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Abstract

This paper introduces a new learning paradigm, called Learning Using Statistical Invariants

(LUSI), which is different from the classical one. In a classical paradigm, the learning machine

constructs a classification rule that minimizes the probability of expected error; it is data-

driven model of learning. In the LUSI paradigm, in order to construct the desired classification

function, a learning machine computes statistical invariants that are specific for the problem,

and then minimizes the expected error in a way that preserves these invariants; it is thus

both data- and invariant-driven learning. From a mathematical point of view, methods of

the classical paradigm employ mechanisms of strong convergence of approximations to

the desired function, whereas methods of the new paradigm employ both strong and weak

convergence mechanisms. This can significantly increase the rate of convergence.

Keywords Intelligent teacher · Privileged information · Support vector machine · Neural

network · Classification · Learning theory · Regression · Conditional probability · Kernel

function · Ill-Posed problem · Reproducing Kernel Hilbert space · Weak convergence
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1 Introduction

It is known that Teacher–Student interactions play an important role in human learning. An

old Japanese proverb says “Better than thousand days of diligent study is one day with a

great teacher.” What is it exactly that great Teachers do? This question remains unanswered.
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At first glance, it seems that the information that a Student obtains from his interaction

with a Teacher does not add too much to the standard textbook knowledge. Nevertheless, it

can significantly accelerate the learning process.

This paper is devoted to mechanisms of machine learning, which include elements of

Teacher–Student (or Intelligent Agent—Learning Machine) interactions. The paper demon-

strates that remarks of a Teacher, which can sometimes seem as trivial (e.g., in the context of

digit recognition, “in digit ‘zero’, the center of the image is empty” or “in digit ‘two’, there

is a tail in the lower right part of the image”), can actually add a lot of information that turns

out to be essential even for a large training data set.

The mechanism of Teacher–Student interaction presented in this paper is not based on

some heuristic. Instead, it is based on rigorous mathematical analysis of the machine learning

problem.

In 1960, Eugene Wigner published the paper “Unreasonable Effectiveness of Mathematics

in Natural Sciences” Wigner (1960), in which he argued that mathematical structures “know”

something about physical reality. Our paper might as well have the subtitle “Unreasonable

Effectiveness of Mathematics in Machine Learning” since the idea of the proposed new mech-

anism originated in rigorous mathematical treatment of the problem, which only afterwards

was interpreted as an interaction between an Intelligent Teacher and a Smart Student.1

While analyzing the setting of the learning problem, we take into account some details

that were, for simplicity, previously omitted in the classical approach. Here we consider the

machine learning problem as a problem of estimating the conditional probability function

rather than the problem of finding the function that minimizes a given loss functional. Using

mathematical properties of conditional probability functions, we were able to make several

steps towards the reinforcement of existing learning methods.

1.1 Content and organization of paper

Our reasoning consists of the following steps:

1. We define the pattern recognition problem as the problem of estimation of conditional

probabilities P(y = k|x), k = 1, . . . , n (probability of class y = k given observation

x): example x∗ is classified as y = s if P(y = s|x∗) is maximum. In order to estimate

maxk P(y = k|x), k = 1, . . . , n, we consider n two-class classification problems of finding

Pk(y∗ = 1|x), k = 1, . . . , n, where y∗ = 1 if y = k and y∗ = 0 otherwise.

We start with introducing direct definitions of conditional probability function which dif-

fers from standard definition.2 Let x ∈ Rn . In Sect. 2.2, we define the conditional probability

as the solution f (x) = P(y = 1|x) of the Fredholm integral equation of the first kind:

1 The idea of the new approach is based on analysis of two mathematical facts:

(1) Direct definition of conditional probability and regression functions (Sect. 2.2).

(2) Existence of both strong and weak modes of convergence in Hilbert space, which became the founda-

tion for two different mechanisms of generalization: the classical data-driven mechanism and the new

intelligence-driven mechanism (Sect. 6).

2 The standard definitions of conditional probability function for continuous x is as follows. Let the probability

distribution be defined on pairs (x, y). If y takes discrete values from {0, 1, . . . , k}, the conditional probability

P(y = t |x) of y = t given the vector x is defined as the ratio of two density functions p(y = t, x) and p(x):

P(y = t |x) =
p(y = t, x)

p(x)
, y = {0, 1, . . . , n}.
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∫
θ(x − x ′) f (x ′)d P(x ′) = P(y = 1, x), (1)

where kernel θ(z) of the integral operator is defined as the step-function

θ(z) =
{

1, if z ≥ 0,

0, otherwise.
(2)

In order to estimate conditional probability from data, we solve equation (1) in the situation

where the cumulative distribution functions P(x) and P(y = 1, x) are unknown but iid data

(x1, y1), . . . , (xℓ, uℓ)

generated according to P(y, x) are given.

The advantage of definition (1) is that it is based on the cumulative distribution function,

the fundamental concept of probability theory. This definition does not directly require (as

in the classical case) the existence of density functions and their ratio.

2. In order to estimate the desired solution from data, we use the following standard

inductive step (heuristics): we replace the unknown cumulative distribution functions P(x)

and P(y = k, x) with their empirical estimates

Pℓ(x) =
1

ℓ

ℓ∑

i=1

θ(x − xi ), Pℓ(y = k, x) =
1

ℓ

ℓ∑

j :{y j =k}
θ(x − x j ),

thus obtaining an empirical equation Aℓ f = Fℓ in the form

ℓ∑

i=1

θ(x − xi ) f (xi ) =
ℓ∑

j=1

y jθ(x − x j ).

3. The inductive step of replacing the cumulative distribution function with the cor-

responding empirical distribution function is the main instrument of statistical methods.

Justification of this step and analysis of its accuracy are main topics of classical statis-

tics described in Glivenko–Cantelli Theorem (1933) and Kolmogorov–Dvoretzky–Kiefer–

Wolfowitz–Massard bounds (1933–1990). The generalization of Glivenko–Cantelli theory,

the Vapnik-Chervonenkis theory (VC-theory 1968) plays an important part in justification of

learning methods. Results of these theories are outlined in Sect. 1.3.

4. The estimation of conditional probability function by solving Fredholm integral equa-

tion A f (x ′) = F(x) is an ill-posed problem. For solving ill-posed problems, Tikhonov and

Arsenin (1977) proposed the regularization method, which, under some general conditions,

guarantees convergence (in the given metric) of the solutions to the desired function.

In our setting, we face a more difficult problem: we have to solve an ill-posed equation (1)

where both the operator and the right-hand side of the equation are defined approximately

Aℓ f (x ′) ≈ Fℓ(x). In 1978, Vapnik and Stefanyuk (1978) proved that, under some conditions

on the operator A of the equation, the regularization method also converges to the desired

solution in this case. Section 4.3 outlines the corresponding results.

5. According to Tikhonov’s regularization method (Sect. 4.2), in order to solve the operator

equation Aℓ f (x ′) = Fℓ(x), one has to minimize the functional

R( f ) = ρ2(Aℓ f (x ′), Fℓ(x)) + γ W ( f (x ′)),

where one has to define the following:

1. the distance ρ(Aℓ f (x ′), Fℓ(x)) between the function Aℓ f (x ′) on the left-hand side and

the function Fℓ(x) on the right-hand side of the equation;
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2. the set of functions { f (x ′)} in which one is looking for the solution of the equation;

3. the regularization functional W ( f (x ′)) and regularization parameter γ > 0.

In this paper, we define the following elements:

1. we use L2-metric for distance ρ2(Aℓ f (x ′), Fℓ(x)) =
∫
(A fℓ(x ′) − Fℓ(x))2dμ(x);

2. we solve the equations in the sets of functions f (x ′) that belong to Reproducing Kernel

Hilbert Space (RKHS) of the kernel K (x, x ′) (see Sect. 5.2).

3. we use the square of a function’s norm || f (x ′)||2 as the regularization functional.

6. In Sect. 5.1, using L2-distance for estimating the approximation of the solution of the

Fredholm equation based on the regularization method, we obtain the non-regularized (with

γ = 0) empirical loss functional

Rℓ( f ) =
ℓ∑

i=1

(yi − f (xi ))(y j − f (x j ))V (i, j), (3)

which has to be minimized. Here V (i, j) are elements of the so-called V -matrix that are

computed from the data. The classical (non-regularized) empirical loss functional has the

form

Rℓ( f ) =
ℓ∑

i=1

(yi − f (xi ))
2, (4)

which defines the least squares method. The least squares method is a special case of (3),

where V -matrix is replaced with the identity matrix I .

The V -matrix in Eq. (3) has the following interpretation: when we are looking for the

desired function, we take into account not only the residuals Δi = yi − f (xi ), i =
1, . . . , ℓ at the observation points xi , but also the mutual positions V (i, j) of the obser-

vation points xi and x j .

The classical solution of the problem (i.e., the least squares method (4)) uses only infor-

mation about the residuals Δi .

7. Section 5.2.1 shows that, for the Reproducing Kernel Hilbert Space of kernel K (x, x ′),
the function f (x) has the representation (Representer theorem)

f (x) =
ℓ∑

i=1

ai K (x, xi ). (5)

The square of norm of this function (which we use as a regularization functional) has the

form

|| f ||2rkhs =
ℓ∑

i, j

ai a j K (xi , x j ). (6)
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In this paper, we use the following vector-matrix notations:

– ℓ-dimensional vector Y = (y1, . . . , yℓ)
T ,

– ℓ-dimensional vector A = (a1, . . . , aℓ)
T of parameters ai ,

– ℓ-dimensional vector-function K(x) = (K (x, x1), . . . , K (x, xℓ))
T ,

– (ℓ × ℓ)-dimensional matrix V of elements V (xi , x j ), i, j = 1, . . . , ℓ,

– (ℓ × ℓ)-dimensional matrix K of elements K (xi , x j ), i, j = 1, . . . , ℓ.

In these notations, (5) and (6) can be written as

f (x) = AT
K(x) and || f ||2rkhs = AT K A.

8. Section 5.3 shows that, in order to estimate the conditional probability function3

f (x) = AT
K(x) (7)

using the regularization method, one has to find the vector A that minimizes the functional

R(A) = AT K V K A − 2AT K V Y + γ AT K A, (8)

where the coordinates of vector Y are binary (one or zero).

The minimum of this functional has the form

AV = (V K + γ I )−1V Y , (9)

where I is the identity matrix. We call such estimate the vSVM method. The classical (square

loss) SVM estimate has the form

AI = (K + γ I )−1Y . (10)

The difference between classical SVM approximation (10) and new vSVM approximation

(9) is in its use of identity matrix I instead of V -matrix. When using V -matrix, one takes

into account mutual positions of observed vectors x ∈ X .

9. Starting from Sect. 6, we consider the problem of the Teacher–Student interaction. We

introduce the following mathematical model of interaction which we call Learning Using

Statistical Invariants (LUSI).

Let P(y = 1|x), x ∈ Rn, y ∈ {0, 1} be the desired conditional probability function.

Consider m functionsψs(x), s = 1, . . . , m. There exist constants Cψs such that the equalities

∫
ψs(x)P(y = 1|x)d P(x) = Cψs , s = 1, . . . , m (11)

hold true. We consider as estimates (approximations) P(y = 1|x) the functions satisfying

the equations
∫

ψs(x)Pℓ(y = 1|x)d P(x) = Cℓ
ψs

. (12)

We say that a sequence of approximations Pℓ(y = 1|x) converges to P(y = 1|x) in strong

mode if

lim
ℓ→∞

||P(y = 1|x) − Pℓ(y = 1|x)|| = 0,

3 In Sect. 5.3, we consider a more general set of functions f (x) = AT K(x)+ c, where c is a constant. In this

introduction, in order to simplify the notations, we set c = 0.
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in the metric of functions P(y = 1|x). We also say that the sequence of approximations

Pℓ(y = 1|x) converges to P(y = 1|x) in weak mode if the sequence of values Cℓ
ψ converges

to the value Cψ with ℓ → ∞ for any ψ(x) ∈ L2:
∣∣∣∣
∫

ψ(x)Pℓ(y = 1|x)dx −
∫

ψ(x)P(y = 1|x)dx

∣∣∣∣ = |Cℓ
ψ − Cψ | −→ 0, ∀ψ ∈ L2.

It is known that strong convergence implies weak convergence.

The idea of LUSI model is to minimize the loss functional (8) in the subset of functions

(7) satisfying (12). In order to find an accurate approximation of the desired function, we

employ mechanisms of convergence that are based on both strong and weak modes. (The

classical method employs only the strong mode mechanism).

