
 Open access Proceedings Article DOI:10.1145/3357384.3358010

Rethinking the Item Order in Session-based Recommendation with Graph Neural
Networks — Source link

Ruihong Qiu, Jingjing Li, Zi Huang, Hongzhi Yin

Institutions: University of Queensland, University of Electronic Science and Technology of China

Published on: 27 Nov 2019 - arXiv: Information Retrieval

Topics: Graph (abstract data type) and Recommender system

Related papers:

 Rethinking the Item Order in Session-based Recommendation with Graph Neural Networks

 Session-Based Recommendation with Graph Neural Networks

 Factorizing personalized Markov chains for next-basket recommendation

 Matrix Factorization Techniques for Recommender Systems

 STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation

Share this paper:

View more about this paper here: https://typeset.io/papers/rethinking-the-item-order-in-session-based-recommendation-
4e1rmb3rro

https://typeset.io/
https://www.doi.org/10.1145/3357384.3358010
https://typeset.io/papers/rethinking-the-item-order-in-session-based-recommendation-4e1rmb3rro
https://typeset.io/authors/ruihong-qiu-46r9r7olat
https://typeset.io/authors/jingjing-li-7xjbh4ztgr
https://typeset.io/authors/zi-huang-36tljyodf3
https://typeset.io/authors/hongzhi-yin-38nupux06t
https://typeset.io/institutions/university-of-queensland-thgar0ub
https://typeset.io/institutions/university-of-electronic-science-and-technology-of-china-2ngxdbs5
https://typeset.io/journals/arxiv-information-retrieval-3bhmdfts
https://typeset.io/topics/graph-abstract-data-type-1ax3631y
https://typeset.io/topics/recommender-system-3179d5wg
https://typeset.io/papers/rethinking-the-item-order-in-session-based-recommendation-2ov3vzhy3l
https://typeset.io/papers/session-based-recommendation-with-graph-neural-networks-13qcw6w8a2
https://typeset.io/papers/factorizing-personalized-markov-chains-for-next-basket-4j6mdkhzas
https://typeset.io/papers/matrix-factorization-techniques-for-recommender-systems-1ygvnzk1c8
https://typeset.io/papers/stamp-short-term-attention-memory-priority-model-for-session-31cmy2162s
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/rethinking-the-item-order-in-session-based-recommendation-4e1rmb3rro
https://twitter.com/intent/tweet?text=Rethinking%20the%20Item%20Order%20in%20Session-based%20Recommendation%20with%20Graph%20Neural%20Networks&url=https://typeset.io/papers/rethinking-the-item-order-in-session-based-recommendation-4e1rmb3rro
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/rethinking-the-item-order-in-session-based-recommendation-4e1rmb3rro
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/rethinking-the-item-order-in-session-based-recommendation-4e1rmb3rro
https://typeset.io/papers/rethinking-the-item-order-in-session-based-recommendation-4e1rmb3rro

Rethinking the Item Order in Session-based Recommendation
with Graph Neural Networks

Ruihong Qiu
The University of Queensland

Brisbane, Australia

r.qiu@uq.edu.au

Jingjing Li
University of Electronic Science and Technology of China

Chengdu, China

lijin117@yeah.net

Zi Huang
The University of Queensland

Brisbane, Australia

huang@itee.uq.edu.au

Hongzhi Yin∗

The University of Queensland

Brisbane, Australia

h.yin1@uq.edu.au

ABSTRACT

Predicting a user’s preference in a short anonymous interaction

session instead of long-term history is a challenging problem in

the real-life session-based recommendation, e.g., e-commerce and

media stream. Recent research of the session-based recommender

system mainly focuses on sequential patterns by utilizing the atten-

tion mechanism, which is straightforward for the session’s natural

sequence sorted by time. However, the user’s preference is much

more complicated than a solely consecutive time pattern in the

transition of item choices. In this paper, therefore, we study the

item transition pattern by constructing a session graph and pro-

pose a novel model which collaboratively considers the sequence

order and the latent order in the session graph for a session-based

recommender system. We formulate the next item recommendation

within the session as a graph classification problem. Specifically, we

propose a weighted attention graph layer and a Readout function

to learn embeddings of items and sessions for the next item rec-

ommendation. Extensive experiments have been conducted on two

benchmark E-commerce datasets, Yoochoose and Diginetica, and

the experimental results show that our model outperforms other

state-of-the-art methods.

CCS CONCEPTS

· Information systems→ Recommender systems.

KEYWORDS

recommender system; session-based recommendation; graph neural

networks

ACM Reference Format:

Ruihong Qiu, Jingjing Li, Zi Huang, and Hongzhi Yin. 2019. Rethinking the

Item Order in Session-based Recommendation with Graph Neural Networks.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3ś7, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358010

In The 28th ACM International Conference on Information and Knowledge

Management (CIKM ’19), November 3ś7, 2019, Beijing, China. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3357384.3358010

1 INTRODUCTION

Recommender system (RS) is an important tool to precisely ad-

vertise interested items to potential users in today’s flood of web

information. In recent years, the content-based RS [21] and the

collaborative filtering RS [7, 27] are two widely used methods be-

cause they can effectively approximate the similarity between items

while being simple and efficient. However, a clear drawback of these

approaches is that a user’s recent preference is ignored. In many

scenarios, for example, e-commerce, customers may have their cur-

rent prioritized choices of products over other products because of

their recent need. Consequently, this shift of preference will only

be shown in recent interactions between users and items [35]. In

this case, the content-based RS and the collaborative filtering RS

would fail to capture the important change of the user’s preference,

which leads to useless or even negative recommendations.

In contrast, a session-based RS can deal with the shift of the user’s

preference by taking a recent session of user-item interactions (e.g.,

clicks of items within 24 hours) into consideration. However, it is

very common that for modern commercial online systems, they do

not record the user’s long-term history. In order to make use of the

user’s preference, the session can be regarded as the representation

of the recent preference of the current anonymous user [35]. As a

result, how to represent a user’s preference by extracting represen-

tative information from interactions in the session is the essence of

the session-based RS.

