
The Pennsylvania State University

The Graduate School

RETHINKING THE MEMORY HIERARCHY DESIGN WITH

NONVOLATILE MEMORY TECHNOLOGIES

A Dissertation in

Computer Science and Engineering

by

Jishen Zhao

c© 2014 Jishen Zhao

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

May 2014

The dissertation of Jishen Zhao was reviewed and approved∗ by the following:

Yuan Xie

Professor of Computer Science and Engineering

Dissertation Advisor, Chair of Committee

Mary Jane Irwin

Professor of Computer Science and Engineering

Vijaykrishnan Narayanan

Professor of Computer Science and Engineering

Zhiwen Liu

Associate Professor of Electrical Engineering

Onur Mutlu

Associate Professor of Electrical and Computer Engineering

Carnegie Mellon University

Special Member

Lee Coraor

Associate Professor of Computer Science and Engineering

Director of Academic Affairs

∗Signatures are on file in the Graduate School.

Abstract

The memory hierarchy, including processor caches and the main memory, is an
important component of various computer systems. The memory hierarchy is
becoming a fundamental performance and energy bottleneck, due to the widening
gap between the increasing bandwidth and energy demands of modern applications
and the limited performance and energy efficiency provided by traditional memory
technologies. As a result, computer architects are facing significant challenges
in developing high-performance, energy-efficient, and reliable memory hierarchies.
New byte-addressable nonvolatile memories (NVRAMs) are emerging with unique
properties that are likely to open doors to novel memory hierarchy designs to tackle
the challenges. However, substantial advancements in redesigning the existing
memory hierarchy organizations are needed to realize their full potential. This
dissertation focuses on re-architecting the current memory hierarchy design with
NVRAMs, producing high-performance, energy-efficient memory designs for both
CPU and graphics processor (GPU) systems.

The first contribution of this dissertation is to devise a novel bandwidth-aware
reconfigurable cache hierarchy with hybrid memory technologies to enhance system
performance of chip-multiprocessors (CMPs). In CMP designs, limited memory
bandwidth is a potential bottleneck of the system performance. NVRAMs promise
high-bandwidth cache solutions for CMPs. We propose a bandwidth-aware recon-
figurable cache hierarchy with hybrid memory technologies. With different memory
technologies, our hybrid cache hierarchy design optimizes the peak bandwidth at
each level of caches. Furthermore, we develop a reconfiguration mechanism to dy-
namically adapt the cache capacity of each level based on the predicted bandwidth
demands of different applications.

This dissertation also explores energy-efficient graphics memory design for GPU
systems. We develop a hybrid graphics memory architecture, employing NVRAMs
and the traditional memory technology used in graphics memories, to improve

iii

the overall memory bandwidth and reduce the power dissipation of GPU systems.
In addition, we design an adaptive data migration mechanism to further reduce
graphics memory power dissipation without hurting GPU system performance.
The data migration mechanism exploits various memory access patterns of work-
loads running on GPUs.

Finally, this dissertation discusses how to re-architect the current memory/storage
stack with a persistent memory system to achieve efficient and reliable data move-
ments. First, we propose a hardware-based, high-performance persistent memory
design. Persistent memory allows in-memory persistent data objects to be updated
at much higher throughput than using disks as persistent storage. Most previous
persistent memory designs root from software perspective, and unfortunately re-
duce the system performance to roughly half that of a traditional memory system
with no persistence support. One of the great challenges in this application class
is therefore how to efficiently enable data persistence in memory. This disserta-
tion proposes a persistent memory design that roots from hardware perspective,
offering numerous practical advantages: a simple and intuitive abstract interface,
microarchitecture-level optimizations, fast recovery from failures, and eliminat-
ing redundant writes to nonvolatile storage media. In addition, this dissertation
presents a fair and high-performance memory scheduling for persistent memory
systems. This dissertation tackles the problem raised by shared memory interface
between memory accesses with and without the persistence requirement. This dis-
sertation proposes a memory scheduling scheme that achieves both fair memory
accesses and high system throughput for the co-running applications. Our key
observation is that the write operations are also on the critical execution path
for persistent applications. This dissertation introduces a new scheduling policy
to balance the service of memory requests from various workloads, and a strided
logging mechanism to accelerate the writes to persistent memory by augmenting
their bank-level parallelism.

iv

Table of Contents

List of Figures ix

List of Tables xiii

Acknowledgments xv

Chapter 1
Introduction 1
1.1 Challenges with Memory Hierarchy Design 2

1.1.1 Performance Challenges with CPU Memory Hierarchy Design 2
1.1.2 Energy Efficiency Challenge with GPU Memory Hierarchy

Design . 4
1.2 Design Opportunities Offered by NVRAMs 6

1.2.1 Opportunities in Replacing Traditional Memory Technologies 6
1.2.2 Opportunities in Re-architecting the Memory/Storage Stack 7

1.3 Solutions . 7
1.4 Dissertation Organization . 8

Chapter 2
Background and Related Work 10
2.1 Background of NVRAM Technologies 10
2.2 Background of Persistent Memory 13
2.3 Related Research on Replacing Traditional Memory Hierarchies . . 14
2.4 Related Research on Persistent Memory 15

2.4.1 Maintaining Atomicity by Multiversioning 15
2.4.2 Preserving Consistency by Ordering 16

v

Chapter 3
BARCH: Bandwidth-aware Hybrid Cache Hierarchy Design for

CMPs 18
3.1 Latency, Energy, and Bandwidth of Various Memory Technologies . 19
3.2 Hybrid Cache Hierarchy . 22
3.3 Reconfiguration . 24
3.4 Prediction Engine . 25