The important role in LUSI mechanisms belongs to Teacher. According to the definition,

the weak mode convergence requires convergence for all functions ψ(x) ∈ L2. Instead, the

Teacher replaces the infinite set of functions ψ(x) ∈ L2 with a finite set F = {ψs(x), s =
1, . . . , m}.

Let the Teacher define functions ψs(x), s = 1, . . . , m in (11), which we call predicates.

Suppose that the values Cψs , which we call expressions of predicate, are known. This fact

has the following interpretation: equations (11) describe d (integral) properties of the desired

conditional probability function. Our goal is thus to find the approximation that has these

properties.

The idea is to identify the subset of functions P(y = 1|x) for which expressions of

predicates ψs(x) are equal to Cψs , and then to select the desired approximation from this

subset.

In reality, the values Cψs are not known. However, these values can be estimated from the

data (x1, y1), . . . , (xℓ, yℓ). According to the Law of Large Numbers, the values Cψs for the

corresponding functions ψs(x) can be estimated as

Cℓ
ψs

≈
1

ℓ

ℓ∑

i=1

yiψs(xi ) =
1

ℓ
ΦT

s Y , s = 1, . . . , m,

where we have denoted Φs = (ψs(x1), . . . , ψs(xℓ))
T .

Since the structure of conditional probability has the form of (7), we can also estimate the

left-hand side of (12). That estimate is (ℓ)−1 AT KΦ. From estimates of left- and right-hand

sides in (12), one obtains equations (we call them invariants)

AT KΦT
s ≈ Y T Φs, s = 1, . . . , m. (13)

The method of LUSI is to find the vector A that defines the approximation (7) by minimizing

functional (8) in the set of vectors A satisfying4 (13).

10. The problem of minimizing the functional (8) subject to the constraints (13) has a

closed-form solution. In order to obtain it, one has to do the following:

(1) Compute vector AV as in (9).

(2) Compute d vectors

As = (V K + γ I )−1Φs, s = 1, . . . , m.

4 In other words, if one wants to find a rule for identification of ducks, the first thing one has to do is to find a

set of rules that do not contradict the basic “duck test” of identification, i.e., birds that look like a duck, swim

like a duck, and quack like a duck. Then one has to select the rule for identification of ducks within this set of

rules.
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(3) Compute vector-parameters A of estimate (7)

A = AV −

(
m∑

s=1

μs As

)
,

where vector-parameters μs are the solution of some linear system of equations determined

by the data (Sect. 6.2). Vector A is the sum of two estimates:

(1) the estimate AV , which is obtained from the standard learning scenario by the vSVM

method (data-driven part of estimate), and

(2) the term shown in parentheses, which is the correction term based on invariants (13)

(intelligence-driven part of estimate). We call the sum A the vSVM with m invariants

estimate, denoted as vSVM & Im .

11. The introduction of predicate-functions ψs(x), s = 1, . . . , m for constructing invari-

ants reflects the Teacher’s intellectual contribution to the Teacher–Student interaction; some

examples of possible functions for invariants are provided in Sect. 6.5. The first task of the

Student in this interaction is to understand which invariants are suggested by the Teacher, and

the second task is to choose the best one from the admissible set of functions that preserve

these invariants.

There is an important difference between invariants and features in classical learning

models. With increasing number of invariants, the capacity of the set of functions from

which Student has to choose the desired one decreases (and as a result, according to VC

bounds, this leads to a more accurate estimate). In contrast to that, with increasing number

of features, the capacity of the set of admissible functions increases (and thus, according to

VC bounds, this requires more training examples for an accurate estimate5).

12. Section 6.4 contains examples that illustrate the effectiveness of the ideas of LUSI

and remarks on implementation of SVM& Id algorithms.

1.2 Phenomenological model of learning

The general mathematical theory of learning was first introduced about fifty years ago. That

theory was created for the following phenomenological model:

In some environment X , there exists a generator G of random events xi ∈ X . This

generator G generates events x randomly and independently, according to some unknown

probability measure P(x).

In this environment, a classifier A operates, which labels the events x ; in other words, on

any event xi produced by generator G, classifier A reacts with a binary signal yi ∈ {0, 1}.
The classification yi of events xi is produced by classifier A according to some unknown

conditional probability function P(y = 1|x).

The problem of learning is formulated as follows: given ℓ pairs

(x1, y1), . . . , (xℓ, yℓ) (14)

containing events xi produced by generator G and classifications yi produced by classifier

A, find, in a given set of indicator functions, the one that minimizes probability of

discrepancy between classifications of this function and classifier A.

5 In Vapnik and Izmailov (2017), we showed that, in data-driven estimates, ℓ examples (xi , yi ), i = 1, . . . , ℓ

can provide no more than ℓ bits of information. However, using one invariant in intelligence-driven estimates,

ℓ examples can provide more than ℓ bits of information (Sect. 6.3).
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This phenomenological model describes the basic learning problem, namely, the so-called

two-class pattern recognition problem. Its generalizations to an arbitrary finite number n > 2

of classes y ∈ {a1, . . . , an} are just technical developments of this simplified model; they

are addressed later in the paper.

1.3 Risk minimization framework

The first attempt to construct the general learning theory was undertaken in the late 1960s—

beginning of 1970s. At that time, the learning was mathematically formulated as the problem

of expected risk minimization (Vapnik and Chervonenkis 1974; Wapnik and Tscherwonenkis

1979).

1.3.1 Expected risk minimization problem

In a given set of functions { f (x)}, find the one that minimizes the expected risk functional

R( f ) =
∫

L(y, f (x))d P(x, y) (15)

(here L(y, f (x)) is a given Loss Function), under the assumption that probability measure

P(x, y) is unknown however iid data (14) generated according to the phenomenological

model P(x, y) = P(y|x)P(x) described above is available. In this paper, we focus on the

special case of { f (x)} being a set of indicator functions (this case is called two-class classi-

fication rule) and then generalize the obtained results for estimating conditional probability

functions (real-valued functions 0 ≤ f ≤ 1). In this paper, we use the loss function

L(y, f ) = (y − f (x))2. (16)

For pattern recognition case, the function f (x) that minimizes the functional (16) belongs

to a set of indicator functions. The function f ∈ { f (x)} that minimizes functional (15) with

loss (16) will have the smallest probability of error among all functions in { f (x)}.

1.3.2 Empirical loss minimization solution

In order to find such functions, the method of minimizing the empirical risk functional

Rℓ( f ) =
1

ℓ

ℓ∑

i=1

L(yi , f (xi )) (17)

was introduced. The function fℓ(x) ∈ { f (x)} which minimizes (17) is considered as the

function f for which the value R( f ) of functional (14) (i.e., the value of the expected error)

is close to the minimum: R( fℓ) ≈ min f R( f ).

The choice of empirical risk minimization method is based on the following consideration:

since the cumulative distribution function P(y, x) is unknown but data (14) is given, one

approximates the unknown cumulative distribution function by its empirical estimate, the

joint empirical cumulative distribution function

Pℓ(y, x) =
ℓ∑

i=1

θ(y − yi )θ(x − xi ), (18)
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where the one-dimensional step function is defined as

θ(z) =
{

1, if z ≥ 0,

0, if z < 0,
(19)

and the multi-dimensional step function (x = (x1, . . . , xn)) is defined as

θ(x − xi ) =
n∏

k=1

θ(xk − xk
i ). (20)

Using approximation (18) in the expected loss functional (14), we obtain the empirical loss

functional (17). In Sect. 3, we argue that empirical cumulative distribution function is a good

approximation for the cumulative distribution function. The minimization of functional (17)

is the main inductive instrument in estimation theory.

1.3.3 Problems of theory

The theory of empirical risk minimization was developed to address the following questions:

1. When is the method of empirical loss minimization consistent?

2. How close is the value of expected loss to the minimum across the given set of functions?

3. Is it possible to formulate a general principle that is better than the empirical loss mini-

mization?

4. How to construct algorithms for estimation of the desired function?

1.3.4 Main results of VC theory

Forty years ago, a theory that addresses all four questions above was developed; it was the

so-called Statistical Learning Theory or VC Theory.

1. The VC theory defines the necessary and sufficient conditions of consistency for both (i)

the case when the probability measure P(x) of the generator G in the phenomenological

model is unknown (in this case, the necessary and sufficient conditions are valid for

any probability measure P(x)), and (ii) for the case when the probability measure P(x)

is known (in this case, the necessary and sufficient conditions are valid for a given

probability measure P(x)).

In both of these cases, the conditions for consistency are described in terms of the capacity

of the set of functions. In the first case (consistency for any probability measure), the VC

dimension of the set of indicator functions is defined (it has to be finite). In the second

case (consistency for the given probability measure), the VC entropy of the set of function

for the given probability measure is defined (VC entropy over number of observations

has to converge to zero).

2. When VC dimension of a set of indicator functions is finite, the VC theory provides

bounds on the difference between the real risk that exists for the function fℓ that minimizes

empirical risk functional (15) (the value R( fℓ)) and its empirical estimate (17) (i.e., the

value Rℓ( fℓ)). That difference depends on the ratio of VC dimension h to number of

observations ℓ. Specifically, with probability 1 − η, the bound

R( fℓ) − Rℓ( fℓ) ≤ T

(
h − ln η

ℓ

)
(21)
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holds, which implies the bound

R( fℓ) − inf
f

R( f ) ≤ T∗

(
h − ln η

ℓ

)
. (22)

In (21) and (22), T (h/ℓ) and T∗(h/ℓ) are known monotonically decreasing functions.

3. VC theory introduces a generalization of the empirical risk minimization method, the

so-called method of Structural Risk Minimization (SRM), which is the basic instrument

in statistical inference methods. In the SRM method, a nested set of functions

S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ . . . (23)

is constructed on the set of given function { f }; here Sk is the subset of all functions { f }
that have VC dimension h(k). For subset Sk , the bound (21) has the form

R( f
(Sk )
ℓ ) ≤ Rℓ( f

(Sk )
ℓ ) + T

(
h(k) − ln η

ℓ

)
. (24)

In order to find the function that provides the smallest guaranteed risk for the given

observations, one has to find both the subset Sk of the structure (23) and the function f

in this subset that provides the smallest (over k and f ∈ Sk) value of the right-hand side

of inequality (24). Structural Risk Minimization (SRM) method is a strongly universally

consistent risk minimization method.

One can consider the SRM method as a mathematical realization of the following idea:

Chose the simplest6 function (one from the subset with the smallest VC dimension) that

classifies training data well.

4. Based on VC theory, an algorithm for solving pattern recognition problems was

developed—it was the Support Vector Machine (SVM) algorithm which realized the

SRM method.

In this paper, we consider an SVM type of algorithm for square loss function (16) as the

baseline algorithm for comparisons. We introduce two new ideas which form the basis

for a new approach. One idea (presented in Part One of paper) is technical and another

one (presented in Part Two) is conceptual.

Part One: The V -matrix estimate

In this first part, we describe our technical innovations that we use in the second part for

constructing algorithms of inference.

2 The observation that defines the V -matrix method

Our first idea is related to the mathematical understanding of a learning model that is different

from the phenomenological scheme described in Sect. 1.2.

In the classical approach to the learning methods (analyzed by the VC theory), we ignored

the fact that the desired decision rule is related to the conditional probability function used

6 The definition of function simplicity is not trivial. In order to formalize the concept of simplicity for a set of

functions, K. Popper introduced the concept of falsifiability of the set of functions (Popper 1934). However,

the mathematical formalization of his idea contained an error. The corrected formalization of the falsifiability

concept leads to the concept of VC-dimension—see Corfield et al. (2005, 2009) for details.
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by Classifier A. We just introduced some set of indicator functions and defined the goal of

learning as finding the one that guarantees the smallest expected risk of loss (15) in this set

of functions.

Now we take into account the fact that the best rule for classification within n classes has

the form

r(x) = argmaxs∈{1,...,n}(P(y = 1|x), . . . , P(y = s|x), . . . , P(y = n|x)),

where P(y = s|x) is the probability of class y = s given observation x . For a two-class

pattern recognition problem (where y ∈ {0, 1}), this rule has the structure

r(x) = θ

(
P(y = 1|x) −

1

2

)
, (25)

where θ(z) is the step function. Thus, the rule r(x) classifies vector x as belonging to the

first class (y = 1) if the conditional probability of the first class exceeds 0.5.

We consider the problem of estimating the conditional probability function P(y = s|x)

using data (14) as the main problem of learning. The construction of the classification rule

(25) based on the obtained conditional probability function is then a trivial corollary of this

solution.