As a session is a slice of interactions divided by time, it can

be naturally represented as a time series sequence. The sequence

characteristic is considered as the most important information by

recent methods. However, it has some challenging limitations:

• The user’s preference does not completely depend on the

chronology of the sequence.With the prevalence of RNN [10]

applied on the sequence data, for instance, GRU4REC [9]

and NARM [16] mainly model the time order of items and

encode these items using a RNN like neural networks. After

encoding the item, the representation of the session is a

combination of the item features. Such a paradigm of dealing

with the session is natural with the original order of items

inside the session. However, as mentioned above, the shift of

https://doi.org/10.1145/3357384.3358010
https://doi.org/10.1145/3357384.3358010

the user’s preference within the session indicates that items

should not be simply considered as time series. The item

transition pattern is more complicated.

• The recent approaches [16, 19, 38], which divide the user’s

preference into the long-term (global) and the short-term

(local) preference, are too simple to capture the complicated

item transition pattern. These methods choose the last item

of the session to stand for the short-term (local) preference

and the remaining items for the long-term (global) prefer-

ence. This setting directly ignores the pattern of item choices,

which introduces the bias to the model. NARM [16] ap-

plies a self-attention on the last item after encoding with a

RNN. To alleviate the influence of time order, STAMP [19]

only utilizes the self-attention mechanism without RNN. SR-

GNN [38] proposes to use a single layer gated graph neural

network [18] to learn the representation of items and again,

a self-attention on the last item to extract a session level

feature. Actually, the self-attention calculates the relative

importance of the last single item, which ignores a specific

item transition pattern within the session.

With the problems mentioned above, it is important to deter-

mine the intrinsic order of items within a session. This inherent

order is neither the straightforward time order by RNN, nor the

complete randomness by the self-attention. In this paper, a model

named Full Graph Neural Network (FGNN) is proposed to learn the

inherent order of the item transition pattern and compute a session

level representation to generate recommendation. To utilize graph

neural networks, we build a session graph for every session and

formulate the recommendation as a graph classification problem.

In order to capture the inherent order of the item transition pattern,

which is vital for the item level feature representation, a multiple

weighted graph attention layer (WGAT) network is proposed to

compute the information flow between items within the session.

After obtaining the item representations, the Readout function,

which automatically learns to determine an appropriate order, is

deployed to aggregate these features. Extensive experiments are

conducted on two benchmark e-commerce datasets, the Yoochoose

dataset from the RecSys Challenge 2015 and the Diginetica dataset

from CIKM Cup 2016. The experimental results show the superior-

ity of our method in the task of next item recommendation. Our

main contributions are summarized as follows:

• To the best of our knowledge, we are the first to investigate

the inherent order of item transition pattern in session-based

recommendation. Specifically, we propose a novel FGNN

model to perform the next item session-based recommenda-

tion based on the inherent order.

• AnovelWGATmodel is proposed to serve as the item feature

encoder by learning to assign different weights to different

neighbors. It helps to effectively convey the information

between items.

• A Readout function is applied to generate appropriate graph

level representation for item recommendation. The Read-

out function can learn the best order of the item transition

pattern in the graph.

• We conduct extensive experiments on two benchmark e-

commerce datasets and achieve state-of-the-art results.

2 RELATED WORK

In this section, we first review some related work about the general

recommender system (RS) in Section 2.1 and the session-based

recommender system (SBRS) in Section 2.2. At last, we will describe

graph neural networks (GNN) for the node representation learning

and graph classification problems in Section 2.3.

2.1 General Recommender System

The most popular method in recent years for the general recom-

mender system is the collaborative filtering (CF), which represents

the user interest based on the whole history. For example, the fa-

mous shallow method, Matrix Factorization (MF) [13] factorizes the

whole user-item interaction matrix with latent representation for

every user and item. With the prevalence of deep learning, neural

networks are widely used. Neural collaborative filtering (NCF) [7]

first proposes to use the multi layer perceptron to approximate the

matrix factorization process. More subsequent work extends the in-

corporation of different deep learning tools, for instance, zero-shot

learning and domain adaptation [14, 15]. These methods all depend

on the identification of users and the whole record of interactions

for every user. However, the user information is anonymous for

manymodern commercial online systems, which leads to the failure

of these CF based algorithms.

2.2 Session-based Recommender System

The research on the session-based recommender system (SBRS) is

a sub-field of RS. Compared with RS, SBRS takes the user’s recent

user-item interactions into consideration rather than requiring all

historical actions. SBRS is based on the assumption that the recent

choice of items can be viewed as the recent preference of a user.

Sequential recommendation is based on the Markov chain

model [28, 42], which learns the dependence of items of a sequence

data to predict the next click. Using probabilistic decision-tree mod-

els, Zimdars et al. [42] proposed to encode the state of the item

transition pattern. Shani et al. [28] made use of a Markov Decision

Process (MDP) to compute the probability of recommendation with

the transition probability between items.

Deep learning models are popular recently with the boom of

recurrent neural networks [1, 2, 10, 29, 36], which is naturally de-

signed for processing sequential data. Hidasi et al. [9] proposed the

GRU4REC, which applies a multi layer GRU [2] to simply treat the

data as time series. Based on the RNN model, some work makes

improvements on the architectural choice and the objective func-

tion design [8, 30]. In addition to RNN, Jannach and Ludewig [11]

proposed to use the neighborhood-based method to capture co-

occurrence signals. Incorporating content features of items, Tuan

and Phuong [31] utilized 3D convolutional neural networks to learn

more accurate representations. Wu et al. [37] proposed a list-wise

deep neural network model to train a ranking model. Some re-

cent work uses the attention mechanism to avoid the time order.

NARM [16] stacks GRU as the encoder to extract information and

then a self-attention layer to assign weight to each hidden state

to sum up as the session embedding. To further alleviate the bias

introduced by time series, STAMP [19] entirely replaces the recur-

rent encoder with an attention layer. SR-GNN [38] applies a gated

graph network [18] as the item feature encoder and a self-attention

 ! " # " $

W
G

A
T

R
e

a
d

o
u

t

%&
'

×

…
…

Item set (

S
o

ft
m

a
x

=
…
…

)*

…
…

+,

-$

-! -!
.-" -# -"

.