3.4.1 Prediction Accuracy . 29
3.4.2 Storage Overhead . 29
3.4.3 Computational overhead . 30

3.5 Experiments . 30
3.5.1 Experimental Setup . 30
3.5.2 Results . 32

3.6 Summary . 34

Chapter 4
Energy-Efficient Graphics Memory Design 35
4.1 Motivation . 37

4.1.1 Characteristics of Various Memory Technologies 38
4.1.2 Memory Access Patterns of GPGPU Workloads 39

4.2 Hybrid Graphics Memory Architecture 40
4.2.1 Hardware Configuration . 41
4.2.2 Data Migration Mechanism 42

4.3 Experimental Setup . 44
4.3.1 Simulation Framework . 45
4.3.2 Workloads . 46
4.3.3 Power Model . 47

4.4 Results . 48
4.4.1 Throughput Improvement 48
4.4.2 Power Savings . 49
4.4.3 Power Breakdown . 49
4.4.4 Energy Efficiency . 50

4.5 Summary . 51

Chapter 5
Kiln: Closing the Performance Gap Between Systems With and

Without Persistence Support 52
5.1 Design Overview . 55

5.1.1 Assumptions and Definitions 56
5.1.2 In-place Updates without Logging or COW 56

vi

5.1.3 Ordering Control by Clean-on-commit 57
5.1.4 Timeline of a Transaction 58
5.1.5 Discussion . 61

5.2 Implementations . 62
5.2.1 Software Interface and ISA Extension 63
5.2.2 Maintaining the State of NV Cache Lines 64
5.2.3 Cache Extensions . 65
5.2.4 NV Cache Overflow and Fall-back Path 66
5.2.5 Recovery . 68
5.2.6 Physical Implementation . 68

5.3 Experimental Setup . 69
5.3.1 Simulation Framework . 69
5.3.2 Benchmarks . 71

5.4 Results . 71
5.4.1 Volatile Vs. Nonvolatile Last-level Cache 71
5.4.2 Log-based Persistent Memory Performance 73
5.4.3 Kiln Performance . 74
5.4.4 Dynamic Power . 76

5.5 Summary . 77

Chapter 6
FIRM: Fair and High-Performance Memory Scheduling for

Persistent Memory Systems 78
6.1 The Problem . 79
6.2 Challenges of the Shared Memory Interface 80

6.2.1 Persistent Applications . 80
6.2.2 Memory Organization . 82
6.2.3 Conventional Memory Scheduling Mechanisms 82
6.2.4 Memory Access Behaviors of Persistent and

Nonpersistent Applications 83
6.3 Key Observations . 85

6.3.1 A Naive Solution . 86
6.4 Mechanism . 88

6.4.1 Categorizing Sources of Memory Requests 89
6.5 Memory Scheduling . 90

6.5.1 Strided Logging . 92
6.5.2 Summary of FIRM Mechanism 93

6.6 Implementation . 94
6.6.1 Software Interface and ISA Extension 94
6.6.2 Hardware Counters and Registers 94

vii

6.6.3 Implementing Strided Logging 96
6.7 Experimental Setup . 96

6.7.1 Simulation Framework . 96
6.7.2 Workloads . 97
6.7.3 Metrics . 99

6.8 Results . 99
6.8.1 Performance and Fairness of the Naive Mechanism 99
6.8.2 FIRM Performance and Fairness 101
6.8.3 Sensitivity to NVRAM Latency 102
6.8.4 Scalability with Cores . 103

6.9 Summary . 104

Chapter 7
Conclusion 105
7.1 Summary of Contributions . 105
7.2 Future Research Directions . 107

7.2.1 Re-architecting the Memory/Storage Stack 107
7.2.2 Hybrid Memory Architectures 108

Bibliography 110

viii

List of Figures

1.1 Power breakdown of both NVIDIA and AMD GPUs. Power con-
sumptions of GPU cores and caches, memory controllers, and DRAMs
are examined to show that off-chip DRAM accesses consume a sig-
nificant portion of the total system power. 4

3.1 Overview of the hardware configuration. (a) Configuration of re-
configurable hybrid cache hierarchy. (b) The overall bandwidth-
capacity curve of the hybrid cache hierarchy (a generic case of Fig-
ure 3.3). 19

3.2 Latency, bandwidth, and dynamic energy of different memory tech-
nologies. (a) Read latency. (b) Latency with 40% of write intensity.
(c) Dynamic energy with 40% of write intensity. 20

3.3 Bandwidth-capacity curves of different memory technologies under
dynamic energy constraint (with 40% of write intensity). 22

3.4 Components of the prediction engine include the pattern table, the
probability vector, and an array of counters. 27

3.5 The control flow of the prediction engine. 28
3.6 Performance improvement of multithreaded workloads, evaluated

in terms of throughput, i.e., the number of executed instructions
per second. 32

3.7 Performance improvement with multiprogrammed workloads, eval-
uated in terms of throughput, i.e., the number of executed instruc-
tions per second. 33

4.1 (a) Latency, (b) provided bandwidth (PBW), and (c) dynamic
power of different memory technologies with respect to different
capacities. 37

4.2 Leakage power of different memory technologies with respect to
various capacities. 38

4.3 The pattern of “interleaved access”. 39

ix

4.4 The pattern of “access then idle”. Can also observe the “burst”
pattern during the access period. 39

4.5 Overview of GPU system with hybrid memory. (a) Conventional
GPU system with off-chip GDDRs. (b) GPU system with hybrid
memory. 41

4.6 Memory interface configuration and data flow between memory con-
troller and hybrid memory. 43

4.7 The loop of DRAM access management. 43
4.8 Control of data migration. 44
4.9 System throughput with hybrid graphics memory, normalized to

baseline. 48
4.10 Memory and system power consumption with hybrid graphics mem-

ory, normalized to the baseline pure DRAM based graphics memory. 49
4.11 Power breakdown of hybrid graphics memory. 50
4.12 System energy efficiency with hybrid graphics memory, normalized

to baseline. 50

5.1 Comparison between a native system with no persistence support
(Native) and log-based persistent memory (Persistent Memory).
Speedups of transaction throughput (higher is better) and memory
traffic (lower is better), including reads and writes, are averaged
across benchmarks. 54