2.1 Standard definitions of conditional probability and regression functions

In statistical theory, the basic properties of random events x ∈ Rn are described by their cumu-

lative distribution function. The cumulative distribution function of variable x = (x1, . . . , xn)

is defined as the probability that a random vector X = (X1, . . . , Xn) does not exceed the

vector x (coordinate-wise):

P(x) = P(X1 ≤ x1, . . . , Xn ≤ xn).

The probability density function (if it exists) is defined as derivative of P(x):

p(x) =
∂n P(x)

∂x1 · · · ∂xn
. (26)

Consider pair (x, y), where x ∈ Rn and y ∈ R1 are continuous variables. The ratio of two

density functions

p(y|x) =
p(y, x)

p(x)
(27)

is called conditional density function. The expectation function

r(x) =
∫

yp(y|x)dy (28)

over y for any fixed x is called regression function.

If y is discrete, say y ∈ {0, 1}, the ratio of two densities p(x, y) and p(x)

p(y = 1|x) =
p(y = 1, x)

p(x)
=

p(x |y = 1)p(y = 1)

p(x)
(29)

is called conditional probability function. Function p(y = 1|x) defines probability of clas-

sification y = 1 given vector x . In this definition, the factor p(y = 1) is the probability of

event y = 1 in trials with (x, y).
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The basic problem of statistics is as follows: given the set of iid pairs

(x1, y1), . . . , (xℓ, yℓ)

generated according to P(x, y), estimate the conditional probability function.

In this paper, we estimate the conditional probability function. We assume that x ∈ Rd ,

where Rd = [a1, c1] × · · · × [ad , cd ]. To simplify the notations, we assume, without loss

of generality, that a1 = . . . = as = . . . = ad = 0, so that Rd = {x ∈ [0, c]d}, where

c = (c1, . . . , cd)T .

2.2 Direct definitions of conditional probability function

In this section, we consider another definitions of the conditional probability function. We

define the conditional probability function f (x) as the solution of the Fredholm equation
∫

Rn

θ(x − x ′) f (x ′)d P(x ′) = P(y = 1, x). (30)

Formally, this definition of the conditional probability function does not require the existence

of density function. If derivatives of functions of P(x) and P(y = 1, x) exist, taking derivative

over x on the left- and right-hand sides of Eq. (30), we obtain

f (x)p(x) = p(y = 1, x),

which is the definition of conditional probability (29).

Similarly, we define the regression function f (x) as the solution of Fredholm equation
∫

Rn

θ(x − x ′) f (x ′)d P(x ′) =
∫

Rn

θ(x − x ′)

∫
yd P(y, x ′). (31)

Indeed, taking derivatives of (31) over x , we obtain

f (x)p(x) =
∫

yp(y, x)dy �⇒ f (x) =
∫

y
p(y, x)

p(x)
dy =

∫
yp(y|x)dy,

which is the definition of regression (28). In this paper, however, we consider only conditional

probability estimation problem.

In order to estimate the conditional probability function or the regression function, we

need to find the solution of Eqs. (30) or (31), Note that cumulative distribution functions

that define these equations are unknown but corresponding iid data (x1, y1), . . . , (xℓ, yℓ) are

given.

2.3 Estimation of conditional probability function for classification rule

This paper is devoted to the estimation of the solutions of Eq. (30). To find the classification

rule r(x) in two-class classification problem, we use the estimated conditional probability

function

r(x) = θ

(
P(y = 1|x) −

1

2

)
. (32)

At first glance, such approach to pattern recognition problem seems to be an overkill since

we connect the solution of a relatively simple problem of finding an indicator function to a

much more difficult (ill-posed) problem of estimating the conditional probability functions.

The explanation why it is nevertheless a good idea is the following:
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1. The conditional probability function directly controls many different statistical invariants

that manifest themselves in the training data. Preserving these invariants in the rule

is equivalent to incorporating some prior knowledge about the solution. Technically,

this allows the learning machine to extract additional information from the data—the

information that cannot be extracted directly by existing classical methods. Section 6 is

devoted to the realization of this idea.

2. Since the goal of pattern recognition is to estimate the classification rule (32) (not the

conditional probability function), one can relax the requirements of accuracy of the

conditional probability estimation. We really need to have an accurate estimate of the

function in the area x ∈ X where values P(y = 1|x) are close to 0.5; conversely,

we can afford to have less accurate estimates in the area where |P(y = 1|x) − 0.5|
is large. This means that the cost of error of deviation of the estimate Pℓ(y = 1|x)

from the actual function P(y = 1|x) can be monotonically connected to the variance

φ(x) = P(y = 1|x)(1 − P(y = 1|x)) (the larger is the variance, the bigger is the cost

of error). This fact can be taken into account when one estimates conditional probability

functions.

As we will see in Sect. 6, the model of estimating the conditional probability function

controls more important factors of learning than the classical expected risk minimization

model considered in the VC theory.

2.4 Problem of inference from data

Statistical inference problem defined in Sect. 2.2 requires solving the Fredholm integral

equation

A f = F, (33)

where operator A has the form

A f =
∫

θ(x − x ′) f (t)d P(t). (34)

This operator maps functions f ∈ E1 to functions A f ∈ E2. In the pattern recognition

problem, the operator A maps the set P of non-negative bounded functions 0 ≤ f (x) ≤ 1

into the set of non-negative bounded functions 0 ≤ F(x) = P(y = 1, x) ≤ P(y = 1),

where P(y = 1) is the probability of class y = 1. The problem is, for any function F(x) =
P(y = 1, x) in the right-hand side of (30), to find the solution of this equation in the set P .

Note that the solution of operator equations in a given set of functions is, generally

speaking, an ill-posed problem. The problem of statistical inference is to find the solution

defined by the corresponding equation [(30) or (31)] when both the operator and the right-

hand side of the equation are unknown and have to be approximated from the given data

(14).

In all cases, we approximate the unknown cumulative distribution functions P(x), function

P(y = 1, x) = P(x |y = 1)P(y = 1) and P(x, y) using Empirical Cumulative Distribution

Functions

Pℓ(x) =
1

ℓ

ℓ∑

i=1

θ(x − xi ), (35)
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Pℓ(1, x) =
1

ℓ

ℓ∑

i=1

yiθ(x − xi ), (36)

Pℓ(x, y) =
1

ℓ

ℓ∑

i=1

θ(x − xi )θ(y − yi ). (37)

Putting (36) and (37) into Eq. (30) instead of unknown elements P(x) and P(y = 1, x),

and putting (35) and (37) into Eq. (31) instead of unknown elements P(x) and P(y, x),

we obtain (taking into account that the derivative of θ(x − xi ) is δ-function δ(x − xi )) the

following approximation to the Eq. (30) and the same approximation to the Eq. (31):

1

ℓ

ℓ∑

i=1

θ(x − xi ) f1(xi ) ≈
1

ℓ

ℓ∑

i=1

yiθ(x − xi ). (38)

In the remainder of the paper, we use equation (38) only for estimating conditional

probability function7 (where y ∈ {0, 1}).

Similarly, in order to estimate the conditional probability P(y = 0|x), one has to solve the

equation

1

ℓ

ℓ∑

i=1

θ(x − xi ) f0(xi ) ≈
1

ℓ

ℓ∑

i=1

(1 − yi )θ(x − xi ). (39)

The problem of the new approach to learning is:

Find the approximation to the desired function by solving Eq. (38).

Theory of this learning paradigm has to answer the following four questions:

1. Why is the replacement of Cumulative Distribution Functions with their approximation

(30) a good idea?

2. How to solve the ill-posed problem of statistical inference when both the operator and

the right-hand side of the equation are defined approximately?

3. How to incorporate the existing statistical invariants into solutions?

4. What are constructive algorithms for inference?

The next sections are devoted to the answers to these questions.

3 Main claim of statistics: Glivenko–Cantelli theorem

Consider the following approximation of a cumulative distribution function P(z) obtained

for iid observations z1, . . . , zℓ generated according to P(z):

Pℓ(z) =
1

ℓ

ℓ∑

i=1

θ(z − zi ).

In 1933, Glivenko and Cantelli proved the main theorem of statistics:

7 In the case of regression function (where y ∈ R1), the right-hand side of (38) converges to the right-hand

side of Eq. (31) not as fast as the empirical cumulative function converges to the actual one in the right-hand

side of Eq. (30).
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Theorem Empirical Distribution Functions Pℓ(z) converge to the actual cumulative distri-

bution function P(z) uniformly with probability 1:

sup
z

|Pℓ(z) − P(z)| −→P
ℓ→∞= 0.

In the same 1933, Kolmogorov found the asymptotically exact rate of convergence for the

case z ∈ R1. He showed that the equality

P

[
lim
ℓ

√
ℓ sup

x
|Pℓ(z) − P(z)| > ε

]
= 2

ℓ∑

k=1

(−1)k−1 exp −2ε2k2, ∀ε (40)

holds true. Later (in 1956–1990), Dvoretzky–Kiefer–Wolfowitz–Massard found the sharp

non-asymptotic bound with its right-hand side coinciding with the first term of Kolmogorov

equality:

P

[
sup

x
|Pℓ(x) − P(x)| > ε

]
≤ 2 exp −2ε2ℓ, ∀ε. (41)

The generalization of the bound for z ∈ Rn was obtained in 1970 using the VC theory:

P

[
sup

z
|Pℓ(z) − P(z)| > ε

]
≤ 2 exp

{
−

(
ε2 −

n ln ℓ

ℓ

)
ℓ

}
, ∀ε. (42)

In order to obtain constructive equations for pattern recognition problem, we replaced the

cumulative distribution functions in (30), (31) with the corresponding empirical distribution

functions.

4 Solution of ill-posed problems

In this section, we outline regularization principles that we apply to the solution of the

described problems.

4.1 Well-posed and ill-posed problems

Let A be a linear operator which maps the elements f of a metric space E1 into the elements

F of a metric space E2. We say that problem of solving operator equation

A f = F (43)

in the set { f } is well-posed if the solution exists, is unique, and is continuous. That is, if the

functions F1 and F2 of the right-hand side of Eq. (43) are close in the metric of space E2

(i.e., ρE2(F1, F2) ≤ ε), they correspond to solutions f1 and f2 that are close in the metric

of space E1 (i.e., ρE1( f1, f2) ≤ δ). The problem is called ill-posed if at least one of the

three above conditions is violated. Below we consider the ill-posed problems where unique

solutions exist, but the inverse operator

f = A−1 F

could be discontinuous. Solving of inference problems defined by the Fredholm equation

∫ 1

0

θ(x − t) f (t)d P(x) = P(y = 1, x)
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is ill-posed. The problem of statistical inference requires to solve ill-posed Fredholm equa-

tions when both right-hand side F and operator Aof Eq. (43) are defined approximately.

4.2 Regularization of ill-posed problems

The solution of ill-posed problems is based on the following lemma.

Lemma (Lemma about inverse operator) If A is a continuous one-to-one operator A defined

on compact set M of functions { f }, then the inverse operator A−1 is continuous on the set

N = AM.

Consider a continuous non-negative functional W ( f ) and the set of functions defined by

the constant C > 0 as

MC = { f : W ( f ) ≤ C}. (44)

Let the set of functions MC be convex and compact for any C. Suppose that the solution of

operator equation belongs to compact sets MC with C ≥ C0.

The idea of solving ill-posed problems is to choose an appropriate compact set (i.e., to

choose a constant C∗) and then solve Eq. (43) on the compact set of functions8 defined by

C∗. In other words, to minimize the square of distance in E2 space

ρ = ρ2
E2

(A f , F) (45)

over functions f subject to the constraint

W ( f ) ≤ C∗. (46)

The equivalent form of this optimization problem is Tikhonov’s regularization method.

In this regularization method, the functional

R( f ) = ρ2
E2

(F(x), A f ) + γ W ( f ) (47)

is minimized, where γ > 0 is the regularization constant.

The expression (47) is the Lagrangian functional for the optimization problem minimizing

(45) subject to (46), where parameter γ is defined by the parameter C that defines the chosen

compact set (44). The parameter γ = γ ∗ in (47) should chosen be such that the equality

W ( f∗) = C∗

holds true for the solution f ∗ of the minimization problem.