-$
.

-#
.

Session graph /0

Session 1

Figure 1: Pipeline of FGNN. The input to the model is organized as a session sequence s, which is then converted to a session

graphG with node features x . L layers of WGAT serves as the encoder of node features forG. After being processed by WGAT,

the session graph now contains different semantic node representations xL but with the same structure as the input session

graph. The Readout function is applied to generate a session embedding based on the learned node features. Compared with

other items in the item set V, a recommendation score ŷi is finally generated.

layer to aggregate the item features together as the session feature.

SSRM [5] considers a specific user’s history sessions and applies

the attention mechanism to combine them. Though the attention

mechanism can proactively ignore the bias introduced by the time

order of interaction, it considers a session as a totally random set.

2.3 Graph Neural Networks

In recent years, GNN has attracted much interest in the deep learn-

ing society. Initially, GNN is applied to the simple situation on

directed graphs [4, 26]. In recent years, many GNN methods [6,

12, 18, 33, 39] work under the mechanism that is similar to mes-

sage passing network [3] to compute the information flow between

nodes via edges. Additionally, the graph level feature representation

learning is essential for graph level tasks, for example, graph classi-

fication and graph isomorphism [17, 39]. Set2Set [34] assigns each

node in the graph a descriptor as the order feature and uses this

re-defined order to process all nodes. SortPool [41] sorts the nodes

based on their learned feature and uses a normal neural network

layer to process the sorted nodes. DiffPool [40] designs two sets

of GNN for every layer to learn a new dense adjacent matrix for a

smaller size of the new densely connected graph.

3 PRELIMINARIES

In this section, we introduce how GNN works on the graph data.

Let G(V ,E) denote a graph, where v ∈ V is the node set with

node feature vectors Xv and e ∈ E is the edge set. There are two

commonly popular tasks, e.g., node classification and graph clas-

sification. In this work, we focus on graph classification because

our purpose is to learn a final embedding for the session rather

than single items. For the graph classification, given a set of graphs

{G1, . . . ,GN } ⊆ G and the corresponding labels {y1, . . . ,yN } ⊆ Y,

we aim to learn a representation of the graph hG to predict the

graph label, yG = д(hG).

GNN makes use of the structure of the graph and the feature

vectors of nodes to learn the representation of nodes or graphs. In

recent years, most GNN work by aggregating information from

neighboring nodes iteratively. After k iterations of update, the final

representations of the nodes capture the structural information as

well as the node information within k-hop neighbor. The procedure

can be formed as

a
(k)
v = Agg({h

(k−1)
u ,u ∈ N (v)}),h

(k)
v = Map(h

(k−1)
v ,a

(k)
v), (1)

where h
(k)
v is the feature vector for node v in the kth layer. For the

input h0v to the first layer, the feature vectorsXv are passed in. Agg

and Map are two functions that can be defined in a different form.

Agg serves as the aggregator to aggregate features of neighboring

nodes. A typical characteristic of Agg is permutation invariant. Map

is a mapping to transform the self information and the neighboring

information to a new feature vector.

For the graph classification, a Readout function aggregates all

node features from the final layer of the graph to generate a graph

level representation hG :

hG = Readout({h
(k)
v ,v ∈ V }), (2)

where the Readout function needs to be permutation invariant as

well.

4 METHOD

In this section, we describe our FGNN model in detail. Above all, in

Section 4.1, we define the problem and give out the notations used in

this paper. The complete pipeline of the calculation is demonstrated

in Figure 1. At first, an input session sequence is converted into a

session graph (Section 4.2). After obtaining the session graph, an

L weighted graph attentional layer (WGAT) model is applied to

perform graph convolution among the nodes (Section 4.3). Once the

node features are learned, a Readout function combines all these

features to form a graph level representation q∗ (Section 4.4). Based

on the graph representation, FGNN makes a recommendation by

comparing it with the whole item setV (Section 4.5). Finally, we

describe the way we train our model in Section 4.6.

4.1 Problem Definition and Notation

The purpose of a session-based recommender system is to predict

the next item that matches the user’s preference based on the in-

teractions within the session. In the following, we give out the

definition of the SBRS problem.

In a SBRS, there is an item setV = {v1,v2,v3, . . . ,vm }, where

all items are unique andm denotes the number of items. A session

sequence from an anonymous user is defined as a sequential listS =

[vs,1,vs,2,vs,3, . . . ,vs,n], vs,∗ ∈ V . n is the length of the session

 ! " #

 $

 # % ! ! # %
(a) A session graph.

 !

'

 "
)

 " ! # "

 $
)

 $
))

 $

(b) The computation for the second-layer
feature x ′′

6 .

Figure 2: An example of how to compute a node represen-

tation of a two-layer GNN. The original session sequence is

the same as the input in Figure 1. (a) The session graph is

added with self-loop to every node. xi is the input feature

for the corresponding node vi . (b) The computation of the

second-layer feature x ′′
6 is based on all the first and second

order neighboring nodes ofv6. The first order neighbors are

v7 andv6 itself. The second order neighbors ofv6 are the first

order neighbors of v7 and v6, i.e., v3, v7 and v6 for v7, and v7
and v6 for v6.

S, which may contain duplicated items, vs,p = vs,q , p,q < n. The

goal of our model is to predict the next item vs,n that matches the

user’s preference the most.

During calculation, for every item v ∈ V , our model learns a

corresponding embedding vector x ∈ Rd , where d is the dimension

of x . For each training session, there is a label item vlabel serving

as the target to predict. In order to recommend items based on

the given session and the whole item set, our model outputs a

probability distribution ŷ over V , where the items with top-K

values in ŷ will be the candidates.