5.2 Overview of Kiln persistent memory design and previous work.
Most previous studies ((a) and (b)) employ logging or COW to
maintain multiversioning, explicitly duplicating data in a separate
journal or temporary buffer data structures. In these studies, order-
ing is enforced by write-through caching, cache flush and memory
fence instructions, or fsync operations. (c) shows an overview of the
proposed Kiln design. With the multiversioned memory hierarchy
consisting of the NV cache and the NV memory, Kiln allows in-place
updates to the real in-memory data structures without logging or
COW. 55

5.3 Comparison of the timeline of Kiln and previous persistent memory
designs. Block A represents the data block (with a size of multiple
cache lines) of an old valid version. Block A′ represents the new
version being updated. 59

x

5.4 Software and architecture extensions developed to facilitate Kiln.
(a) A code example with Kiln software interface. (b) Cache ar-
chitecture extensions. The shaded blocks are the modifications re-
quired over conventional architecture. Note that the dirty bit, the
invalid bit, and other cache coherence information are included in
the original tag region. 60

5.5 The storage overhead of the FIFO queues added to the cache con-
trollers. Note that the L1 and L2 caches are private so the total
overheads are calculated as the sum of eight FIFO queues. 61

5.6 The state transition of NV cache lines. 64
5.7 Performance comparison between two native systems adopting STT-

MRAM and SRAM as L3 cache respectively. Results show that the
two systems have similar performance. 72

5.8 Performance of systems that adopt a NV L3 cache, but with logging
for atomicity and flush and memory fence for ordering. We evaluate
the throughput (bars) and NV memory traffic (broken lines). All
the throughputs are normalized against the native system running
1 thread. For NV memory traffic, we only show the normalized
results running 16 threads. 72

5.9 Performance gap vs. number of threads. 73
5.10 The throughput (bars) and NV cache traffic (broken lines) of Kiln.

All the throughputs are normalized against the native system run-
ning 1 thread. For NV cache traffic, we only show the normalized
results running 16 threads. 74

5.11 Throughput of insert/delete operations of 16-thread workloads with
longer NVRAM latencies, normalized to the Native throughput
with ×1 latency and 16 threads. 75

5.12 The average dynamic power consumption of processor (including
the NV cache) and the NV memory, normalized to the Native (work-
loads running 16 threads). 76

6.1 Effect of simply assigning persistent writes the same priority as
reads on different workload combinations. (a) WL1 consists of
Btreelog and streaming. (b) WL2 consists of Btreelog and random. . 86

6.2 Overview of FIRM design. Note that we show a logical view of
source request queues. The physical locations of memory requests
are read and write queues in memory controllers. 88

6.3 Conventional address mapping scheme, address bits of persistent
writes, and proposed bank shuffling. 93

xi

6.4 System throughput and fairness with various memory scheduling
schemes. Among listed results, FIRM-scheduling employs the pro-
posed source categorization and memory scheduling mechanisms
but not strided logging. FIRM-strided-logging represents that all
FIRM mechanisms, including hardware-based strided logging, are
employed. (a) System throughput evaluated as weighted speedup.
(b) System fairness evaluated as maximum slowdown. 101

6.5 Results of average system throughput and fairness, when NVRAM
write latency varies from 2× to 5× of the original write latency
(Table 6.4). Weighted speedup (a) and maximum slowdown (b) are
normalized to the case using the original write latency. 103

6.6 Average weighted speedup with various memory scheduling schemes
on 8-core and 16-core systems. 103

6.7 Average maximum slowdown with various memory scheduling schemes
on a 8-core and 16-core systems. 104

xii

List of Tables

2.1 Comparison of Kiln with previous work. (⋆ means In-place updates
are only performed for memory stores to a single variable or at the
granularity of the bus width. ⋄means ordering is maintained among
the writes to the disk or flash by flush or checkpointing.) 15

3.1 Prediction accuracy for different widths of the pattern table 28
3.2 Storage overhead of the prediction engine. 29
3.3 Baseline CMP configuration. 30
3.4 Characteristics of selected benchmarks. I’06 and F’06 represent the

SPEC CPU2006 integer and floating point benchmarks respectively. 31
3.5 Multithreaded and multiprogrammed workload sets. 31

4.1 Baseline GPU configuration. The parameters of streaming multi-
processors (SMs), caches, and memory controllers. 45

4.2 DRAM configurations. Baseline is off-chip GDDR5 memory with
32-bit bus width per chip. The maximum bus width of 3D die-
stacked DRAM is 256-bit per chip. The maximum clock frequency
is 1.5GHz. The peak memory bandwidth of 3D die-stacked DRAM
can be changed by scaling down the bus width and clock frequency. 45

4.3 Characteristics of selected GPGPU benchmarks. (IC represents
instruction count. MI represents memory intensity.) 47

5.1 Parameters of the evaluated multi-core system. 67
5.2 Benchmarks used in our experiments. 70

xiii

6.1 Memory intensity, write intensity, bank-level parallelism, and row-
buffer locality of different applications running individually. Stream-
ing and random are two nonpersistent applications with streaming
and random memory accesses. Btreelog performs inserts and deletes
to a B+ tree-based key-value store with 25-byte keys and 2K-byte
values and employs redo logging to ensure data persistence. In
the last row of the table, we show the memory access behavior of
btreelog when it is performing redo logging. 84

6.2 Priority strategy when at least one active persistent source is present
in the system. 91

6.3 Storage required by hardware counters in each memory controller.
The values are calculated based on the baseline configuration de-
scribed in Section 6.7. 95

6.4 Parameters of the evaluated multi-core system. 97
6.5 Benchmarks used in our experiments. 98
6.6 Workloads mixed with Masstree and various nonpersistent applica-

tions. 98
6.7 Weighted speedup and maximum slowdown of various workloads: a

naive memory scheduling mechanism compared with conventional
memory scheduling schemes. 100

xiv

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor, Professor
Yuan Xie, for his guidance throughout my Ph.D. study. His helpful suggestions,
important advice, and constant encouragement are of the most important factors
that helped me grow as a researcher. I would also like to thank my committee
members, Professor Mary Jane Irwin, Professor Vijaykrishnan Narayanan, Profes-
sor Onur Mutlu, and Professor Zhiwen Liu for their support, insightful comments,
and valuable feedback.