In 1963, Tikhonov proved the following theorem:

Theorem Let E1 and E2 be metric spaces and suppose that, for F ∈ E2, there exists a

solution of the equation

A f = F

that belongs to the set f ∈ {WE1( f ) ≤ C} for C > C0. Let the right-hand side F of

this equation be approximated with Fδ such that ρ(F, Fδ) ≤ δ. Suppose that the values of

(regularization) parameters γ (δ) are chosen such that

γ (δ) −→ 0, for δ −→ 0

8 Note that this idea of solving ill-posed problems is the same as in structural risk minimization in VC theory.

In both cases, a structure is defined on the set of functions. When solving well-posed problems, elements of

structure should have finite V C-dimension. When solving ill-posed problems, elements of structure should

be compact sets.
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lim
δ→0

δ2

γ (δ)
≤ r ≤ ∞.

Then the elements fγ (δ) minimizing the functional

R( f ) = ρ2
E2

(A f , F(δ)) + γ (δ)WE1( f )

converge to the exact solution as δ −→ 0.

4.3 Generalization for approximately defined operator

Let our goal be to solve the operator equation

A f = F, f ∈ E1, F ∈ E2,

when we are given a sequence of random approximations Fℓ and random operators Aℓ, ℓ =
1, 2, . . ..

Consider, as solutions of the problem, the sequence of functions fℓ, ℓ = 1, 2, . . . mini-

mizing the regularization functional

R( f ) = ρ2
E2

(Aℓ f , Fℓ) + γ WE1( f ).

We define the distance between operators as

||A − Aℓ|| = sup
f

||Aℓ f − A f ||
W 1/2( f )

.

Theorem (Vapnik and Stefanyuk 1978). For any ε > 0 and any C1, C2 > 0 there exists a

value γ0 > 0 such that the inequality

P{ρE1( fℓ, f ) > ε} < P{ρE2(Fℓ, F) > C1
√

γℓ} + P{||Aℓ − A|| > C2
√

γℓ}

holds true for any γℓ ≤ γ0.

Corollary Let the right-hand side Fℓ of the equation converge to F with rate rF (ℓ) and let

operator Aℓ converge to A with rate rA(ℓ). Then there exists a function

r0(ℓ) = lim
ℓ→∞

max{rF (ℓ), rA(ℓ)} = 0

such that the sequence of solutions converges if

lim
ℓ→∞

r0(ℓ)√
γℓ

= 0

and γℓ −→ 0 as ℓ −→ ∞.

5 Solution of stochastic ill-posed problems

In order to estimate conditional probability function, we find the solution of approximation

(38) of Fredholm integral equation (30) using a regularization method (Sect. 4.2). In order

to do this, we have to specify three elements of the minimization functional

R( f ) = ρ2
E2

(Aℓ f , Fℓ) + γ WE1( f ). (48)

We specify them in the following manner.
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1. The distance ρ2
E2

(Aℓ f , Fℓ) in E2 space: We select L2(φ) metric.

2. The set of functions { f (x)}, x ∈ [0, 1]n containing the solution fℓ: We select Reproduc-

ing Kernel Hilbert Space (RKHS) of kernel K (x, x∗).
3. The regularization functional WE1( f ) in space E1: We select the square of the norm of

function in the RKHS.

5.1 Distance in space L2

We define the square of distance between two functions F1 and F2 that denote the left- and

right-hand sides of Eq. (38) in the following way:

ρ2(F1, F2) =
∫

(F1(x) − F2(x))2φ(x)dμ(x), (49)

where φ(x) ≥ 0 is a given weight function and μ(x) is a probability measure defined on

d-dimensional domain C consisting of vectors (x1, . . . , xd), where 0 ≤ xi ≤ ci for each

i = 1, . . . , d and c1, . . . , cd are non-negative constants. We select both the weight function

and the probability measure later. Using this metric, we compute the square of the distance

between the left- and right-hand sides of our approximations (38) of Fredholm equations:

ρ2 =
∫

C

⎛
⎝

ℓ∑

i=1

θ(x − xi ) f (xi ) −
ℓ∑

j=1

y jθ(x − x j )

⎞
⎠

2

φ(x)dμ(x), (50)

where f ∈ { f }, y ∈ {0, 1}. For estimation of conditional probability function, this can be

rewritten as follows:

ρ2 =
ℓ∑

i, j=1

f (xi ) f (x j )V (i, j) − 2

ℓ∑

i, j=1

f (xi )y j V (i, j) +
ℓ∑

i, j=1

yi y j V (i, j), (51)

where the constant V (i, j) denotes

V (i, j) =
∫

C

θ(x − xi )θ(x − x j )φ(x)dμ(x). (52)

In the d-dimensional case x = (x1, . . . , xd), we have

V (i, j) =
∫

C

(
d∏

k=1

θ(xk − xk
i )θ(xk − xk

j )

)
φ(x)dμ(x). (53)

For the special case where x ∈ [(0, . . . , 0), C], μ(x) = x , and φ(x) = 1, this expression

has the form

V (i, j) =
d∏

k=1

(ck − max(xk
i , xk

j )). (54)

Expression (54) defines V -matrix in multiplicative form. For high-dimensional problems,

computation of (54) may be difficult; therefore we also define an additive form of V -matrix

along with (54). Consider, instead of distance (50), the following expression

ρ2 =
∫

C

d∑

k=1

⎛
⎝

ℓ∑

i=1

f (xk
i )θ(xk

s − xk
i ) −

ℓ∑

j=1

y jθ(xk
s − xk

j )

⎞
⎠

2

φ(x)dμ(x), (55)
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where xk is the k-th coordinate of vector x and f (xi ) is the value of function in the point

xi = (x1
i , . . . , xd

i ). For this distance, elements V (i, j) of V -matrix have the form

V (i, j) =
d∑

k=1

(ck − max(xk
i , xk

j )). (56)

In our computations we using multiplicative form of V -matrix.

Matrix V is a symmetric nonnegative matrix; the maximum value of any column (or any

row of V ) is the value on the intersection of that column (row) with the diagonal of V .

Algorithmic Remark. With increase of dimensionality, it becomes more difficult to real-

ize the advantages of the V -matrix method. This is due to the fact that mutual positions

of the vectors in high-dimensional spaces are not expressed as well as in low-dimensional

spaces.9 The mathematical manifestation of this fact is that, in a high-dimensional space,

V -matrix can be ill-conditioned and, therefore, require regularization. We used the follow-

ing regularization method: (1) transform the V -matrix to its diagonal form in the basis of

its eigenvectors using the appropriate orthonormal mapping T ; (2) add a small regularizing

value to its diagonal elements (in our experiments, 0.001 was usually sufficient), and (3) use

inverse mapping T −1 to transform the regularized V -matrix to its original basis.

5.2 Reproducing Kernel Hilbert space

We are looking for solutions of our inference problems in the set of functions f (x, α), α ∈ �

that belong to Reproducing Kernel Hilbert Space associated with kernel K (x, x ′), where

K (x, x ′) is a continuous positive semi-definite function of variables x, x ′ ∈ X ⊂ Rn :

n∑

i=1

n∑

j=1

K (xi , x j )ci c j ≥ 0 (57)

for any {x1, . . . , xn} and {c1, . . . , cn}. Consider linear operator

A f =
∫ b

a

K (x, s) f (s) ds (58)

mapping elements f (s) into elements A f (x) in space H .

In 1909, Mercer showed that, for any continuous positive semi-definite kernel, there exists

an orthonormal basis ei (x) consisting of eigenfunctions of K (x, x ′) of operator (58), and

the corresponding sequence of nonnegative eigenvalues λi such that kernel K (x, x ′) has the

representation

K (x, x ′) =
∞∑

i=1

λi ei (x)ei (x ′), (59)

where the convergence of the sequence is absolute and uniform.

We say that the set Φ of functions f (x) belongs to Reproducing Kernel Hilbert Space

(RKHS) associated with kernel K (x, x ′) if the inner product < f1, f2 > between functions

f1, and f2 of this set is such that for any function f (x) ∈ Φ the equality

f (x ′) =< K (x, x ′), f (x) > (60)

9 Recall that almost all the points in a high-dimensional ball belong to an area where all the points are close

to the surface of the ball.
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holds true. That is, the inner product of functions from Φ with kernel K (x, x ′) (where variable

x ′ is fixed) has the reproducing property.

Consider the parametric set Φ of functions

fc(x) =
∞∑

i=1

ci ei (x), c = (c1, c2, . . .) ∈ R∞. (61)

According to representation (61), kernel K (x, x ′) as a function of variable x belongs to set

Φ (the values λiφi (x ′) can be considered as parameters ci of expansion.)

In order to define Reproducing Kernel Hilbert Space for set (61), we introduce the fol-

lowing inner product between two functions fb(x), fd(x), defined by parameters b =
(b1, b2, . . .) and d = (d1, d2, . . .) in (61):

〈 fa(x), fb(x)〉 =
∞∑

i=1

bi di

λi

. (62)

It is easy to check that, for such inner product, reproducing property (60) of functions from

Φ holds true and the square of the norm of function fb(x) ∈ Φ is equal to

|| fb(x)||2 =< fb(x), fb(x) >=
∞∑

i=1

b2
i

λi

. (63)

5.2.1 Properties of RKHS

The following three properties of functions from RKHS make them useful for function

estimation problems in high-dimensional spaces:

1. Functions from RKHS with bounded square of norms

∞∑

i=1

b2
i

λi

≤ C (64)

belong to a compact set and therefore the square of the norm of function can be used as

regularization functional (see Lemma in Sect. 4.2).

2. The function that minimizes empirical loss functional (51) in RKHS, along with its

parametric representation (61) in infinite-dimensional space of parameters c, has another

parametric representation in ℓ-dimensional space α = (α1, . . . , αℓ) ∈ Rℓ, where ℓ is the

number of observations:

f (x, α) =
ℓ∑

i=1

αi K (xi , x). (65)

(This fact constitutes the content of the so-called Representer Theorem).

3. The square of the norm of the chosen function, along with representation (63), has the

representation of the form

|| f (x, α)||2 =< f (x, α), f (x, α) >=
ℓ∑

i, j=1

αiα j K (xi , x j ). (66)

This representation of the function in RKHS is used to solve the inference problem in

high-dimensional space.
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5.2.2 Properties of Kernels

Kernels K (x, x ′) (also called Mercer kernels) have the following properties:

(1) Linear combination of kernels K1(x, x ′) and K2(x, x ′) with non-negative weights is the

kernel

K (x, x ′) = α1 K1(x, x ′) + α2 K2(x, x ′), α1 ≥ 0, α2 ≥ 0. (67)

(2) Product of the kernels K1(x, x ′) and K2(x, x ′) is the kernel

K (x, x ′) = K1(x, x ′)K2(x, x ′). (68)

In particular, the product of kernels K (xk, x ′k) defined on coordinates xk of vectors

x = (x1, . . . , xm) is a multiplicative kernel in m-dimensional vector space x ∈ Rm :

K (x, x ′) =
m∏

s=1

Ks(x s, x ′s). (69)

(3) Normalized kernel is the kernel

K∗(x, x ′) =
K (x, x ′)

√
K (x, x)K (x ′, x ′)

. (70)

5.2.3 Examples of Mercer Kernels

(1) Gaussian kernel in x ∈ R1 has the form

K (x, x ′) = exp{−δ(x − x ′)2}, x, x ′ ∈ R1, (71)

where δ > 0 is a free parameter of the kernel. In m-dimensional space x ∈ Rm , Gaussian

kernel has the form (69)

K (x, x ′) =
m∏

k=1

exp{−δ(xk − x ′k)2} = exp{−δ|x − x ′|2}, x, x ′ ∈ Rn . (72)

(2) INK-spline kernel (spline with infinite numbers of knots). INK-spline kernel of order

d was introduced in Vapnik (1995). For x ∈ [0, c], it has the form

K (x, x ′) =
∫ c

0

(x − t)d
+(x ′ − t)d

+dt =
d∑

r=0

Cr
d

2d − r + 1
[min(x, x ′)]2d−r+1|x − x ′|r ,

(73)

where we have denoted (z)+ = max(z, 0). In particular, INK-spline kernel of order 0

has the form

K0(x, x ′) = min(x, x ′). (74)

This INK-spline is used to approximate piecewise continuous functions. INK-spline

kernel of order 1 has form

K1(x, x ′) =
1

2
|x − x ′| min(x, x ′)2 +

min(x, x ′)3

3
. (75)

This INK-spline is used to approximates smooth functions. Its properties are similar to

those of cubic splines that are used in the classical theory of approximations.
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The described two types of kernels reflect different ideas of function approximation: local

approximation of the desired function (Gaussian kernel) and global approximation of the

desired function (INK-spline kernels).