4.2 Session Graph

As shown in Figure 1, at the first stage, the session sequence is con-

verted into a session graph for the purpose to process each session

via GNN. Because of the natural order of the session sequence, we

transform it into a weighted directed graph, Gs = (Vs ,Es), Gs ∈ G,

where G is the set of all session graphs. In the session graphGs , the

node setVs represents all nodes, which are itemsvs,n from S . For ev-

ery nodev , the input feature is the initial embedding vector x . The

edge set Es represents all directed edges (vs,n−1,vs,n ,ws,(n−1)n),

where vs,n is the click of the item after vs,n−1 in S , andws,(n−1)n

is the weight of the edge. The weight of the edge is defined as the

frequency of the occurrence of the edge within the session. For the

convenience, in the following, we use the nodes in the session graph

to stand for the items in the session sequence. For the self-attention

used in WGAT introduced in Section 4.3, if a node does not contain

a self loop, it will be added with a self loop with a weight 1. Based

on our observation of our daily life and the datasets, it is common

for a user to click two consecutive items for a few times within

the session. After converting the session into a graph, the final

embedding of S is based on the calculation on this session graph

Gs .

4.3 Weighted Graph Attentional Layer

After obtaining the session graph, a GNN is needed to learn em-

beddings for nodes in a graph, which is the WGAT × L part in

Figure 1. In recent years, some baseline methods on GNN, for ex-

ample, GCN [12] and GAT [33], are demonstrated to be capable

of extracting features of the graph. However, most of them are

only well-suited for unweighted and undirected graphs. For the ses-

sion graph, weighted and directed, these baseline methods cannot

be directly applied without losing the information carried by the

weighted directed edge. Therefore, a suitable graph convolutional

layer is needed to effectively convey information between the nodes

in the graph.

In this paper, we propose a weighted graph attentional layer

(WGAT), which simultaneously incorporates the edge weight when

performing the attention aggregation on neighboring nodes. We

describe the forward propagation of WGAT in the following. The

information propagation procedures are shown in Figure 2. Fig-

ure 2(b) shows an example of how a two-layer GNN calculates the

final representation of the node v6.

The input to a WGAT is a set of node initial features, the item

embeddings, x = {x0,x1,x2, . . .xn−1}, xi ∈ Rd , where n is the

number of nodes in the graph, and d is the dimension of the em-

bedding xi . After applying the WGAT, a new set of node features,

x ′
= {x ′

0,x
′
1,x

′
2, . . .x

′
n−1}, x

′
i ∈ R

d ′
, will be given out as the output.

Specifically, the input feature vectors x0i of the first WGAT layer

are generated from an embedding layer, whose input is the one-hot

encoding of the item,

x0i = Embed(vi), (3)

where Embed is the embedding layer.

To learn the node representation via the higher order item transi-

tion pattern within the graph structure, a self-attention mechanism

for every node i is used to aggregate information from its neighbor-

ing nodes N(i), which is defined as the nodes with edges towards

the node i (may contain i itself if there is a self-loop edge). Because

the size of the session graph is not huge, we can take the entire

neighborhood of a node into consideration without any sampling.

At the first stage, a self-attention coefficient ei j , which determines

how importantly the node j will influence the node i , is calculated

based on xi , x j andwi j ,

ei j = Att(Wxi ,Wx j ,wi j), (4)

where Att is a mapping Att : Rd ×Rd ×R1 → R1 andW is a shared

parameter which performs linear mapping across all nodes. As a

matter of fact, the attention of a node i can extend to every node,

which is a special case the same as how STAMPmakes the attention

of the last node of the sequence. Here we restrict the range of the

attention within the first order neighborhood of the node i to make

use of the inherent structure of the session graph S . To compare

the importance of different nodes directly, a softmax function is

applied to convert the coefficient into a probability form across the

neighbors and itself,

αi j = softmaxj (ei j) =
exp(ei j)∑

k ∈N(i) exp(eik)
. (5)

The choice of att can be diversified. In our experiments, we use

an MLP layer with the parameterWatt ∈ R2d+1, followed by a

LeakyRelu non-linearity unit with negative input slope α = 0.2

αi j =
exp(LeakyRelu(Watt [Wxi | |Wx j | |wi j]))∑

k ∈N(i) exp(LeakyRelu(Watt [Wxi | |Wxk | |wik]))
, (6)

where | | means concatenation of two vectors.

For every node i inGs , in aWGAT layer, all attention coefficients

of their neighbors can be computed as (6). To utilize these attention

coefficients, a linear combination for the corresponding neighbors

is applied to update the features of the nodes.

x ′
i = σ (

∑

j ∈N(i)

αi jWx j), (7)

where σ is a non-linearity unit and in our experiments, we use the

ReLU [20].

As suggested in previous work [32, 33], the multi-head atten-

tion can help to stabilize the training of the self-attention layers.

Therefore, we apply the multi-head setting for our WGAT.

x ′
i =

K
∥

k=1
σ (

∑

j ∈N(i)

αki jW
kx j), (8)

where K is the number of heads and for every head, there is a

different set of parameters. ∥ in (8) stands for the concatenation of

all heads. As a result, after the calculation of (8), x ′
i ∈ R

Kd ′
.

Specifically, if we stack multiple WGAT layers, the final nodes

feature will be shaped as RKd
′
as well. However, what we expect

is Rd
′
. Consequently, we calculate the mean over all heads of the

attention results.

x ′
i = σ (

1

K

K∑

k=1

∑

j ∈N(i)

αki jW
kx j). (9)

Once the forward propagation of multiple WGAT layers has

finished, we obtain the final feature vector of all nodes, which is the

item level embeddings. These embeddings will serve as the input

of the session embedding computation stage that we detail below.