I would like to thank my managers, Dr. Norm P. Jouppi, Dr. Partha Ran-
ganathan, Dr. Jichuan Chang, and Mr. Cullen E. Bash, as well as my mentor,
Dr. Sheng Li, for their great support and advice while I was an intern at Hewlett-
Packard Labs during the past two years. I would also like to thank my collaborators
at AMD and Intel, Dr. Gabrial H. Loh, Dr. Yen-Kuang Chen, Dr. Christopher
Hughes, and Dr. Changkyu Kim, for their insightful discussions on various research
projects.

Special thanks to my husband, Yu Sheng. His endless love, care, and encour-
agement have been and will always be my motivation for improvement. Yu has
always pushed me to strive for the highest-quality research and papers, the best
internships, and the best dissertation. I would like to thank my parents. Their
persistent support and belief in me have been invaluable wealth.

I am also greatly indebted to past and present MDL members for providing a
supportive and productive environment. Especially, I thank Xiaoxia Wu, Guangyu
Sun, Yibo Chen, Xiangyu Dong, Jin Ouyang, Tao Zhang, Dimin Niu, Cong Xu,
Jing Xie, Matt Poremba, Qiaosha Zou, Hsiang-Yun Cheng, Jue Wang, Jia Zhan,
and Ping Chi for their help. Many thanks are to my friends and colleagues at
AMD, Carnegie Mellon University and Hewlett-Packard Labs, including but not
limited to Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Samira Khan, Yoongu
Kim, Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko, Vivek Se-
shadri, Lavanya Subramanian, Hongyi Xin, Hans J. Boehm, John Byrne, Dhruva
Chakrabarti, Terence Kelly, Kevin Lim, Laura Ramirez, Rob Schreiber, Joseph

xv

Tucek, Alistair Veitch, and and Doe Hyun Yoon.
Finally, I would like to thank Penn State, Hewlett-Packard, NSF, DOE, and

Semiconductor Research Corporation for their generous funding supports during
my Ph.D. study.

xvi

Chapter 1

Introduction

The field of computer architecture has seen tremendous achievements. Processor

designs have moved from the era of single core to multi-/many-core, preserving

continuous system performance growth without significantly increased power bud-

get and design complexity. Special-purpose hardware accelerators, e.g., GPUs and

sensor arrays, were developed to support a single or narrow class of applications

with much higher energy efficiency than general-purpose computers. However,

two major challenges remain: the complexity and richness of application demands

continue to overwhelm hardware capabilities; new device and circuit technologies

are developed with properties that disrupt previous design assumptions, making

current computer architecture designs suboptimal.

Among various components of computer systems, the memory hierarchy – in-

cluding processor caches and the main memory – is a critical component and

fundamental performance/energy bottleneck in addressing these two challenges.

The memory hierarchy severs as the bridge between processors and the storage

components (disks/flash). It stores applications’ data sets being frequently ac-

cessed and supplies data to the processors. Modern applications rely on processing

data from infinite sea of books, maps, photos, audios, videos, references, facts,

and conversations. Consequently, their data sets can be gigabytes, terabytes, or

even larger in size. Storing and processing such a large amount of data raises

significant challenges in designing high-performance, energy-efficient memory hi-

erarchy. Commodity memory technologies, such as SRAM and DRAM, are facing

scalability challenges constrained by their device cell size and power consump-

2

tion. Recently, various nonvolatile memories (NVRAMs), such as spin-transfer

torque memory (STT-MRAM), phase-change memory (PCRAM), and resistive

memory (ReRAM), have been studied as the replacement of traditional memory

technologies used in the memory hierarchy [1, 2, 3, 4]. NVRAMs and traditional

memory technologies trade off density, speed, power, and reliability. Furthermore,

NVRAMs promise the game-changing feature – having both traditional memory

(fast) and storage (nonvolatile, i.e., retaining data without power supply) proper-

ties in one device. Consequently, they yield abundant opportunities and challenges

in memory hierarchy design.

This dissertation discusses the challenges and solutions of redesigning the mem-

ory hierarchy to achieve efficient and reliable data storage and movement, by lever-

aging NVRAMs. In particular, this dissertation presents (1) how to use NVRAMs

as cache and main memory replacement to accommodate high-performance, energy-

efficient data access in CPU and GPU systems and (2) how to re-architect the mem-

ory/storage stack to fully leverage NVRAMs’ game-changing feature to achieve

efficient and reliable data movement.

1.1 Challenges with Memory Hierarchy Design

This section describes the challenges in designing high-performance, energy-efficient

memory hierarchies in CPU and GPU systems, respectively.

1.1.1 Performance Challenges with CPU Memory Hierar-

chy Design

One critical bottleneck for CPU performance scaling is the widening gap between

the increasing bandwidth demand created by processor cores and the limited band-

width provided by off-chip memories [5, 6, 7]. Due to such limitation, memory-

demanding applications with a large working set spends additional cycles on off-

chip memory accesses, and thus decreases the parallelism. In addition, even mod-

erately memory-demanding applications will reach the bandwidth limitation as the

number of cores scales up [8]. Consequently, memory bandwidth becomes one of

the most important factors that influence high performance system design.

3

Various techniques can be found in recent computer systems and research work

to address this issue. High performance computing systems such as NVIDIA’s

Tesla [9] rely on extremely high main memory bandwidth provided by graphics

DDR (GDDR) memory to satisfy the demand of large number of processor cores.

However, GDDR memory runs at high clock rates and consumes more power than

conventional DRAM modules. It is undesirable for either general purpose or high-

performance computing systems to improve their computing performance by sim-

ply sacrificing power efficiency.