5.3 Basic solution of inference problems

We solve our inference problem using functions

f (x) = ψ(x) + c, (76)

where ψ(x) belongs to RKHS of kernel K (x, x ′) and c ∈ R1 is the bias.

In order to find the solution of our integral equation, we minimize the regularization

functional (48). For the solution in RKHS with bias, we use the representation (see Sect. 5.2.1)

f (x) =
ℓ∑

i=1

αi K (xi , x) + c, (77)

where xi , i = 1, . . . , ℓ are vectors from the training set. For the regularization term, we use

the square of the norm of the function φ(x) in RKHS described in representation (66) as

W ( f ) = || f (x)||2 =
ℓ∑

i, j=1

αiα j K (xi , x j ). (78)

In order to solve our ill-posed problem of inference, we minimize the functional (48).

Taking into account explicit expression of distance (51) and regularizer (66), we obtain

R(α) =
ℓ∑

i, j=1

f (xi ) f (x j )V (i, j) +
ℓ∑

i, j=1

yi y j V (i, j)

− 2

ℓ∑

i, j=1

f (xi )y j V (i, j) +
ℓ∑

i, j=1

yi y j V (i, j) + γℓ

ℓ∑

i, j=1

αiα j K (xi , x j ) (79)

in the set of functions (77).

Matrix-vector notations. We use the following notations:

1. (ℓ × 1)-dimensional matrix A of elements α:

A = (α1, . . . , αℓ)
T ;

2. ℓ-dimensional vector-function K(x):

K(x) = (K (x1, x), . . . , K (xℓ, x))T ;

3. (ℓ × ℓ)-dimensional matrix K with elements K (xi , x j ):

K = ||K (xi , x j )||, i, j = 1, . . . , ℓ;

4. (ℓ × ℓ)-dimensional matrix V of elements V (i, j):

V = ||V (i, j)||, i, j = 1, . . . , ℓ;

5. ℓ-dimensional vector of elements yi of training set:

Y = (y1, . . . , yℓ)
T ;
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6. ℓ-dimensional vector of 1:

1ℓ = (1, . . . , 1)T ;

Using these notations, we rewrite the functional (79) in the form

R(A) = (K A + c1ℓ)
T V (K A + c1ℓ) − 2(K A + c1ℓ)

T V Y + γℓ AT K A + Y T V Y . (80)

5.4 Closed-form solution of minimization problem

In order to find the solution

f (x) = AT
K(x) + c (81)

of our inference problem in the set of functions that belong to RKHS of kernel K (x, x ′), we

have to minimize functional (80) over parameters A and c (since the term Y T V Y does not

depend on the parameters A, c, we drop it). The necessary conditions of minimum are

⎧
⎪⎨
⎪⎩

∂ R(A, c)

∂ A
�⇒ V K A + cV 1ℓ − V Y + γℓ A = 0,

∂ R(A, c)

∂c
�⇒ 1T

ℓ V K A + c1T
ℓ V 1ℓ − 1T

ℓ V Y = 0.

(82)

From the first equation of (82) we obtain

(V K + γ I )A = V Y − cV 1ℓ,

so

A = (V K + γ I )−1(V Y − cV 1ℓ). (83)

We then compute vectors

Ab = (V K + γ I )−1V Y , Ac = (V K + γ I )−1V 1ℓ. (84)

According to (83), the desired vector A has the form

A = Ab − cAc. (85)

From second equation of (82) and (85), we obtain the equation to define c:

1T
ℓ V K (Ab − cAc) + c1T

ℓ V 1ℓ − 1T
ℓ V Y = 0,

where Ab and Ac are defined by (84). We have

[
1T
ℓ V K Ab − 1t

ℓV 1ℓ

]
c =

[
1T
ℓ V K Ac − 1T

ℓ V Y
]

and the value of bias c is thus

c =
[
1T
ℓ V K Ab − 1T

ℓ V Y
]

[
1T
ℓ V K Ac − 1T

ℓ V 1ℓ

] . (86)

Putting c in (85), we obtain the desired parameters A. The desired function f has the form

(81).
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Remark There exists one more prior knowledge about the conditional probability function:

this function is non-negative and bounded by 1. We can easily construct a function that is

non-negative and bounded at all the points of observation. In order to enforce such a solution,

it is sufficient to minimize the functional (80) subject to additional constraints

0ℓ ≤ K A + c1ℓ ≤ 1ℓ. (87)

This inequality is defined coordinate-wise where 0ℓ is ℓ-dimensional vectors of zeros and 1ℓ

is ℓ-dimensional vector of ones. Unfortunately, one cannot obtain closed-form solution of

the optimization problem with these constraints.

5.5 Dual estimate of conditional probability

Let y ∈ {0, 1}. The estimate of the conditional probability P(y = 1|x) has the form

P(y = 1|x) = AT
ℓ K(x) + c. (88)

Similarly, the conditional probability for class y = 0 is

P(y = 0|x) = A∗T
ℓ K(x) + c∗, (89)

where parameters A∗ and c∗ are obtained using formulas (85), (86), with binary vector

Y0 = 1ℓ − Y (the vector-indicator of class y = 0).

According to the definition, for these conditional probability functions, the equality

P(y = 1|x) + P(y = 0|x) = 1 (90)

holds for all x ∈ X .

When one estimates the conditional probability function, this equality forms a prior knowl-

edge.

Below we estimate two conditional probabilities for which equality (90) holds true only

for vectors x of the training set. We replace equality (90) with the following equality:

(K A + c1ℓ) + (K A∗ + c∗1ℓ) = 1ℓ. (91)

Taking into account (91), we estimate parameters A, A∗, c, c∗ of Eqs. (88), (89). In order

to do this, we minimize the functional which is the sum of two functionals of type (80) for

estimation of parameters of conditional probabilities (88), (89):

R(A, A∗, c, c∗) = (K A + c1ℓ)
T V (K A + c1ℓ) − 2(K A + c1ℓ)

T V Y + 2γ AT K A

+ (K A∗ + c∗1ℓ)
T V (K A∗ + c∗1ℓ) − 2(K A∗ + c∗1ℓ)

T V Y ∗

+ 2γ∗ A∗T K A∗, (92)

where γ, γ∗ > 0 and Y ∗ = 1ℓ − Y . Using the property K K +K = K of pseudo-inverse K +

of matrix K and expression [obtained from (91)]

K A∗ = −(K A + (c + c∗ − 1)1ℓ),

we can rewrite the last term of functional (92) as

A∗T K A∗ = A∗T AK K +K A∗ = (K A + (c + c∗ − 1)1ℓ)
T K +(K A + (c + c∗ − 1)1ℓ)

and the functional (92) itself as
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R(A, c, c∗) = (K A + c1ℓ)
T V (K A + c1ℓ) − 2(K A + c1ℓ)

T V Y + 2γ AT K A

+ (K A + (c − 1)1ℓ)
T V (K A + (c − 1)1ℓ) + 2(K A + (c − 1)1ℓ)

T V (1ℓ − Y )

+ 2γ∗(K A + (c + c∗ − 1)1ℓ)
T K +(K A + (c + c∗ − 1)1ℓ). (93)

In order to find the solution of this optimization problem, we minimize functional (93) with

respect to A, c, and c∗. The necessary conditions of minimum are

(V K + γ I + γ∗K +K )A + (V + γ∗K +)1ℓc + γ∗K +1ℓc∗ − (V Y + γ∗K +1ℓ) = 0

1T
ℓ (V + γ∗K +)K A + 1T

ℓ (V + γ∗K +)1ℓc + γ∗1T
ℓ K +1ℓc∗ − 1T

ℓ (V Y + γ∗K +1ℓ) = 0

1T
ℓ K +K A + 1T

ℓ K +1ℓc + 1T
ℓ K +1ℓc∗ − 1T

ℓ K +1ℓ = 0 (94)

In order to simplify the expressions, we introduce the following notations:

L = (V K + γ I + γ∗K +K ), M = (V + γ∗K +),

N = V Y + γ∗K +1ℓ, P =
1T
ℓ K +K

1T
ℓ K +1ℓ

. (95)

From (94) and (95), we obtain

LA = N − (M1ℓ) c − γ∗
(
K +1ℓ

)
c∗.

The equivalent expression is

A = L
−1

N − cL
−1 (M1ℓ) − γ∗c∗

L
−1

(
K +1ℓ

)
. (96)

We then compute vectors

A∗
V = L

−1
N , A∗

c = L
−1 (M1ℓ) , Ac∗ = L

−1
(
K +1ℓ

)
. (97)

(these vectors can be computed in one run) and define A as

A = A∗
V − cA∗

c − γ∗c∗ Ac∗ . (98)

Using expression (98) for A in (97) and using the notations (95), we obtain

c
[
1T
ℓ M1ℓ − 1T

ℓ MK Ac

]
+c∗γ∗

[
1T
ℓ K +1ℓ − 1T

ℓ MK Ac∗
]

=
[
1T
ℓ N − 1T

ℓ MK Ab

]

c
[
1 − P Ac

]
+c∗

[
1 − γ∗P Ac∗

]
=

[
1 − P Ab

] (99)

From equations (99), we find parameters c, c∗ that define vector A in (98) and the desired

conditional probability (88).

Note that dual estimate takes into account how well the matrix K is conditioned: the

solution of optimization problem uses expressions K +K and K +1ℓ [see formulas (96),

(97)].

Remark Since condition (91) holds true for the dual estimate of conditional probability, in

order to satisfy inequalities (87), it is sufficient to satisfy the inequality

K A + c1ℓ ≥ 0ℓ. (100)

Therefore, in order to obtain the dual estimate of conditional probability using available

general prior knowledge, one has to minimize the functional (93) subject to constraint (100).
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Part Two: Intelligence-driven learning: learning using statistical invari-
ants

In this section, we introduce a new paradigm of learning called Learning Using Statistical

Invariants (LUSI) which is different from the classical data-driven paradigm.

The new learning paradigm considers a model of Teacher–Student interaction. In this

model, the Teacher helps the Student to construct statistical invariants that exist in the problem.

While selecting the approximation of conditional probability, the Student chooses a function

that preserves these invariants.

6 Strong and weakmodes of convergence

The idea of including invariants into a learning scheme is based on the mathematical structure

of Hilbert space. In Hilbert space, relations between two functions ( f1(x) and f2(x) have

two numerical characteristics:

1. The distance between functions

ρ( f1, f2) = || fi (x) − f2(x)||

that is defined by the metric of the space L2 and

2. The inner product between functions

R( f1, f2) = ( f1(x), f2(x))

that has to satisfy the corresponding requirements.

The existence of two different numerical characteristics implies two different modes of con-

vergence of the sequence of functions from fℓ(x) ∈ L2 to the desired function f0(x):

1. The strong mode of convergence (convergence in metrics)

lim
ℓ→∞

|| fℓ(x) − f0(x)|| = 0 ∀x

2. The weak mode of convergence (convergence in inner products)

lim
ℓ→∞

( fℓ(x) − f0(x), ψ(x)) = 0, ∀ψ(x) ∈ L2

(note that convergence has to take place for all functions ψ(x) ∈ L2).

It is known that the strong mode of convergence implies the weak one. Generally speaking,

the reverse is not true.

In the first part of the paper, we showed that in classical (data-driven) paradigm, we can

estimate the conditional probability function solving the ill-posed problem of the approxi-

matively defined Fredholm equation (30), obtaining the V -matrix estimate (see Sect. 5.4).

In the second part of the paper, we consider new learning opportunities using interaction

with Teacher. The goal of that interaction is to include mechanisms of both weak and strong

convergence in learning algorithms.

Here is the essence of the new mechanism. According to the definition, weak convergence

has to take into account all functions ψ(x) ∈ L2. The role of Teacher in our model is to

replace this infinite set of functions with a specially selected finite set of predicate-functions

P = {ψ1(x), . . . , ψm(x)} that can describe property of the desired conditional probability

function and restrict the scope of weak convergence only to the set of predicate functions P .
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6.1 Method of learning using statistical invariants

Let us describe a method of extracting specific intelligent information from data by preserving

statistical invariants.

Estimation of conditional probability function. Suppose that Teacher has chosen m

predicate functions

ψ1(x), . . . , ψm(x). (101)

The Teacher believes that these functions describe important (integral) properties of desired

conditional probability function defined by the equalities (invariants)
∫

ψs(x)P(y = 1|x)d P(x) =
∫

ψs(x)d P(y = 1, x) = as, s = 1, . . . , m, (102)

where as is the expected value of ψs(x) with respect to measure P(y = 1, x).