4.4 Readout Function

A Readout function aims to give out a representation of the whole

graph based on the node features after the forward computation

of the GNN layers. As we introduce above, the Readout function

needs to learn the order of the item transition pattern to avoid

the bias of the time order and the inaccuracy of the self-attention

on the last input item. For the convenience, some algorithms use

simple permutation invariant operations for example,Mean,Max

or Sum over all node features. Though clearly, the methods men-

tioned above are simple and perfectly do not violate the constraints

of the permutation invariance, they can not provide a sufficient

model capacity for learning a representative session embedding

for the session graph. In contrast, Set2Set [34] is a graph level fea-

ture extractor which learns a query vector indicating the order of

reading from the memory for an undirected graph. We modify this

method to suit the setting of the session graphs. The computation

procedures are as follows:

qt = GRU(q∗t−1), (10)

ei,t = f (xi ,qt), (11)

ai,t =
exp(ei,t)∑
j exp(ej,t)

, (12)

rt =
∑

i

ai,txi , (13)

q∗t = qt ∥rt , (14)

where i indexes node i in the session graph Gs , qt , qt ∈ Rd , is

a query vector which can be seen as the order to read rt ∈ Rd

from the memory and GRU is the gated recurrent unit, which at

the first step takes no input and at the following steps, takes the

former outputq∗t−1 ∈ R2d . f calculates the attention coefficient ei,t
between the embedding of every node xi and the query vector qt .

ai,t is the probability form of ei,t after applying a softmax function

over ei,t , which is then used to a linear combination on the node

embeddings xi . The final output q
∗
t of one forward computation of

the Readout function is the concatenation of qt and rt .

Based on all node embeddings for a session graph, we use Equa-

tion 10∼14 to obtain a graph level embedding which contains a

query vector qt in addition to the semantic embedding vector rt .

The query vector qt controls what to read from the node embed-

dings, which actually provides an order to process all nodes if we

recursively apply the Readout function.

4.5 Recommendation

Once the graph level embedding q∗t is obtained, we can use it to

make a recommendation by computing a score vector ẑ for every

item over the whole item setV with the their initial embeddings

in the matrix form,

ẑ = (Woutq
∗
t)
TX 0
, (15)

whereWout ∈ Rd×2d is a parameter that performs a linear mapping

on the graph embedding q∗t , the T means the transformation on a

matrix, and X 0 is from Equation 3.

For every item in the item set V , we can calculate a recommen-

dation score and combine them together, we obtain a score vector

ẑ. Furthermore, we apply a softmax function over ẑ to transform it

into the probability distribution form ŷ,

ŷ = softmax(ẑ). (16)

For the top-K recommendation, it is simple to choose the highest

K probabilities over all items based on ŷ.

4.6 Objective Function

Since we already have the recommendation probability of a ses-

sion, we can use the label item vlabel to train our model with the

supervised learning method.

As mentioned above, we formulate the recommendation as a

graph level classification problem. Consequently, we apply the

multi-class cross entropy loss between ŷ and the one-hot encoding

of vlabel as the objective function. For a batch of training sessions,

we can have

L = −

l∑

i=1

one-hot(vlabel,i)log(ŷi), (17)

where l is the batch size we use in the optimizer.

In the end, we use the Back-Propagation Through Time (BPTT)

algorithm to train the whole FGNN model.

Table 1: Statistic details of datasets.

Dataset all the clicks train sessions test sessions all the items avg.length

Yoochoose1/64 557248 369859 55898 16766 6.16

Yoochoose1/4 8326407 5917746 55898 29618 5.71

Diginetica 982961 719470 60858 43097 5.12

5 EXPERIMENTS

In this section, we conduct experiments with the purpose to prove

the efficacy of our proposed FGNN model by answering the follow-

ing research questions:

• RQ1Does the FGNN outperform other state-of-the-art SBRS

methods? (in Section 5.5)

• RQ2 How does the WGAT work for the session-based rec-

ommendation problem? (in Section 5.6)

• RQ3 How does the Readout function work differently from

other graph level embedding methods? (in Section 5.7)

In the following, we first describe the details of the basic setting

of the experiments and afterwards, we answer the questions above

by showing the results.

5.1 Datasets

We choose two representative benchmark e-commerce datasets, i.e.,

Yoochoose and Diginetica, to evaluate our model.

• Yoochoose is used as a challenge dataset for RecSys Challenge

2015 1. It is obtained by recording click-streams from an E-

commerce website within 6 months.

• Diginetica is used as a challenge dataset for CIKM cup 2016 2.

It contains the transaction data which is suitable for session-

based recommendation.

For the fairness and the convenience of comparison, we fol-

low [16, 19, 38] to filter out sessions of length 1 and items which

occur less than 5 times in each dataset respectively. After the prepro-

cessing step, there are 7,981,580 sessions and 37,483 items remaining

in Yoochoose dataset, while 204,771 sessions and 43097 items in Dig-

inetica dataset. Similar to [30, 38], we split a session of length n

into n − 1 partial sessions of length ranging from 2 to n to augment

the datasets. For the partial session of length i in the session S , it

is defined as [vs,0, . . . ,vs,i−1] with the last item vs,i−1 as vlabel .

Following [16, 19, 38], for the Yoochoose dataset, the most recent

portions 1/64 and 1/4 of the training sequence are used as two split

datasets respectively. Statistical details of all datasets are shown in

Table 5.1.

5.2 Baselines

In order to prove the advantage of our proposed FGNN model, we

compare FGNN with the following representative methods:

• POP always recommends the most popular items in the

whole training set, which serves as a strong baseline in some

situations although it is simple.

• S-POP always recommends the most popular items for the

current session.

1https://2015.recsyschallenge.com/challenge.html
2http://cikm2016.cs.iupui.edu/cikm-cup/

• Item-KNN [24] computes the similarity of items by the co-

sine distance of two item vectors in sessions. Regularization

is also introduced to avoid the rare high similarities for un-

visited items.

• BPR-MF [22] proposes a BPR objective function which cal-

culates a pairwise ranking loss. Following [16], Matrix Fac-

torization is modified to session-based recommendation by

using mean latent vectors of items in a session.

• FPMC [23] is a hybrid model for the next-basket recommen-

dation and it achieves state-of-the-art results. For anony-

mous session-based recommendation, following [16], we

omit the user feature directly because of the unavailability.

• GRU4REC [9] stacks multiple GRU layers to encode the

session sequence into a final state. It also applies a ranking

loss to train the model.

• NARM [16] extends to use an attention layer to combine

encoded states of RNN, which enables the model to explicitly

emphasize on the more important parts of the input.

• STAMP [19] uses attention layers to replace all RNN en-

coders in previous work to even make the model more pow-

erful by fully relying on the self-attention of the last item in

a sequence.

• SR-GNN [38] applies a gated graph convolutional layer [18]

to obtain item embeddings, followed by a self-attention of

the last item as STAMP does to compute the sequence level

embeddings.