Caching is known to be the most effective approach to reduce memory access la-

tency. Proper cache hierarchy design can also help mitigate the increasing pressure

to off-chip memory bandwidth. With an extensive study on limited pin bandwidth

in multiprocessor systems, Burger et al. concluded that on-chip cache with more

levels would improve the system performance [6]. Rogers et al. explored the re-

quirements of on-chip cache hierarchy and optimization techniques due to scaling

of processor core numbers [7]. Both studies show that exploring on-chip mem-

ory hierarchy in a manner focusing on bandwidth optimization will benefit future

computing systems in terms of performance scaling. Recently, various studies have

been performed on addressing the bandwidth problem by optimizing cache hierar-

chy designs. Yu et al. proposed a last level cache (LLC) partitioning algorithm to

minimize bandwidth requirement to off-chip main memory [10]. Cache resources

were allocated for the target workload in a way to reduce the overall system band-

width requirement by considering memory bandwidth demand for each task. One

key insight in their work was that cache miss rate information might severely mis-

represent the actual bandwidth demand of a workload. Thus the overall system

performance and power consumption might be inappropriately estimated. How-

ever, they only focused on LLC (L2 cache). In this dissertation, our design target

is the overall on-chip memory hierarchy, which provides more design dimensions

and flexibility. Furthermore, the cache partition in their study [10] was determined

offline, and remained fixed during run-time. This dissertation proposes a recon-

figuration mechanism to dynamically adapt the space of each cache level to the

demand of different applications.

4

MCs

21.8%

DRAMs

27.7%

Cores

50.4%

MCs

21.8%

DRAMs

30.1%

Cores

48.0%

NVIDIA
Quadro® 6000

AMD
RadeonTM
HD 7970

Memory BW
Utilization 35% 20% 10%50%

MCs

22.3%

DRAMs

33.7%

Cores

44.0%

MCs

22.0%

DRAMs

31.6%

Cores

46.4%

MCs

21.7%

DRAMs

26.6%

Cores

51.7%

MCs

21.7%

DRAMs

23.9%

Cores

54.4%

MCs

21.4%

DRAMs

24.2%

Cores

54.4%

MCs

21.4%

DRAMs

21.3%

Cores

57.3%

Figure 1.1. Power breakdown of both NVIDIA and AMD GPUs. Power consumptions
of GPU cores and caches, memory controllers, and DRAMs are examined to show that
off-chip DRAM accesses consume a significant portion of the total system power.

1.1.2 Energy Efficiency Challenge with GPU Memory Hi-

erarchy Design

Modern GPU systems have become an attractive solution for both graphics and

general purpose workloads that demand high computational performance. The

graphics processing unit (GPU) exploits extreme multithreading to target high-

throughput [11, 12]. For example, AMD RadeonTMHD 7970 employs 20,480

threads interleaved across 32 compute units [11]. To accommodate such high-

throughput demands, the power consumption of GPU systems continues to in-

crease. As existing and future integrated systems become power limited, reducing

system power consumption while maintaining high energy efficiency is a critical

challenge for GPU system design.

To satisfy the demands of high-throughput computing, the GPUs require sub-

stantial amounts of memory (from hundreds of megabytes to gigabytes, which are

usually off-chip memory) that can support a very large number of read and write

accesses. Consequently, the off-chip memory consumes a significant portion of

power in a GPU system. We evaluated the maximum power consumption of two

GPU systems, AMD RadeonTMHD 7970 [11], and NVIDIA Quadro R©6000 [12],

with the memory power model described in Section 6.7. Figure 1.1 presents the

5

evaluated power distributions of GPU cores and caches, memory controllers, and

off-chip memory. This dissertation consideres the memory bandwidth utilization

(the fraction of all cycles when the data-bus is busy transferring data for reads or

writes) from 10% to 50%. For both studied GPU systems, the off-chip memory

consumes from 20% to over 30% of the total GPU system power. Note that for the

workloads evaluated in this dissertation, the highest average bandwidth utilization

observed was 35%. At this bandwidth level, the memory power consumption is

30.1% and 27.7% for the two GPU systems, respectively. If we can reduce the

memory power by half, 12.5% of system power can be saved; this may seem like a

relatively small amount, but it is in fact quite significant. For example, the max-

imum power consumption of AMD RadeonTMHD 7970 [11] is 230W; therefore a

12.5% power reduction saves 29W. Therefore, techniques that reduce the graphics

memory power requirements can be very effective at reducing the total system

power.

Conventional graphics memories (GDDR) have employed several techniques to

reduce memory power consumption. Using the pseudo-open drain (POD) signal-

ing scheme [13] with on-die termination (ODT), static power is only consumed

when driving a “low” signal and thus reduces the power of the memory interface.

GDDR5, the latest generation of commercial graphics memory, provides further

power savings compared to its predecessors with lower supply voltages, dynamic

voltage and frequency (VF) scaling, and independent ODT strength control of ad-

dress, command and data [13]. VF scaling techniques employed by conventional

GDDRs reduce power by adapting the memory interface to the memory bandwidth

requirements of an application. However, the power reduction comes at the ex-

pense of memory bandwidth degradation. For example, Elpida’s GDDR5 memories

are specified to operate over a large contiguous VF range to support data rates

starting from as low as 800MB/s per channel to the maximum rate of 20GB/s.

While 1.6GB/s per channel may be sufficient for displaying static images, a data

rate of 6GB/s is required for playing high-definition (HD) video, and the maxi-

mum data rate of 20GB/s may be fully utilized by high-end gaming applications.

For future high-performance GPGPU and advanced video processing (e.g., 3D HD

multi-screen video games), existing power saving techniques may not suffice.

6

1.2 Design Opportunities Offered by NVRAMs

NVRAMs have several promising characteristics. They have much higher den-

sity than SRAM, as dense as DRAM, and need no refresh (which is required by

DRAMs). In addition, they incorporate both memory and storage properties in a

single device: can accommodate byte-addressable, fast memory accesses like mem-

ories; offer permanent data storage without power supply like disk and flash. These

unique properties are likely to create an inflection point, opening doors to novel

high-performance, energy-efficient memory hierarchy designs to unlock their full

potential.