Suppose now that values a1, . . . , am are known. Then we can formulate the following

two-stage procedure of estimating the desired function [solving Fredholm equation (30)]:

1. Given pairs (ψk(x), ak), k = 1, . . . , m (predicates and their expectation for desired

condition probability function), find the set of conditional probability functions F =
{P(y = 1|x)} satisfying equalities (102) (preserving the invariants).

2. Select, in the set of functions F satisfying invariants (102), the function that is the solution

of our estimation problem (the function of form (88) with parameters that minimize (80)

(or (92))).

In other words, the idea is to use data to look for approximation Pℓ(y = 1|x) in the subset

of functions that preserve m invariants (102) formulated by the Teacher’s predicates.

In our model, the Teacher suggests only functions (101) and does not provide values

as, s = 1, . . . , m. However, for any function ψs(x), using training data (xi , yi ), i =
1, . . . , ℓ, we can estimate the corresponding value as , by obtaining the following approxi-

mation for invariants (102):

1

ℓ

ℓ∑

i=1

ψs(xi )Pℓ(y = 1|xi ) ≈ as ≈
1

ℓ

ℓ∑

i=1

yiψs(xi ), s = 1, . . . , m. (103)

Remark Expression (103) defines equality only approximately. When one adds invariants

sequentially, one can take this fact into account. Suppose that we have constructed the fol-

lowing approximation using m predicates:

Pm
ℓ (y = 1|x) =

ℓ∑

i=1

Am
K(x) + cm (104)

In order to chose the next predicate ψm+1(x), we consider the value

T =

∣∣∣
∑ℓ

i=1 ψm+1(xi )Pm
ℓ (y = 1|xi ) −

∑ℓ
i=1 yiψm+1(xi )

∣∣∣
∑ℓ

i=1 yiψm+1(xi )
(105)

If T ≥ δ (where δ is a small positive threshold), we consider the new invariant defined by

predicate ψm+1(x). Otherwise, we treat this approximation as equality and do not add this

invariant.

To use vector-matrix notations, we define the set of ℓ-dimensional vectors

Φs = (ψs(x1), . . . , ψs(xℓ))
T , s = 1, . . . , m + 1. (106)
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In these notations, the expression (103) with m predicates chosen for invariant as

ΦT
s K A + cΦT

s 1ℓ = ΦT
s Y , s = 1, . . . , m. (107)

Consider a new predicate ψm+1(x), the corresponding vector Φm+1 and expression (105)

as

T =
|ΦT

m+1 K Am + cmΦT
m+11ℓ − ΦT

m+1Y |
Y T Φm+1

(108)

We treat the expression (107) as equality10 if T ≤ δ.

The method of LUSI suggests to use an approximation function of the form (88), where

parameters A and c are the solution of the following quadratic optimization problem:

minimize functional (80) (or (92) for dual estimate) subject to constraints (107).

Rules for t-class pattern recognition problem. Consider t-class pattern recognition

problem. Our goal is to estimate n conditional probability functions P(y = s|x), s = 1, . . . , t

in order to combine them into the rule

r(x) = argmax(P(y = 1|x), . . . , P(y = s|x), . . . , P(y = t |x)).

In order to define appropriate invariants for the conditional probability function P(y = k|x),

consider the following two-class classification problem: we define the elements of class

y = s as class y∗ = 1 and define elements of all other classes y �= s as class y∗ = 0. One

obtains parameters As
V and cs for estimating the corresponding conditional probability by

using formulas described above with the correponding vector Ys = (y∗
1 , . . . , y∗

ℓ )T .

6.2 Closed-form solution of intelligence-driven learning

The optimization problem of minimizing functional (80) subject to the constraints (105) has

a closed-form solution. Consider Lagrangian for this problem:

L(A, c, μ) = (K A + c1ℓ)
T V (K A + c1ℓ) − 2(K A + c1ℓ)

T V Y

+ γℓ AT K A + 2

m∑

s=1

μs(AT KΦs + c1T
ℓ Φs − Y T Φs). (109)

As before, we obtain the following Lagrangian conditions:

∂L(A, c, μ)

∂ A
�⇒ V K A + γ A + cV 1ℓ − V Y +

m∑

s=1

μsΦs = 0

∂L(A, c, μ)

∂c
�⇒ 1T

ℓ V K A + 1T
ℓ V 1ℓc − 1T

ℓ V Y +
m∑

s=1

μs1T
ℓ Φs = 0

∂L(A, c, μ)

∂μk

�⇒ AT KΦk + c1T
ℓ Φk − Y T Φk = 0, k = 1, . . . , m (110)

10 Instead of (107), it is more accurate to consider the inequality constraints

−δT ≤ ΦT
s K A + cΦT

s 1ℓ − ΦT
s Y ≤ δT , s = 1, . . . , m.

In this case, one has to solve the following quadratic optimization problem: to minimize (80) (or (92)) subject

to these inequality constraints.
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From the first line of (110), we obtain the expression

(V K + γ I )A = V Y − cV 1ℓ −
m∑

k=1

μkΦk (111)

and the expression

A = (V K + γ I )−1(V Y − cV 1ℓ −
m∑

s=1

μsΦs). (112)

We compute (m + 2) vectors (this can be done simultaneously in one run)

AV = (V K + γ I )−1V Y , (113)

Ac = (V K + γ I )−1V 1ℓ (114)

As = (V K + γ I )−1Φs, s = 1, . . . , n. (115)

The desired vector A has the expression

A = AV − cAc −
m∑

s=1

μs As . (116)

Putting expression (116) back into the last two lines of (110), we note that, in order to

find coefficient c and m coefficients μs of expansion (116), we have to solve the following

system of m + 1 linear equations:

c[1T
ℓ V K Ac − 1T

ℓ V 1ℓ] +
m∑

s=1

μs[1T
ℓ V K As − 1T

ℓ Φs] = [1T
ℓ V K AV − 1T

ℓ V Y ] (117)

c[AT
c KΦk − 1T

ℓ Φk] +
m∑

s=1

μs AT
s KΦk = [AT

V KΦk − Y T Φk], k = 1, . . . , m. (118)

Using estimated vector A and bias c, we obtain the desired function (88).

Summary. In this section, we have obtained a method for estimating conditional proba-

bility functions using invariants. The estimate has the form

f (x) = AT
K(x) + c,

where the vector of coefficients of expansion A has the structure

A = (AV − cAc) −

(
m∑

s=1

μs As

)
. (119)

Vectors AV , Ac and As, s = 1, . . . , m are obtained using formulas (113), (114), (115), and

coefficients c and μs of composition (119) are the solutions of linear equations (117), (118).

We call this algorithm the vSVM algorithm with m invariants vSVM&Im .

When estimating conditional probability function, one can also take into account additional

prior knowledge (87). To find parameters AV and c of approximation that take into account

this information, one has to solve the following quadratic optimization problem: minimize

the functional (80) subject to m equality constraints (107) and ℓ inequality constraints (87).
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6.3 Dual intelligence-driven estimate of conditional probability

Dual intelligence-driven estimate of conditional probability requires minimization of func-

tional (93) subject to equality type constraints (105).

In order to solve this optimization problem, we define the Lagrangian

L(A, c, c∗, μ) = (K A + c1ℓ)
T V (K A + c1ℓ) − 2(K A + c1ℓ)

T V Y + 2γ AT K A

+ (K A + (c − 1)1ℓ)
T V (K A + (c − 1)1ℓ) + 2(K A + (c − 1)1ℓ)

T

×V (1ℓ − Y ) + 2γ∗(K A + (c + c∗ − 1)1ℓ)
T K +(K A + (c + c∗ − 1)1ℓ)

+
m∑

s=0

μs(AT KΦs + c1T
ℓ Φs − Y T Φs), (120)

where μs are Lagrange multipliers. In order to find the solution of this optimization prob-

lem, we minimize this functional with respect to A, c, and c∗. The necessary conditions of

minimum using notations (95) are

∂ R

∂ A
�⇒ LA + M1ℓc + γ∗K +1ℓc∗ − V Y − γ∗K +1ℓ +

m∑

s=1

μsΦs = 0

∂ R

∂c
�⇒ 1T

ℓ MK A + 1T
ℓ M1ℓc + γ∗1T

ℓ K +1ℓc∗ − 1T
ℓ V Y − γ∗K +1ℓ +

m∑

s=1

μsΦs = 0

∂ R

∂c∗ �⇒ 1T
ℓ K +K A + 1T

ℓ K +1ℓc + 1T
ℓ K +1ℓc∗ − 1T

ℓ K +1ℓ = 0

∂ R

∂μs

�⇒ AT KΦs + c1T
ℓ Φs − Y T Φs = 0 (121)

From the first equality of (121) we obtain

A = L
−1

N − cL
−1 (M1ℓ) − γ∗c∗

L
−1

(
K +1ℓ

)
− L

−1
m∑

s=1

μsΦs . (122)

We then compute vectors

Ab = L
−1

N , Ac = L
−1 (M1ℓ) , Ac∗ = L

−1
(
K +1ℓ

)
, As = L

−1Φs (123)

(these vectors can be computed in one run) and define A as

A = Ab − cAc − γ∗c∗ Ac∗ −
m∑

s=1

μs As . (124)

Putting expression for A in the last three other lines of (121), we obtain the following linear
system of equations for computing the unknown parameters c, c∗, and μs .

c1T
ℓ M [1ℓ − K Ac] +c∗γ∗1T

ℓ

[
K +1ℓ − MK Ac∗

]
−

m∑

s=1

μs1T
ℓ [MK As − Φs ] = 1T

ℓ [N − MK Ab]

c [1 − P Ac] +c∗
[
1 − γ∗P Ac∗

]
−

m∑

s=1

μsP As = [1 − P Ab]

cΦT
s [1ℓ − K Ac] +c∗

[
−γ∗ΦT

s K Ac∗

]
−

m∑

s=1

μsΦ
T
s K As = ΦT

s [Y − K Ab]

123



Machine Learning (2019) 108:381–423 411

6.4 LUSI methods: illustrations and remarks

In this section, we compare different methods of conditional probability estimate for two-class

pattern recognition problems. First, we consider four estimation methods on one-dimensional

examples; then we move to multi-dimensional examples. We apply the following four meth-

ods:

1. SVM estimate

2. vSVM estimate.11

3. SVM&In estimate (SVM with n invariants). In this section, invariants are defined by the

simple predicate functions12

ψ0(x) = 1 and ψ1(x) = x .

4 vSVM& In estimate (vSVM with n invariants).

Invariants (107) with predicate ψ0(x) define the set of conditional probability estimates

for which the frequency of elements of class y = 1 is the same as it was observed on the

training data. Invariants (107) with predicate ψ1(x) define the set of conditional probability

estimates for which the center of mass of elements x belonging to class y = 1 is the same

as it was observed on the training data. In this section, we consider experiments with simple

invariants, i.e, with invariants obtained based on functions ψ0(x) and ψ1(x) (preserving

frequencies and means, respectively).

1. The experiments in one-dimensional space are presented in Fig. 1 (vertical axes denote

conditional probability, while horizontal axes denote values of x). The first four rows of that

figure show results of 12 experiments, where each row corresponds to one of four methods

described above, and each column corresponds to one of three sizes of training data (48, 96,

192). In all the images, the actual conditional probability function P(y = 1|x) is shown in

blue color, while the obtained estimate Pℓ(y = 1|x) is shown in black color. The images also

show training data: representatives of class y = 1 are shown in red color, while representatives

of class y = 0 are shown in green color. In order to demonstrate the robustness of the proposed

methods, in all the experiments we use twice as many representatives of the class y = 0 than

representatives of class y = 1: (48 = 16 + 32; 96 = 32 + 64; 192 = 64 + 128). All the

estimates were obtained using the INK-spline kernel (75).

The first row of Fig. 1 shows results of SVM estimates, (square loss SVM); the second

row shows results of vSVM estimates; the third row shows results of SVM&I2 estimates;

the fourth row shows results of vSVM&I2 estimates. The last two rows of Fig. 1 show

results obtained by modified vSVM&I2 and modified vSVM&I2, which are described in the

subdivision 4 after Table 1.

From Fig. 1, one can see that vSVM estimates are consistently better than SVM estimates

and that adding the invariants consistently improves the quality of approximations. One can

also see that approximations obtained using vSVM provide smoother functions.