5.3 Evaluation Metrics

At a time, a recommender system can give out a few recommended

items and a user would choose the first few of them. To keep the

same setting as previous baselines, we mainly choose to use top-

20 items to evaluate a recommender system and specifically, two

metrics, i.e., P@20 and MRR@20. For more detailed comparison,

top-5 and top-10 results are considered as well.

• P@K (Precision calculated over top-K items). The P@K score

is the primary metric that calculates the proportion of test

cases which recommend the correct item in a top K position

in a ranking list,

P@K =
nhit
N
, (18)

whereN represents the number of test sequences Stest in the

dataset and nhit counts the number that the desired items

are in the top K position in the ranking list, which is named

the hit .

• MRR@K (Mean Reciprocal Rank calculated over top-K items).

The reciprocal is set to 0 when the desired items are not in

the top K position and the calculation is as follows,

MRR@K =
1

N

∑

vlabel ∈Stest

1

Rank(vlabel)
. (19)

The MRR is a normalized ranking of hit , the higher the score,

the better the quality of the recommendation because it

indicates a higher ranking position of the desired item.

5.4 Experiments Setting

We apply a three layerWGAT and each with eight heads as our node

representation encoder and a three processing steps of our Readout

function. The size of the feature vectors of the items are set to 100

for every layer including the initial embedding layer. All parameters

of the FGNN are initialized using a Gaussian distribution with a

mean of 0 and a standard deviation of 0.1 except for the GRU unit

in the Readout function, which is initialized using the orthogonal

initialization [25] because of its performance on RNN-like units. We

use the Adam optimizer with the initial learning rate 1e − 3 and the

linear schedule decay rate of 0.1 for every 3 epochs. The batch size

for mini-batch optimization is 100 and we set an L2 regularization

to 1e − 5 to avoid overfitting.

5.5 Comparison with Baseline Methods (RQ1)

To demonstrate the overall performance of FGNN, we compare it

with the baseline methods mentioned in Section 5.2 by evaluating

the P@20 and MRR@20 scores. The overall results are presented

in Table 2 with respect to all baseline methods and our proposed

FGNN model. Due to the insufficient memory of hardware, we can

not initialize FPMC on Yoochoose1/4 as [16], which is not reported in

Table 2. For more detailed comparisons, in Table 3, we present the

results of the most recent state-of-the-art methods for the dataset

Yoochoose1/64 when K = 5 and 10.

5.5.1 General Comparison by P20 and MRR20. FGNN utilizes the

multi layers of WGAT to easily convey the semantic and structural

information between items within the session graph and applies

the Readout function to decide the relative significance as the order

of nodes in the graph to make the recommendation. According

to the results reported in Table 2, obviously, the proposed FGNN

model outperforms all the baseline methods on all three datasets

for both metrics, P@20 and MRR@20. It is proved that our method

achieves state-of-the-art performance on benchmark datasets. We

also substitute the two key components, WGAT and the Readout

function, with gated graph networks (FGNN-Gated) and the self-

attention (FGNN-ATT-OUT) used by previous methods. Both of

the variants perform better than previous models, which demon-

strates the efficacy of the proposedWGAT and the Readout function

respectively.

Compared with those traditional algorithms, e.g., POP and S-

POP, because of their simple intuition to recommend items based

on the frequency of appearance, they perform far worse than FGNN.

They tend to recommend fixed items, which leads to the failure of

capturing the characteristics of different items and sessions. Taking

BPR-MF and FPMC into consideration, which omits the session

setting when recommending items, we can see that S-POP can de-

feat these methods as well because S-POP makes use of the session

context information. Item-KNN achieves the best results among

Table 2: Performance compared with other baselines.

Method
Yoochoose1/64 Yoochoose1/4 Diginetica

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

POP 6.71 1.65 1.33 0.30 0.89 0.20

S-POP 30.44 18.35 27.08 17.75 21.06 13.68

Item-KNN 51.60 21.81 52.31 21.70 35.75 11.57

BPR-MF 31.31 12.08 3.40 1.57 5.24 1.98

FPMC 45.62 15.01 - - 26.53 6.95

GRU4REC 60.64 22.89 59.53 22.60 29.45 8.33

NARM 68.32 28.63 69.73 29.23 49.70 16.17

STAMP 68.74 29.67 70.44 30.00 45.64 14.32

SR-GNN 70.57 30.94 71.36 31.89 50.73 17.59

(ours)

FGNN-Gated 70.85 31.05 71.5 32.17 51.03 17.86

FGNN-ATT-OUT 70.74 31.16 71.68 32.26 50.97 18.02

FGNN 71.12 31.68 71.97 32.54 51.36 18.47

Table 3: Performance when K = 5 and 10 for Yoochoose1/64.

Method
Yoochoose1/64

P@5 MRR@5 P@10 MRR@10

NARM 44.34 26.21 57.50 27.97

STAMP 45.69 27.26 58.07 28.92

SR-GNN 47.42 28.41 60.21 30.13

FGNN 48.23 29.16 60.97 30.85

the traditional methods, though it only calculates the similarity

between items without considering sequential information. At the

even worse situation when the dataset is large, methods relying on

the whole item set undoubtedly fail to scale well. All methods above

achieve relatively poor results compared with the recent neural-

network-based methods, which fully model the user’s preference

in the session sequence.

Different from the traditional methods mentioned above, all

baselines using neural networks achieve a large performance mar-

gin. GRU4REC is the first to apply RNN-like units to encode the

session sequence. It sets the baseline of neural-network-based

methods. Though RNN is perfectly matched for sequence mod-

eling, session-based recommendation problems are not merely a

sequencemodeling task because the user’s preference is even chang-

ing within the session. RNN takes every input item equally impor-

tantly, which introduces bias to the model during training. For

the subsequent methods, NARM and STAMP, which both incor-

porate a self-attention over the last input item of a session, they

both outperform GRU4REC in a large margin. They both use the

last input item as the representation of short-term user interest.