1.2.1 Opportunities in Replacing Traditional Memory Tech-

nologies

NVRAMs promise much lower leakage power than SRAM, which is the traditional

memory technology used in the cache hierarchy. Therefore, we can save substantial

portion of cache power by adopting NVRAM-based caches in CPUs [2]. Further-

more, we find that NVRAMs can improve cache performance at large capacities.

When the cache capacity is small, SRAM has much lower latency, and therefore

higher memory bandwidth, than NVRAMs. However, we find that NVRAMs can

provide higher memory bandwidth than SRAM at large cache capacities [14]. As a

result, using NVRAMs as the memory technology of larger caches can offer much

higher system performance than employing pure SRAM-based caches.

NVRAMs also bring in opportunities in designing energy-efficient graphics

memories in GPUs. First, NVRAMs do not require refresh operations, which can

consume a large portion of memory power [15]. Furthermore, we can shut down

NVRAMs, when they are not being accessed. In particular, we can effectively

reduce graphics memory power consumption without hurting GPU system perfor-

mance, by leveraging unique the data access patterns of the workloads running on

GPUs [16].

7

1.2.2 Opportunities in Re-architecting the Memory/Storage

Stack

For decades, computer systems adopt a two-level storage model to manipulate

data access: a fast, volatile memory updated by loads and stores, with data be-

ing lost when system halts or reboots; a slow, nonvolatile storage device managed

by databases or file systems, while data can survive across system boots. With

the game-changing feature, NVRAMs can enrich such two-level memory/storage

stack with the capability of accommodating fast accesses to permanent data stor-

age in a unified nonvolatile memory. This feature brings new opportunities to

address the massive online data storage and processing requirements of “big data”

applications, allowing them to directly access permanent data storage in mem-

ory without the performance and energy overheads of transferring data from/to

storage. Unfortunately, current hardware and hardware/software interface are op-

timized for the two-level memory/storage stack with vastly discrepant speed (fast

memory and slow storage), interfaces (memory buses and storage I/Os), and func-

tions (hardware-accelerated memory access and software managed permanent data

storage). Consequently, computer architects need to redesign the memory/storage

stack to unify the two functions through a memory interface with optimized system

performance and reliability.

1.3 Solutions

The goal of this dissertation is to design high-performance, energy-efficient memory

hierarchies for CPU and GPU systems, by fully leveraging NVRAM’s properties

and benefits. This dissertation proposes the following three solutions to achieve

this goal.

• The first solution is a novel bandwidth-aware reconfigurable cache hierar-

chy [14] to enhance system performance of chip-multiprocessors (CMPs) with

hybrid memory technologies, by leveraging NVRAM’s performance benefits.

The hybrid cache hierarchy maximizes the provided bandwidth of processor

caches and minimizes the bandwidth demand to the off-chip main memory.

8

We also dynamically reconfigure the hybrid cache hierarchy to accommodate

the actively changing bandwidth demands of various applications.

• The second solution is an energy-efficient graphics memory design [16], lever-

aging NVRAM’s energy benefits to replace traditional pure DRAM-based

graphics memories. We propose a hybrid graphics memory, mixing DRAM

and various types of NVRAMs. The hybrid graphics memory can provide

higher memory bandwidth and consumes less power than the traditional

graphics memory designs. Although NVRAMs have longer latency than

DRAM, our design can hide such longer latency with an adaptive data mi-

gration mechanism, by leveraging the memory access patterns of various

workloads running on GPUs.

• The third solution of this dissertation leverages the disruptive property of

NVRAMs to develop a persistent memory [17], incorporating the functions

of memory and storage. Our design allows a persistent memory system to

directly update the real in-memory data structures at high throughput.

• The final solution of this dissertation designs a memory scheduling scheme

that achieves both fair memory access and high system throughput in per-

sistent memory systems.

1.4 Dissertation Organization

The remainder of the dissertation is organized as follows. Chapter 2 describes the

background and the related work in NVRAM technologies, persistent memory, and

high-performance, energy-efficient memory hierarchy designs. Chapter 3 presents

a CPU cache hierarchy design with optimized memory bandwidth, utilizing hy-

brid memory technologies. Chapter 4 presents graphics designs with NVRAMs,

optimized for system throughput and energy efficiency. Chapter 5 and Chap-

ter 6 present our persistent memory designs, re-architecting the memory/storage

stack by incorporating storage functions on maintaining data persistence into the

memory system. In particular, Chapter 5 describes our hardware-based persistent

memory design, which achieves both persistence and high performance in mem-

ory systems. Chapter 6 identifies the performance issue of resource competition

9

at the shared memory interface of persistent memory, and tackles the problem

by redesigning memory scheduling mechanisms. Finally, Chapter 7 concludes the

dissertation by summarizing the key results and insights that have been presented,

and presenting suggestions on future research directions concerned with NVRAM’s

implications on novel memory hierarchy design.

Chapter 2

Background and Related Work

This chapter first describes the background of emerging technologies, including

3D/2.5D integration and NVRAMs. This is followed by the description of back-

ground of the emerging persistent memory technique that leverages the nontra-

ditional property of NVRAMs. Finally, this chapter describes the relevant ap-

proaches classified into two categories: replacement of traditional memory hierar-

chies and the persistent memory by re-architecting the memory/storage stack.

2.1 Background of NVRAM Technologies

This dissertation explores memory hierarchy designs with three types of NVRAMs

– STT-MRAM, ReRAM, and PCRAM [18, 19, 20, 21]. Note that some studies

refer nonvolatile memories as flash memories [22], which are block addressable.

This dissertation investigates the use of byte-addressable nonvolatile memories.

Therefore, flash memories are not discussed as NVRAMs in our work.