2. Using approximation Pℓ(y = 1|x) of the conditional probability function, we obtain

the classification rule

rℓ(x) = θ

(
Pℓ(y = 1|x) −

1

2

)

11 Square-loss SVM method uses (identity) I -matrix instead of V -matrix (see (9), (10)). To implement LUSI

approach for square loss SVM methods, one has to use formulas for V -matrix method and replace V -matrix

with (identity) I -matrix.

12 These functions define values of zeroth order and first order moments of conditional probability function

P(y = 1|x).
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Training size 48 

(class 0: 32, class 1: 16)

Training size 96 

(class 0: 64, class 1: 32)

Training size 192 

(class 0: 128, class 1: 64)

SVM

vSVM

vSVM&I2

SVM&I2

mvSVM&I2

mSVM&I2

Fig. 1 Experiments with four estimates on three different sizes of training data
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Table 1 Experiments with one-dimensional case

Training SVM vSVM SVM&I2 vSVM&I2 mSVM&I2 mvSVM&I2

Distance to the true conditional probability in L2 metric

48 0.3756 0.2166 0.1432 0.1070 0.1064 0.0940

96 0.3212 0.1808 0.1207 0.0778 0.0950 0.0863

192 0.2273 0.1072 0.0689 0.0609 0.0461 0.0557

Error rate in %

48 59.79 11.00 11.38 11.02 11.00 11.14

96 23.41 13.28 12.23 11.44 11.39 11.29

192 16.57 11.68 11.54 11.33 11.11 11.11

Relative error

48 4.50 0.02 0.05 0.01 0.01 0.02

96 1.15 0.22 0.12 0.05 0.05 0.04

192 0.52 0.07 0.06 0.04 0.02 0.02

Error rate for Baysian rule is 10.87%

(Fig. 1 shows horizontal line y = 1/2. Geometrically, the rule classifies x as class y = 1

where curve Pℓ(y = 1|x) is above this line; otherwise, it classifies x as class y = 0).

The quality of rule rℓ(x) is measured by the value of probability of error

Perr (r) =
∫

(y − rℓ(x))d P(x, y).

When Pℓ(y = 1|x) coincides with the actual conditional probability function P(y = 1|x),

the obtained rule rB(x) is called Bayesian. It gives the smallest value for the problem’s error

rate Perr (rB). For the problem shown in Fig. 1, Bayesian loss is Perr (rB) = 10.87%. Losses

of rules rℓ(x) based on estimates of conditional probability are larger than that.

3. Numerical characteristics of accuracy of approximations are given in Table 1. It shows,

for different sizes of training data, the following:

1. The distance between the estimate and the true function in L2 metric

ρL2(P, Pℓ) =
(∫

(P(y = 1|x) − Pℓ(y = 1|x))2dμ(x)

)1/2

.

2. The error rate Perr (rℓ) of rule r(x) = θ(P(y = 1|x) − 0.5) in percents, and

3. The values of relative (with respect to Bayesian rule) losses

κerr (rℓ) =
Perr (rℓ) − Perr (rB)

Perr (rB)
.

4. From Fig. 1 and Table 1, one can see that, with increasing sophistication of conditional

probability estimation methods, the obtained results are getting monotonically closer (in L2

metric) to the true conditional probability function. However, this monotonic convergence

does not always hold for the error rates provided by the constructed conditional probability

functions. This is because our mathematical goal was to approximate the conditional proba-

bility function in L2 metric (not the decision rule). A good estimate of conditional probability

for a classification rule is the function that crosses the line y = 0.5 close to the point where

this line is crossed by the true conditional probability; it does not have to be close to the true

function in L2 metric (see Fig. 1).
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Estimation of conditional probability for constructing classification rule. We can

take into account our ultimate goal of constructing the classification rule if we estimate the

conditional probability more accurately in the area of x where |P(y = 1|x)−0.5| < ǫ at the

expense of accuracy of this estimate in the area x where |P(y = 1|x) − 0.5| ≫ ǫ. In order

to do this, we note that square value of variance for a fixed x is

σ 2(x) = P(y = 1|x)(1 − P(y = 1|x)).

It achieves the largest value 1/4 when P(y = 1|x) = 1/2 and monotonically decreases (up

to zero) when deviation |P(y = 1|x) − 0.5| increases. We can use this fact when estimating

distance (50). Suppose we know the function

φ(x) = σ 2(x)

(or some other monotonically increasing function of σ 2(x), for instance, φ(σ 2(x) + ν)).

Consider (50) in the equivalent form

ρ2 =
ℓ∑

i, j=1

(yi − f (xi , α))(y j − f (x j , α))V (i, j)

and let us minimize the functional with the square of distance defined as

ρ2 =
ℓ∑

i, j=1

(yi − f (xi , α))(y j − f (x j , α))σ (xi )σ (x j )V (i, j)

Using techniques of Sect. 5.1, we obtain modified VM -matrix with the elements

VM (i, j) = σ(xi )σ (x j )V (i, j)

instead of elements (54) (or (56)).

We can also construct modified IM -matrix, which is a diagonal matrix with elements

IM ( j, j) = σ 2(x j )

and I (i, j) = 0 for i �= j .

In reality, we do not know the function P(y = 1|x). However, we can use its esti-

mate Pℓ(y = 1|x) to compute σ(xi ). Therefore, in order to construct a special conditional

probability function for subsequent creation of a decision rule, we can use the following

two-stage procedure: in the first stage, we estimate (SVM&In or vSVM&In) approximations

of Pℓ(y = 1|x) and σ 2(x), and, in the second stage, we obtain an estimate of the specialized

conditional probability function (mSVM&In or mvSVM&In) for the decision rules.

The last two rows of Fig. 1 and last two columns of Table 1 compare the rules obtained

using SVM & I2 estimates and vSVM&I2 estimates with approximations obtained using

mSV M & I2 and mvSVM&I2 estimates (in both cases we used function φ(x) = σ 2(x)). It is

interesting to note that estimates based on modified weight-function φ(x) not only improve

the error rates of corresponding classification rules but also provide better approximations

of conditional probability functions in L2 metric.

5. Our one-dimensional experiments demonstrate the following:

1. vSVM results are more accurate than SVM results.

2. Learning using statistical invariants can significantly improve performance. Both

vSVM&I2 and SVM &I2 algorithms using 48 training examples achieve much better

performance (which are very close to Bayesian) than just SVM or vSVM algorithms
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Table 2 Experiments with multidimensional data

Data set Training Test Features SVM (%) SVM&I(n+1) (%)

Diabetes 562 206 8 30.94 22.73

Bank marketing 445 4076 16 12.06 10.58

MAGIC 1005 18,015 10 19.03 15.10

Parkinsons 135 60 22 7.26 6.67

Sonar 160 48 60 12.48 12.40

Ionosphere 271 80 33 5.66 5.55

WPBC 134 60 33 25.48 23.02

WDBC 419 150 30 2.64 2.50

Table 3 Experiments with different sizes of training data

Diabetes MAGIC

Training SVM (%) SVM&I9 (%) Training SVM (%) SVM & I11 (%)

71 32.42 27.52 242 20.51 17.35

151 29.97 24.56 491 20.93 15.91

304 31.35 23.78 955 18.89 15.19

612 30.43 23.30 1903 18.03 14.25

that use 192 examples. The result obtained based on mSVM&I2 method are consistently

better than the results obtained based on SVM&I2 method.

3. The effect from adding invariants appears to be more significant than the effect of upgrad-

ing of SVM to vSVM.

The same conclusion can be derived from analysis of experiments for high-dimensional

problems where we use the (n + 1) invariants: one zeroth order moment and n first order

moments, where n is dimensionality of the problem (see Table 2). In this table, for eight

calibration datasets from Lichman (2013) (listed in the first column), we conducted 20 exper-

iments. In each we create a random partition of the given dataset into training and test sets

(their sizes are listed in the second and third column, respectively), and then apply two algo-

rithms ( SVM and SVM&I(n+1)) for estimating conditional probability function. We then

used tehse conditional probability functions to construct the classification rule. For all exper-

iments we used RBF kernel (72). As the results show, SVM &I(n+1) is consistently better

than SVM.

6. Table 3 compares results of SVM&In with SVM for two datasets Diabetes and MAGIC

using training data of different sizes. Experiments show that incorporation of invariants

significantly improve SVM for all sizes of training sets. In order to achieve accurate results

in these problems, SVM&I(n+1) requires significantly fewer training examples than SVM.

Remark When analyzing the experiments, it is important to remember that the Intelligent

Teacher suggests to the Student “meaningful” functions for invariants instead of simple ones

that we used here for illustrative purposes. In many of our experiments, the invariants were

almost satisfied: the correcting parameters μs in (119) were close to zero. Some ideas about

what form these “meaningful” invariants can take are presented in the next Sections.
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Fig. 2 Selected box B in the subspace of space X

6.5 Examples of invariants with non-linear predicate-functions

Example Table 2 shows that, using nine simple invariants (moments of zeroth and first order),

SVM&I9 achieved error rate 22.73% on “Diabetes”. In order to obtain a better performance,

we introduce an additional invariant constructed in some two-dimensional subspace of eight-

dimensional space X of the problem (Fig. 2). We choose (using training data) the square

box B (it is shown in Fig. 2) and consider the following predicate: ψ3(z) = 1 if x ∈ B and

ψ3(z) = 0 otherwise. Our additional invariant is defined by this predicate ψ3(x). As a result,

when using all 10 invariants, we decrease the error rate to 22.07%.

Note that function ψ3(x) was obtained due some intelligent input: we selected the square

box intuitively, just looking at the positions of training points.13 Perhaps, we can continue to

improve performance (if we are still far from the Bayesian rate) by adding more invariants

(choosing different subspaces, different boxes, and different functions14).

As we have already noted, there exists an important difference between idea of features that

is used in classical algorithms and idea of predicates that is use for constructing invariants.

In order to construct an accurate rule, the classical paradigm recommends the introduction

of special functions called features and construction of the rule based on these features. With

increasing number of features one increases the capacity (the VC dimension) of the set of

admissible functions from which one chooses the solution. According to the VC bounds,

the larger is the capacity of that set, the more training examples are required for an accurate

estimate.

With the increase of the number of invariants, one decreases the capacity of admissible

set of functions, since the functions from which one chooses the solution preserve all the

13 This is the same methodology that physicists use: “Find a situation (the box B in Fig. 2), where the existing

model of the Nature (the approximation Pn(y = 1|x)) contradicts the reality (contradicts data (xi , yi ) from

the box B) and then fix the model (obtain a new approximation Pn+1(y = 1|x)) which does not have the

contradictions.” Note that the most difficult part in model refinement is to find a contradiction situation.

14 The choice the best position of the box can be done algorithmically.
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invariants. According to the same VC bounds, the decrease of the capacity of admissible

functions improves the performance while using the same number of training examples.

6.6 More examples of intelligence-driven invariants

The role of Intelligent Teacher in training processes described in this paper is to introduce

functions ψ1(x), . . . , ψn(x) for the problem of interest. The Student has to understand which

functions the Teacher suggested and use them to create invariants. Below are some examples

of functions that the Teacher can suggest for invariants.

Example 1 Suppose that the Teacher teaches Student to recognize digits by providing a num-

ber of examples and also suggesting the following heuristics: “In order to recognize the digit

zero, look at the center of picture—it is usually light; in order to recognize the digit 2, look

at the bottom of the picture—it usually has a dark tail” and so on.

From the theory above, the Teacher wants the Student to construct specific predicates

ψ(x) to use them for invariants. However, the Student does not necessarily construct exactly

the same predicate that the Teacher had in mind (the Student’s understanding of concepts

“center of the picture” or “bottom of the picture” can be different). Instead of ψ(x), the

Student constructs function ψ̂(x). However, this is acceptable, since any function from L2

can serve as a predicate for an invariant.

The Teacher explains which group of pixels constitutes the center of picture and the Student

chooses “approximately” these pixels. Suppose that Student chose pixels pt1 , . . . , Ptp and

lightness of pixel pt1 is x(pt1). The lightness of center picture xi is measured by the sum of

lightness value of chosen pixels defined by inner product

ψ̂(xi ) = (z0, xi ),

where z0 is a binary vector which has coordinates that are equal to one for the chosen group

of pixels that define the center of picture, while all other coordinates are equal to zero.15

(Similarly, binary vector z2 defines the concept of darkness of tail in the bottom of picture.)

Using these functions and a number of examples, Student defines the invariants

AT K Φ̂ + c1T
ℓ Φ̂ = Y T Φ̂,

where Φ̂ = (ψ̂(x1), . . . , ψ̂(xℓ))
T . This equation describes idea of lightness of center of digit

0 (or darkness of tail in digit 2). Using these invariants, Student constructs a rule that takes

Teacher’s heuristics into account.