It proves that assigning different attention on different inputs is a

more accurate modeling method for session encoding. Looking into

the comparison between NARM, combining RNN and attention

mechanism, and STAMP, the complete attention setting, there is a

conspicuous gap of performance that STAMP outperforms NARM.

This further demonstrates that directly using RNN to encode the

session sequence can inevitably introduce bias to the model, which

the attention can completely avoid.

SR-GNN uses a session graph to represent the session sequence,

followed by a gated graph layer to encode items. In the final stage,

it again uses a self-attention the same as STAMP to output a session

(a) P@20 index. (b) MRR@20 index.

Figure 3: Results with different GNN layers.

Figure 4: P@20 index for different number of layers and

heads for WGAT.

embedding. It achieves the best result compared to all methods

mentioned above. The graph structure is shown to be more suitable

than the sequence structure, the RNN modeling, or a set structure,

the attention modeling.

5.5.2 Higher Standard Recommendation with K = 5, 10. For more

detailed results in Table 3, FGNN also achieves the best results with

a higher standard of the top-5 and top-10 recommendation. The

proposed FGNN model outperforms all baseline methods above.

It has a more accurate node-level encoding tool, WGAT, to learn

more representative features and a Readout function, to learn an

inherent order of nodes in the graph to avoid the entire random

order of items. According to the result, it is demonstrated that a

more accurate session embedding is obtained by FGNN to make ef-

fective recommendations, which proves the efficacy of the proposed

FGNN.

5.6 Comparison with Other GNN Layers (RQ2)

To efficiently convey information between items in a session graph,

we propose to use WGAT, which suits the situation of the session

better. As mentioned above, there are many different GNN layers

that can be used to generate node embeddings, e.g., GCN [12],

GAT [33] and gated graph networks [18, 38]. To prove the usefulness

of WGAT, we substitute all three WGAT layers with GCN, GAT

and gated graph networks respectively in our model. For GCN and

GAT, they both initially work for unweighted and undirected graph,

which is not the same setting as the proposed session graph. To

make both of them work on the session graph, we directly convert

the session graph into undirected by replacing the original directed

edges with undirected ones, i.e., reverse the source node and target

node of edges. And we simply omit the original weight of edges and

set all connections between nodes with the same weight 1.For the

other one, the Gated graph networks, it can work with the session

graph setting in its original form without any modification on the

session graph.

In Figure 3(a) and Figure 3(b), results of different GNN layers are

shown with P@20 and MRR@20 indices. FGNN is the model pro-

posed in this work, which achieves the best performance. WGAT is

more powerful than other GNN layers in session-based recommen-

dation. GCN and GAT are not able to capture the direction and the

explicit weight of edges, resulting in performing worse than WGAT

and gated graph networks, which holds the ability to capture these

information. Between WGAT and gated graph networks, WGAT

performs better because of the stronger ability of representation

learning.

For the study of WGAT, we test how the number of layers and

heads affect the P@20 index performance on Yooshoose1/64. In Fig-

ure 4, we report the experiment results of different number of layers

ranging in {1, 2, 3, 4, 5} and heads ranging in {1, 2, 4, 8, 16}. It shows

that stacking three WGAT layers with eight heads performs the

best. Lower results are shown for smaller models for the reason

that the capacity of them is too low to represent the complexity of

the item transition pattern. According to the tendency of results

for larger models, it shows that it is difficult to train these models

and the overfitting is harmful to the final performance.

5.7 Comparison with Other Graph Embedding
Methods (RQ3)

Different approaches for generating the session embedding after

obtaining the node embedding stand for different emphasis of the

input item. The Readout function proposed in this work learns an

inherent order of the nodes by the query vector, which indicates the

relatively different impact on the user’s preference along with the

item transition. To prove the superiority of our Readout function,

(a) P@20 index. (b) MRR@20 index.

Figure 5: Results with different aggregation functions.

Figure 6: P@20 for Short and Long sessions with different

aggregation functions and baselines.

we replace the Readout function with other session embedding

generators:

• FGNN-ATT-OUTWe apply the widely-used self-attention

of the last input item. It directly considers the last input

item as the short-term reference and all other items as the

long-term reference.

• FGNN-GRU To compare the inherent order learned by our

Readout function, we use GRU to directly make use of the

input session sequence order.

• FGNN-SortPool SortPooling is introduced by Zhang et.

al. [41] to perform a pooling on graph level by sorting the

features of the nodes. This sorting can be viewed as a kind

of order as well.

In Figure 5(a) and Figure 5(b), results of different methods for

graph level embedding generation are presented for all the datasets

with the P@20 and MRR@20 indices. It is obvious that the pro-

posed Readout function achieves the best result. For FGNN-GRU

and FGNN-SortPool, they both contain an order but which is too

simple to capture the item transition pattern. FGNN-GRU uses GRU

to encode the session sequence with the input order. Such a setting

is similar to the RNN-based method. As a consequence, it performs

worse than attention-based method FGNN-ATT-OUT, which takes

both the short-term and the long-term preference into considera-

tion. As for FGNN-SortPool, it sorts the nodes based on WL colors

from previous multiple layers of computations. Though it does not

simply rely on the input order of the session sequence, the order

used for the node is set according to the relative scale of the features.

For the best performance, our Readout function learns the order

of the item transition pattern, which is different from using the

time order or the hand-crafted split of long-term and short-term

preference. The results prove that there is a more accurate order

for the model to make a more accurate recommendation.

For different session embedding generators, it is also important to

look deep into how they perform on sessions with different lengths

because the length varies greatly within one dataset. Following

previous work [19, 38], sessions in Yoochoose 1/64 are separated

into two groups, i.e., Short and Long. Short indicates that the

length of sessions is less than or equal to 5, while sessions longer

than 5 are categorized as Long. Length 5 is the closest to the average

length of total sessions. 70.1% of Yoochoose1/64 are Short sessions

and 29.9% are Long. In addition to different session embedding

generators, we take the previous GNN-based baseline method SR-

GNN into comparison. For each method, we report the results

evaluated in terms of P@20 in Figure 6. In the aspect of both Short

and Long sessions, FGNN achieves the best performance compared

with other graph embedding generators and SR-GNN. The proposed

Readout function shows superiority to other methods. The order

introduced by the Readout function is demonstrated to conveymore

accurate information of item transition pattern. For the comparison

among RNN-based and attention-based methods, it is shown that

the performance is relatively better for longer sessions than shorter

ones. This indicates that the item transition pattern relies on the

latter input items of a sequence more heavily for long sessions,

which is more suitable for these methods.

