here for hash table building, is the
most common problem in vectorization with scatters. The
future AVX 3 ISA provides specialized instructions (e.g.,
_mm512_conflict_epi32) that compare all pairs of vector
lanes i, j for i < j and generate a bitmask per lane of vector
lanes to the left with the same value. The zero lanes are non-
conflicting and thus we avoid using gathers and scatters.

Hash table probing may or may not reuse the output di-
rectly. In such a case, we must use the same buffering tech-
nique we used for selection scans. The difference from the
code shown is that selective stores are used to write the data
to the buffer, which is then flushed with streaming stores.

We now show the same hash table probing code for Haswell,
using both selective loads and stores through permutation.

inv = _mm256_cmpeq_epi32(inv, inv); // set mask
off = _mm256_xor_si256(off, off); // reset vector
for (i = j = 0; i + 8 <= S_tuples;) {
/* load new items and skip reloads */
new_key = _mm256_maskload_epi32(&S_keys[i], inv);
new_pay = _mm256_maskload_epi32(&S_vals[i], inv);
key = _mm256_andnot_si256(inv, key);
pay = _mm256_andnot_si256(inv, pay);
key = _mm256_or_si256(key, new_key);
pay = _mm256_or_si256(pay, new_pay);
/* compute the hash function and add offsets */
hash = _mm256_mullo_epi32(key, mask_factor);
off = _mm256_add_epi32(off, mask_1);
off = _mm256_andnot_si256(inv, off);
hash = _mm256_mulhi_epu32(hash, mask_buckets);
hash = _mm256_add_epi32(hash, off);
/* gather data from table and unpack */
lo = _mm256_i32gather_epi64(table_64, hash, 8);
hash = _mm256_permute4x64_epi64(hash, 14);
hi = _mm256_i32gather_epi64(table_64, hash, 8);
_MM256_UNPACK_EPI32(lo, hi, table_key, table_val);
/* check who qualifies and who is invalid */
inv = _mm256_cmpeq_epi32(table_key, mask_empty);
out = _mm256_cmpeq_epi32(table_key, key);
/* load permutation masks */
m_out = _mm256_movemask_ps(_mm256_castsi256_ps(out));
m_inv = _mm256_movemask_ps(_mm256_castsi256_ps(inv));
perm_out_comp = _mm_loadl_epi64(&perm[m_out]);
perm_inv_comp = _mm_loadl_epi64(&perm[m_inv ^ 255]);
perm_out = _mm256_cvtepi8_epi32(perm_out_comp);
perm_inv = _mm256_cvtepi8_epi32(perm_inv_comp);
/* permute matching items */
out = _mm256_permutevar8x32_epi32(out, perm_out);
RS_key = _mm256_permutevar8x32_epi32(key, perm_out);
S_pay = _mm256_permutevar8x32_epi32(pay, perm_out);
R_pay = _mm256_permutevar8x32_epi32(table_val,
/* store matching items */ perm_out);
_mm256_maskstore_epi32(&keys_out[j], out, RS_key);
_mm256_maskstore_epi32(&S_pays_out[j], out, S_pay);
_mm256_maskstore_epi32(&R_pays_out[j], out, R_pay);
j += _mm_popcnt_u64(m_out);
/* permute invalid items */
inv = _mm256_permutevar8x32_epi32(inv, perm_inv);
key = _mm256_permutevar8x32_epi32(key, perm_inv);
off = _mm256_permutevar8x32_epi32(off, perm_inv);
i += _mm_popcnt_u64(m_inv); }

F. PARTITIONING
We show the code for radix histogram generation using

32-bit keys for Xeon Phi below. For the radix function, we
use two shifts (mask_shift_left, mask_shift_right). To
compute the replicated histogram index, we multiply by the
vector lanes (mask_16) and add the lane offset (mask_lane).

for (i = 0; i < tuples; i += 16) {
/* load keys and compute the radix */
key = _mm512_load_epi32(&keys[i]);
part = _mm512_sllv_epi32(key, mask_shift_left);
part = _mm512_srlv_epi32(part, mask_shift_right);
/* compute locations in the replicated histograms */
part = _mm512_fmadd_epi32(part, mask_16, mask_lanes);
/* increment the partial histograms */
count = _mm512_i32gather_epi32(part, hists, 4);
count = _mm512_add_epi32(count, mask_1);
_mm512_i32scatter_epi32(hists, part, count, 4); }

/* merge partial histograms */
for (p = 0; p != partitions; ++p) {

count = _mm512_load_epi32(&hists[p << 4]);
hist[p] = _mm512_reduce_add_epi32(count); }

To compress the partial histograms in cache, we use 8-bit
counts and add code to handle overflows. The assembly of
Xeon Phi allows us to specify modifiers to gather and scat-
ter instructions, that load or store 8-bit and 16-bit memory
locations. The operations are executed on 16 32-bit lanes.