Generally speaking, the vector z could be defined as any real-valued defining any function

that is linear in the pixel space.

Example 2 Suppose that a medical doctor teaches a medical student to classify some disease

(y = 1). Suppose that the doctor believes that this disease is related to blood circulation. He

suggests that some non-linear predicate function called “Blood Circulation Index”

ψ(xi ) = (Hb(xi ) − Lb(xi ))Fr(xi )

(the difference between systolic and diastolic blood pressures times heartbeat frequency)

somehow expresses this disease. While demonstrating patients with disease y = 1 to the

student, the doctor recommends that the student to pay attention to this index. The student

15 Student can choose any appropriate weights.
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observes ℓ patients (described by vectors xi , i = 1, . . . , ℓ) and constructs vector Φ with

coordinates Φ(xi ) = ψ(xi ), i = 1, . . . , ℓ. The expression for the corresponding invariant

has the form

ΦT K A ≈ ΦT Y .

Next invariants are inspired by elements of machine learning techniques. In order to use

this technique, we do not have to introduce the explicit form of predicate function. Instead,

we introduce the algorithm of computing (using training data) the predicate function at any

point of interest.

Example 3 (local structure predicate) Consider the following predicate-function. For point

x ′, function ψρ(x0) computes the expectation of the vectors of the first class in the sphere S

with center x ′ and given radius ρ

ψρ(x ′) =
∫

S

P(y = 1|x)dx

Then the value

R(ρ) =
∫

ψρ(x ′)d P(x ′)

defines the local characteristics of conditional probability function P(y = 1|x).

Let us compute, for any vector xi of the training set the following characteristics: the

number of examples of the first class that belong to sphere of radius ρ with center xi . Let

this value be ψρ(xi ). Consider vector Φρ = (ψρ(x1), . . . , ψρ(xℓ))
T to define the invariant.

Choosing different values of radius ρ, one constructs different local characteristics of desired

function.

Invariants with vectors Φρk
, k = 1, . . . , n provide a description of the structure of the

conditional probability function P(y = 1|x). They can be taken into account when one

estimates P(y = 1|x).

Example 3a Consider the following values ψk(xi ). For any vector xi of training vector xi ,

we compute the number of vectors of the first class among k nearest neighbors of vector xi .

In order to construct invariants, we use the vectors

Φk = (ψk(x1), . . . , ψk(xℓ))
T , k = 1, 2, . . . , n.

6.7 Example of a simple LUSI algorithm

Given data

(x1, y1), . . . , (xℓ, yℓ)

consider the following learning method based on predicates ψk(x) (for example, those defined

in Example 3a).

Step 0. Construct vSVM (or SVM) estimate of conditional probability function (see

Sects. 5.5 and 6.3).

Step 1. Find the maximal disagreement value Ts (108) for vectors

Φk = (ψk(x1), . . . , ψk(xℓ))
T , k = 1, . . . , s, . . . .
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Step 2. If the value Ts is large, i.e.,

Ts = argmax(T1, . . . , Ts . . .) > δ,

add the invariant (107) with Φs ; otherwise stop.

Step 3. Find the new approximation of the conditional probability function and go to step

1; otherwise stop.

Functions ψk(x) can be intriduced in any subspace of space X .

7 Conclusion

In this paper, we introduced LUSI paradigm of learning which, in addition to the standard

data-driven mechanism of minimizing risk, leverages an intelligence-driven mechanism of

preserving statistical invariants (constructed using training data and given predicates). In this

new paradigm, one first selects (using invariants) an admissible subset of functions which

contains the desired solution and then chooses the solution using standard training procedures.

The important properties of LUSI are as follows: if the number ℓ of observations is

sufficiently large, then (1) the admissible subset of functions always contains a good approx-

imation to the desired solution regardless of the number of invariants used, and (2) the

approximation to the desired solution is chosen by the methods that provide global minima

to the guarantee risk16.

LUSI method can be used to increase the accuracy of the obtained solution and to decrease

the number of necessary training examples.
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Appendix 1: Invariants with respect to linear transformations

Let us estimate conditional probability function of the form

P(y = 1|x) = AT
K(x) + c,

Consider the linear transformation x ′ = Ux of elements x ∈ X into elements x ′ ∈ X

and let U−1x ′ be inverse transformation. Suppose that our goal is to construct a function for

which P(y = 1|x) = P(y = 1|U−1x). For such a function,

∫
P(y = 1|x)ψ(x)d P(x) =

∫
P(y = 1|U−1x)ψ(x)d P(x). (125)

16 The idea of two-stage learning is also realized in deep neural networks (DNN), where, at the first stage (using

“deep architecture”), an appropriate network is constructed and then, at the second stage, using standard for

NN training procedures, the solution is obtained. DNN, however, cannot guarantee either that the constructed

network contains a good approximation to the desired function or that it can find the best solution for the given

network.
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Consider the functional

R =
∫

P(y = 1|U−1x ′)ψ(x ′)d P(x ′).

By changing variables x = U−1x ′, we obtain

R =
∫

P(y = 1|U−1x ′)ψ(x ′)d P(x ′) = |U |
∫

P(y = 1|x)ψ(Ux)d P(Ux).

Examples of transformation.

(1) Shift by vector h

R =
∫

P(y = 1|x − h)ψ(x)d P(x) =
∫

P(y = 1|x)ψ(x + h)d P(x + h).

(2) Similarity transformation z = Ax = (a1x1, . . . , an xn), where a1, . . . , an are parame-

ters of coordinate transformation.

R =
∫

P(y = 1|A−1x)ψ(x)d P(x) = |A|
∫

P(y = 1|x)ψ(Ax)d P(Ax),

where |A| = a1a2 . . . an (n is the dimensionality of X space).

(3) Rotation transformation. Let Rx be a rotation transformation. For this transformation,

|R| = 1. Then

R =
∫

P(y = 1|R−1x)ψ(x)d P(x) =
∫

f (x)ψ(Rx)P(Rx).

Consider the invariant defined by predicate-function ψs(x), s = 1, . . . , m
∫

P(y = 1|x)ψs(x)d P(x) =
∫

ψ(x)d P(y = 1, x) = as (126)

and suppose we would like to preserve this invariant for linearly transformed vectors U−1x .

That is, according to (125), along with invariant (126), we would like to preserve the following

invariant
∫

P(y = 1|U−1x)ψs(x)d P(x) = as .

We can rewrite this equation as
∫

P(y = 1|x)ψs(Ux)d P(Ux) = as,

where ψs(Ux) is the corresponding predicate-function.

To find the approximation of function that preserves both statistical invariants defined by

predicate-functions ψs(x) and invariants defined by the same predicate with geometrically

transformed vectors ψs(Ux), we have to minimize the functional (80) subject to constraint

AT KΦs + c1T
ℓ Φs = Y T Φs

and constraints

AT KΦU

s + c1T
ℓ ΦU

s = Y T Φs

where ΦU
s = (ψ (Ux1) , . . . , ψ (Uxℓ))

T .
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Appendix 2: Pattern recognition in rebalanced environment

The classical setting of pattern recognition problem given in Sect. 1.3 considers the situation

when generator G of vectors x is the same in both training and test sessions. One of the

important modifications of this setting is the problem of obtaining a classification rule for

generator G that is re-balanced for the test session.

Suppose that the new generator of random event x is such that conditional probabilities

P(y = k | x), k = 1, . . . , n remain the same for both training and test data. However, the

probabilities of classes p∗(y = k) in the test session are different from the probabilities of

classes p(y = k) in the training session. The probabilities p∗(y = k), k = 1, . . . , n are

given and
∑

k p∗(k) = 1. The goal is, by using the data generated by P(x), to find the rule

of classification of vectors x produced by generator

P∗(x) =
n∑

k=1

P(x |y = k)p∗(y = k) (127)

that was constructed using given probabilities p∗(y = k). This replacement of distribution

function P(x) defined for training session with the function P∗(x) defined for the test session

we call re-balancing of data (environment).

The necessity of re-balancing the data appears, for example, when one tries to classify a

rare disease (with small p) using real observations. In order to control the value of the error

in a classification of rare diseases, one can re-balance the probability of the class of interest

by increasing the value p. As we will see, this leads to a special estimate of V -matrix.

V-matrix for rebalanced pattern recognition problem

For simplicity, we consider two-class classification problem: suppose we are given training

data

(x1, y1), . . . , (xℓ, yℓ), xi ∈ Rn; y ∈ {0, 1} (128)

defined by the probability distribution function

P(x) = p(y = 1)P(x |y = 1) + (1 − p(y = 1))P(x |y = 0). (129)

However, our goal is, using data (128), to construct a rule for classification in the envi-

ronment defined by the probability distribution function

P∗(x) = p∗(y = 1)P(x |y = 1) + (1 − p∗(y = 1))P(x |y = 0), (130)

which is different from (129). While data (128) are generated according to distribution func-

tion P(y, x) = P(y|x)P(x), we would like to estimate the conditional probability function

for distribution P∗(y, x) = P(y|x)P∗(x).

Let ℓ(1) and ℓ(0) be the number of elements of training data (128) belonging to the class

y = 1 and to the class y = 0, respectively. Consider the empirical estimate of cumulative

distribution function for the elements of the first class

Pemp(x |y = 1) =
1

ℓ(1)

ℓ∑

i=1

yiθ(x − xi ) (131)
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and for the elements of the second class

Pemp(x |y = 0) =
1

ℓ(0)

ℓ∑

i=1

(1 − yi )θ(x − xi ). (132)

Using (131) and (132), we construct re-balanced cumulative distribution function (129)

P∗
emp(x) =

p∗
ℓ(1)

ℓ∑

i=1

yiθ(x − xi ) +
1 − p∗
ℓ(0)

ℓ∑

i=1

(1 − yi )θ(x − xi ).

The estimate of probability function Pemp(x, y = 1) is

P∗
emp(x, y = 1) =

p∗
ℓ(1)

ℓ∑

i=1

yiθ(x − xi ).

We introduce the notations

a(yi ) =

⎧
⎪⎨
⎪⎩

p∗
ℓ(1)

, if yi = 1,

1 − p∗
ℓ(0)

, if yi = 0.

In order to estimate the desired conditional probability functions for re-balanced data, we

use the corrected estimates Pemp(x) and Pemp(y = 1, x) instead of P(x) and P(y = 1, x)

in (129). We obtain the equation

ℓ∑

i=1

a(yi )θ(x − xi ) f (xi ) =
ℓ∑

j=1

y j a(y j )θ(x − x j ). (133)

In order to keep our notations in the matrix form, we define the diagonal matrix S with

diagonal elements si i = a(yi ) (si, j = 0 if i �= j). Solving Eq. (132) using the regularization

method described in Sect. 5.3, we obtain the solution which is different from the one described

in Sect. 5.4 solution only in its form of V matrix. For the re-balanced solution, Vr -matrix has

the form

Vr = SV S,

where V is a standard estimate of V -matrix and matrix S defines the re-balancing effect.

In order to preserve the invariants for the re-balanced data, the solution has to satisfy the

equalities

ΦT
s K AS + cΦT

s 1ℓS = ΦT
s Y S; s = 1, . . . , m,

which are equivalent to the equalities

ΦT
s K A + cΦT

s 1ℓ = ΦT
s Y ; s = 1, . . . , m. (134)

Therefore, in order to estimate the conditional probability function that maintains invariants

(134), one has to minimize the functional

R(A) = (K A + c1ℓ)
T Vr (K A + c1ℓ) − 2(K A + c1ℓ)

T Vr Y + γℓ AT K A

subject to constrains (134). This problem has a closed-form solution

f (x) = AT
∗ K(x) + c,
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where

A∗ = A∗
b − cA∗

c −
m∑

k=0

μs A∗
s

A∗
b = (Vr K + γ I )−1Vr Y ;

Ac = (Vr K + I )−1Vr 1ℓ

A∗
s = (Vr K + I )−1Φs

Coefficients b, c and μs are the solutions of the system of linear equations

c[1T
ℓ Vr K A∗

c − 1T
ℓ Vr 1ℓ] +

m∑

s=1

μs[1T
ℓ Vr K A∗

s − 1T
ℓ Φs] = [1T

ℓ Vr K A∗
b − 1T

ℓ Vr Y ]

c[1T
ℓ K A∗

c − 1T
ℓ Φs] +

m∑

s=1

μs AT
s KΦs = [ΦT

s K A∗
b − ΦT

s Y ], s = 1, . . . , m.
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