Various types of NVRAM technologies: STT-MRAM is the latest generation

of magnetic RAM (MRAM) [19, 20]. STT-MRAM employs Magnetic Tunnel Junc-

tion (MTJ), which contains two ferromagnetic layers and one tunnel barrier layer,

as its binary storage. The relative magnetization direction of two ferromagnetic

layers determines the resistance of MTJ. If the two ferromagnetic layers appear at

the same directions, the resistance of MTJ is low, indicating a “0” state; otherwise,

the resistance of MTJ is high, indicating a “1” state. In ReRAM [23, 24, 25], a

11

normally insulating dielectric is conducted through a filament or conduction path

generated by applying a sufficiently high voltage. The conduction path can be

generated by different mechanisms, including defects, metal migration, etc. The

filament may be reset (broken, resulting in high resistance) or set (re-formed, re-

sulting in lower resistance) by applying an appropriate voltage. PCRAM [21, 26]

uses chalcogenide-based material to storage information. The chalcogenide-based

material can be switched between a crystalline phase (SET or “1” state) and an

amorphous phase (RESET or “0” state) with the application of heat.

Benefits: NVRAMs promise density, performance, and energy benefits. They

have much higher density than SRAM, the memory technology widely used in

commodity processor caches. Compared to DRAM, NVRAMs show significant

power benefits. Due to the non-volatility, NVMs do not require refresh opera-

tions, and have near-zero standby power. In addition, NVRAMs can accommodate

both byte-addressable, fast data accesses and nonvolatile data storage. Therefore,

they incorporate both memory (fast) and storage (retaining data without power

supply) properties in one device. This feature can disrupt current two-level mem-

ory/storage stack with the capability of accommodating fast accesses to permanent

data storage in a unified nonvolatile memory.

Drawbacks: The drawbacks of NVRAMs include long write latency, high write

energy, and low write endurance. Write endurance is the number of times that a

memory cell can be overwritten before the cell fails. Among the three NVRAMs,

only STT-MRAM is free from the low write endurance issue. The endurance of

STT-MRAM is larger than 1015 [1], which is close to that of SRAM. The en-

durance of ReRAM is in the range of 105 to 1011 [27, 28, 29]. That of PCRAM

is in the range of 105 to 109 [30]. Therefore, STT-MRAM is a practical solution

for cache design [31, 32, 33], while ReRAM is feasible for last-level cache (LLC)

with low write intensity. The low endurance of PCRAM makes it less feasible to

be used as processor caches. All the three NVRAMs are feasible for designing the

main memory, especially with architecture-level error protection techniques, such

as ECP [34], dynamically replicated memory [35], SAFER [36], start-gap [3], se-

curity refresh [37], and FREE-p [38]. Furthermore, a projected plan by ITRS [39]

highlighted that the endurance of PCRAM and ReRAM will be at the order of

1015 or higher by 2024.

12

On-chip and off-chip memory implementations: In principle, we can imple-

ment both on-chip and off-chip components of the memory hierarchy with various

types of NVRAMs. For example, we can implement the off-chip NVRAM main

memory as dual in-line memory modules (DIMMs), which is compatible to the com-

modity off-chip DRAM implementations [40]. Most NVRAM technologies are not

compatible CMOS technology, which is the traditional technology used to imple-

ment the processor cores and caches. Consequently, with most types of NVRAMs,

we need to implement on-chip NVRAM caches and memories by leveraging silicon

interposer [41] or 3D stacking [42, 43, 44] technologies. With the silicon interposer

technology, we can package CMOS components and NVRAM components side-by-

side in a single chip. This technology has been widely explored by academia and

industry to develop high-performance system-in-package designs [41, 45]. With 3D

stacking technology, we can implement these components on separate dies and ver-

tically stack the dies on top of each other [46, 47, 48, 44, 49, 50, 51, 52, 53, 54, 55].

Samsung recently announced a 3D-stacked wide-I/O DRAM targeting mobile sys-

tems [51]. The presented two-layer DRAM with four 128-bit wide buses has

12.8GB/s peak bandwidth, 2Gb of capacity, and only 330.6mW of power con-

sumption. Woo et al. re-architected the memory hierarchy, including the L2 cache

and DRAM interface, and take full advantage of the massive bandwidth provided

by stacking the DRAMs on top of processor cores. Tezzaron corporation has im-

plemented true 3D DRAMs, where the individual bitcell arrays are stacked in a 3D

fashion [53]. The peripheral control logic and circuitry are placed on a separate,

dedicated layer, incorporated with different process technologies. Micron devel-

oped a Hybrid Memory Cube (HMC) [52] that combines high-speed logic process

technology with a stack of through-silicon via (TSV) bonded memory die. HMC in-

creases density per bit and reduces the overall package form factor. Recently, AMD

and SK hynix announced joint development of high bandwidth memory (HBM)

stacks [56], which leverages TSV and wide I/O technology and conforms JEDEC

HBM standardization [57]. Recently, Lin et al. demonstrated a CMOS-compatible

STT-MRAM implementation [58], which allows STT-MRAM based memory com-

ponents to be directly integrated with processor cores on the same die.

13

2.2 Background of Persistent Memory

Persistence has been well investigated in databases and file systems. We borrow

the concept of atomicity, consistency, isolation, and durability (ACID) [59] from

the database community to study the properties of persistent memory. These four

properties can be separately maintained in different manners in a system. For

example, transactional memories (TMs) [60] maintain A, C, and I, separated from

D, while a recent study on failure-atomic msync [61] focuses on A and D.

In particular, a persistent memory system needs to ensure atomicity, consis-

tency, and durability. First of all, a persistent memory system contains non-

volatile devices so each data update is retained during power loss, crashes, or

errors. This is referred to as the durability property. Second, because the granu-

larity of programmer-defined data updates can be larger than the interface width

of the persistent memory, a single update is typically serviced as multiple requests.

Therefore, sudden power losses or crashes can leave an update partially completed,

corrupting the persistent data structures. To address this issue, each single up-

date must be “all or nothing”, i.e., either successfully completes or fails completely

with the data in persistent memory intact. This property is atomicity. Third,

consistency requires each update to convert persistent data from one consistent

state to another. Taking an example where an application inserts a node to a

linked list stored in persistent memory, a system (including software programs and

hardware) needs to ensure that the initial values of the node are written into the

persistent memory before updating the pointers in the list. Otherwise, the persis-

tent data structure can lose consistency with dangling pointers in a sudden crash,

leading to a permanent corruption not recoverable by restarting the application or

the system. Typically, programmers are responsible for defining consistent data

updates, because only the programmers know what it means for application data

to be in harmony with itself. Of course, programmers can leverage runtime API

to do this. While executing the software programs, hardware and system software

need to preserve the demanded consistency.