6 CONCLUSION

Session-based recommender system is a challenging problem be-

cause the user history is unavailable for predicting the user’s pref-

erence. This work proposes to use WGAT layers to learn item

embeddings for items in a session, which are then processed by

the Readout function to obtain the session embedding to represent

the user’s preference for this session. It is demonstrated by experi-

ments that our proposed method achieves state-of-the-art results

on benchmark e-commerce datasets. In the future, it is important

and promising to make use of inter-session information to more

accurately represent the user’s preference.

7 ACKNOWLEDGMENTS

This work is supported by ARC DP190101985, DP170103954, NSFC

61628206 and NSFC 61806039.

REFERENCES
[1] Tong Chen, Hongzhi Yin, Hongxu Chen, Rui Yan, Quoc Viet Hung Nguyen,

and Xue Li. 2019. AIR: Attentional Intention-Aware Recommender Systems. In
Proceedings of the 35th IEEE International Conference on Data Engineering, ICDE
2019.

[2] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014 workshop on Deep Learning, NIPS
2014.

[3] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017.

[4] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., Vol. 2. IEEE.

[5] Lei Guo, Hongzhi Yin, Qinyong Wang, Tong Chen, Alexander Zhou, and Nguyen
Quoc Viet Hung. 2019. Streaming Session-based Recommendation. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019. ACM.

[6] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems, NIPS
2017.

[7] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web, WWW 2017.

[8] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent Neural Networks
with Top-k Gains for Session-based Recommendations. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, CIKM
2018.

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In 4th
International Conference on Learning Representations, ICLR 2016.

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997).

[11] Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Networks
meet the Neighborhood for Session-Based Recommendation. In Proceedings of
the Eleventh ACM Conference on Recommender Systems, RecSys 2017.

[12] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017.

[13] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer 42, 8 (2009).

[14] Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang Yang, and Zi Huang. 2019.
From Zero-Shot Learning to Cold-Start Recommendation. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019.

[15] Jingjing Li, Ke Lu, Zi Huang, and Heng Tao Shen. 2019. On both Cold-Start and
Long-Tail Recommendation with Social Data. IEEE Transactions on Knowledge
and Data Engineering (2019).

[16] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural Attentive Session-based Recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, CIKM 2017.

[17] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph Matching Networks for Learning the Similarity of Graph Structured Ob-
jects. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019.

[18] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016.

[19] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: Short-
Term Attention/Memory Priority Model for Session-based Recommendation.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018.

[20] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In Proceedings of the 27th International Conference
on Machine Learning, ICML 2010.

[21] Michael J. Pazzani and Daniel Billsus. 2007. Content-Based Recommendation
Systems. In The Adaptive Web, Methods and Strategies of Web Personalization.

[22] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2009.

[23] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedMarkov chains for next-basket recommendation. In Proceedings
of the 19th International Conference on World Wide Web, WWW 2010.

[24] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001.
Item-based collaborative filtering recommendation algorithms. In Proceedings of
the Tenth International World Wide Web Conference, WWW 2010.

[25] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. 2014. Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks. In 2nd
International Conference on Learning Representations, ICLR 2014.

[26] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The Graph Neural NetworkModel. IEEE Trans. Neural Networks
20, 1 (2009).

[27] J. Ben Schafer, Dan Frankowski, Jonathan L. Herlocker, and Shilad Sen. 2007.
Collaborative Filtering Recommender Systems. In The Adaptive Web, Methods
and Strategies of Web Personalization.

[28] Guy Shani, Ronen I. Brafman, and David Heckerman. 2002. An MDP-based
Recommender System. In Proceedings of the 18th Conference in Uncertainty in
Artificial Intelligence, UAI 2002.

[29] Ke Sun, Tieyun Qian, Hongzhi Yin, Tong Chen, Yiqi Chen, and Ling Chen. 2019.
What Can History Tell Us? Identifying Relevant Sessions for Next-Item Recom-
mendation. In Proceedings of the 29th ACM on Conference on Information and
Knowledge Management, CIKM 2019.

[30] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved Recurrent Neural
Networks for Session-based Recommendations. In Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems, DLRS@RecSys 2016.

[31] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D Convolutional Networks for
Session-based Recommendation with Content Features. In Proceedings of the
Eleventh ACM Conference on Recommender Systems, RecSys 2017.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems, NIPS 2017.

[33] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018.

[34] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. 2016. Order Matters: Se-
quence to sequence for sets. In 4th International Conference on Learning Repre-
sentations, ICLR 2016.

[35] Shoujin Wang, Longbing Cao, and Yan Wang. 2019. A Survey on Session-based
Recommender Systems. CoRR abs/1902.04864 (2019).

[36] Weiqing Wang, Hongzhi Yin, Shazia Wasim Sadiq, Ling Chen, Min Xie, and
Xiaofang Zhou. 2016. SPORE: A sequential personalized spatial item recom-
mender system. In Proceedings of the 32nd IEEE International Conference on Data
Engineering, ICDE 2016. 954ś965.

[37] Chen Wu and Ming Yan. 2017. Session-aware Information Embedding for E-
commerce Product Recommendation. In Proceedings of the 2017 ACM on Confer-
ence on Information and Knowledge Management, CIKM 2017.

[38] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based Recommendation with Graph Neural Networks. In Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-
erful are Graph Neural Networks?. In 5th International Conference on Learning
Representations, ICLR 2019.

[40] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with
Differentiable Pooling. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018.

[41] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An
End-to-End Deep Learning Architecture for Graph Classification. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18).

[42] Andrew Zimdars, David Maxwell Chickering, and Christopher Meek. 2001. Us-
ing Temporal Data for Making Recommendations. In Proceedings of the 17th
Conference in Uncertainty in Artificial Intelligence, UAI 2001.