We also show vectorized binary search of 32-bit keys for
Xeon Phi, which is used to compute range functions. We can
patch the array so that P = 2n. Haswell code is identical.

hi = mask_partitions; // broadcast P
lo = _mm512_xor_epi32(lo, lo); // the output vector
for (i = 0; i != log_partitions; ++i) {

/* gather middle splitter */
mid = _mm512_add_epi32(lo, hi);
mid = _mm512_srli_epi32(mid, 1);
del = _mm512_i32gather_epi32(mid, &splitters[-1],
/* compare and update pointers */ 4);
m = _mm512_cmpgt_epi32(key, del);
lo = _mm512_mask_blend_epi32(m, lo, mid);
hi = _mm512_mask_blend_epi32(m, mid, hi); }

The code for conflict serialization using gathers and scat-
ters is shown below. The constant permutation mask used
to reverse the lanes of a vector (mask_reverse), also used to
detect conflicts since due to having distinct values per lane.
Using the conflict detection instruction provided by AVX
3, we can also implement conflict serialization. Given that
AVX 3 does not provide vectorized bit count, we run a loop
that clears one bit at a time per lane using x & (x - 1) and
increments the non-zero lanes in the resulting offset vector.

__m512i _mm512_serialize_conflicts(__m512i part,
/* reverse order of indexes */ int32_t *array) {
part = _mm512_permutevar_epi32(part, mask_reverse);
__m512i back, res = _mm512_xor_epi32(res, res);
__mmask16 m = _mm512_kxnor(m, m);
do {

/* scatter unique values per lane */
_mm512_mask_i32scatter_epi32(array, m, part,
/* gather back values */ mask_reverse);
back = _mm512_mask_i32gather_epi32(back, m, part,
/* detect conflicting lanes */ array, 4);
m = _mm512_mask_cmpneq_epi32_mask(m, back,
/* increment offsets */ mask_reverse);
res = _mm512_mask_add_epi32(res, m, res, mask_1);

} while (!_mm512_kortestz(m, m));
/* reverse result back to original order */
return _mm512_permutevar_epi32(res, mask_reverse); }

The code for stable buffered shuffling for radix partition-
ing using 32-bit keys and payloads for Xeon Phi is shown
below. Both the input and the output are assumed to be
aligned on cache line boundaries. After the loop, we clean
the buffer by flushing remaining tuples. If multiple threads
are used, the buffer cleanup occurs after synchronizing, to fix
the first cache line of each partition that may be corrupted.

When partitioning columns of multiple widths, assuming
we partition one column at a time, the number of buffered
items per partition varies. We implement 8-bit, 16-bit, 32-
bit, and 64-bit shuffling by storing 64, 32, 16, and 8 items
in the buffer per partition respectively. When we partition
64-bit columns, because 16 64-bit values can span across
two cache lines, we scatter the tuples to the buffers in three
phases instead of two, as overflows can occur twice per loop.

for (i = 0; i < tuples; i += 16) {
/* load keys and payloads */
key = _mm512_load_epi32(&keys[i]);
pay = _mm512_load_epi32(&pays[i]);
/* compute partition function (radix) */
part = _mm512_sllv_epi32(key, mask_shift_left);
part = _mm512_srlv_epi32(part, mask_shift_right);
/* load current partition offsets */
off = _mm512_i32gather_epi32(part, offsets, 4);
/* detect conflicts (pollutes offsets array) */
ser_off = _mm512_serialize_conflicts(part, offsets);
/* scatter updated offsets (fixes offsets array) */
off_back = _mm512_add_epi32(off_back, mask_1);
off_back = _mm512_add_epi32(off, ser_off);
_mm512_i32scatter_epi32(offsets, part, off_back, 4);
_MM512_PACK_EPI32(key, pay, lo, hi);
/* compute partition offsets in buffers */
off = _mm512_and_epi32(off, mask_15);
off = _mm512_add_epi32(off, ser_off);
off_lo = _mm512_fmadd_epi32(part, mask_16, off);
off_hi = _mm512_permute4f128_epi32(off_lo,
/* find non-overflowing lanes */ _MM_PERM_BCDC);
m = _mm512_cmpgt_epi32_mask(mask_15, off);
mt = _mm512_knot(m);
/* scatter pairs 1-8 to buffers (non-overflowing) */
_mm512_mask_i32loscatter_epi64(buffers, m, off_lo,
/* scatter pairs 9-16 to buffers ... */ lo, 8);
m = _mm512_kmerge2l1h(m, m);
_mm512_mask_i32loscatter_epi64(buffers, m, off_hi,
/* find lanes with partitions to flush */ hi, 8);
m = _mm512_cmpeq_epi32_mask(off, mask_15);
if (!_mm512_kortestz(m, m)) {

/* pack partitions that need to be flushed */
_mm512_mask_packstorelo_epi32(flush_part, m, part);
/* count how many partitions to flush */
j = 0, k = _mm_countbits_64(_mm512_mask2int(m));
do {
p = flush_part[j]; // which partition
o = (offsets[p] & -16) - 16; // output location
/* load key-payload pairs from the buffer */
lo_f = _mm512_load_ps(&buffers[(p << 4) + 0]);
hi_f = _mm512_load_ps(&buffers[(p << 4) + 8]);
/* unpack pairs into keys and payloads */
_MM512_UNPACK_PS(lo_f, hi_f, key_f, pay_f);
/* flush to output using streaming stores */
_mm512_storenrngo_ps(&keys_out[o], key_f);
_mm512_storenrngo_ps(&pays_out[o], pay_f);

} while (++j != k);
if (!_mm512_kortestz(mt, mt)) {
/* scatter pairs 1-8 to buffers (overflowing) */
_mm512_mask_i32loscatter_epi64(&buffers[-16], mt,
/* scatter pairs 9-16 ... */ off_lo, lo, 8);
mt = _mm512_kmerge2l1h(mt, mt);
_mm512_mask_i32loscatter_epi64(&buffers[-16], mt,

/* flush buffers after the loop */ off_hi, hi, 8);}}}