The fourth property, isolation, ensures that concurrent data updates are in-

visible to each other. Today, a programmer writing portable code atop a POSIX-

compliant OS and hardware has two separate families of mechanisms for solving

14

two isolation problems. One family of mechanisms is used to ensure orderly race-

free access to data in multithreaded or multiprocess concurrent programs. This set

of mechanisms includes mutexes, semaphores, TMs, and lock-free/wait-free data

structures and algorithms. The other family of mechanisms is used to update data

in durable media. This set of mechanisms includes system calls such as write(),

fsync(), and mmap()/msync(). Commodity systems use separate and orthogonal

mechanisms for handling isolation in the face of concurrency and durable updates.

Our persistent memory design permits the same kind of orthogonal separation of

concerns. Various concurrency control mechanisms can be integrated with our

design.

Specifically, our persistent memory design maintains A and D, preserves C

that is defined by programmers, and relies on concurrency control mechanisms to

support isolation.

2.3 Related Research on Replacing Traditional

Memory Hierarchies

A large body of recent studies focused on exploring the emerging technologies

as the replacement of traditional memory design technologies in existing memory

hierarchies [2, 4, 1, 62, 63, 64, 65, 66, 67]. These studies endeavor to balance be-

tween latency, bandwidth, and cost with emerging technologies. Various NVRAM

technologies, including STT-MRAM, PCRAM, and ReRAM, were explored as the

memory technologies of processor caches and main memory to improve system per-

formance and energy efficiency [2, 4, 1]. NVRAMs typically impose longer write

latency and higher write energy than traditional SRAM and DRAM. Therefore, it

is unlikely that NVRAMs will completely replace traditional memory technologies

in the near future. Hybrid memory technologies [1] will remain as a promising

memory system solution. Most previous studies on hybrid memories focused on

reducing the latency gap between the last level cache and the main memory [2, 1].

However, almost none of these work addressed the bandwidth bottleneck issue.

15

Table 2.1. Comparison of Kiln with previous work. (⋆ means In-place updates are only
performed for memory stores to a single variable or at the granularity of the bus width. ⋄
means ordering is maintained among the writes to the disk or flash by flush or checkpointing.)

Designs

Mechanisms Persistence Support

In-place Logging COW clflush/ mfence/ Atomicity Ordering
msync/ barrier
fsync

BPFS [68] ⋆ No Yes No Yes
√ √

Mnemosyne [69] ⋆ Yes Yes Yes Yes
√ √

NV-heaps [70] No Yes No No Yes
√ √

CDDS [71] No No Yes Yes Yes
√ √

UBJ [72] Yes Yes Yes ⋄ ⋄ √ √

eNVy [73] No No Yes ⋄ ⋄ √ √

Native System Yes No No No No × ×
Kiln Yes No No No No

√ √

2.4 Related Research on Persistent Memory

Protecting data against system failures and crashes forces a trade-off between

performance and reliability. This section investigates the persistence mechanisms

in previous work.

2.4.1 Maintaining Atomicity by Multiversioning

Multiversioning is a common method to ensure atomicity. With multiversioning,

multiple copies of data exist. When performing updates to one copy of data,

another copy is left intact. If one copy of data is corrupted by a partial update,

another copy is still valid and available for recovery.

Most previous work on persistence, e.g., persistent object systems [74, 75, 76,

77, 78, 79, 70], the Java persistence API [80, 81], RVM [82], Rio file cache [83], Sta-

sis [84], Mnemosyne [69], eNVy [73], and UBJ [72], employ one of two techniques

to maintain multiversioning: write-ahead logging (or journaling) [85, 86, 69, 70, 82,

87, 88] or COW [89, 73, 83, 68, 71]. Several previous studies investigated the use of

battery-backed RAMs as persistent storage [90, 91, 92]. Although battery-backed

RAMs are byte-addressable, these designs inefficiently access the RAMs through a

driver like disks and adopt database management systems (DBMS) or file systems

to implement logging or COW to manage the persistent memory. NV-heaps [70]

and Mnemosyne [69] adopt durable software transactional memory (STM) to sup-

16

port persistence for in-memory data objects. Both designs enforce atomic trans-

actional updates by maintaining a redo log.

Both logging and COW mechanisms impose significant performance overhead

by explicitly executing logging or data copying instructions. While the software

overhead is tolerable with traditional disk-based persistent memories where the

I/O delay dominates the performance overhead, the fraction of software overhead

increases dramatically when the persistent memory can be accessed at a much

faster speed [93]. Furthermore, duplicated data (logs or data copies) traverse the

cache hierarchy to the memory, contaminating caches with non-reusable cache

lines. Therefore, the key reason that the native system runs fast is that it per-

forms in-place updates to the real in-memory data, without explicitly duplicating

the data like logging or COW does. However, in-place updates are hard to imple-

ment in most previous NVRAM-based persistent memory designs [69, 70, 68, 71],

which maintain persistence in a single-level memory. In such systems, at least one

more copy of data needs to be stored in addition to the real data, to maintain

multiversioning.

An exception of ensuring atomicity without multiversioning is when an update

can be completed instantaneously, typically with very small granularity of memory

stores. Examples of such cases are updating a single variable [69] or a memory

store of the granularity the same as the bus width [68, 94]. Unfortunately, these

studies do not provide any mechanisms that can be applied to in-place updates of

larger granularities.

2.4.2 Preserving Consistency by Ordering

Controlling write ordering is a primary mechanism to preserve consistency in ap-

plication programs. Ordering means that the order that updates become perma-

nent must match the order in which they are issued. A mismatch can happen

when processor caches and memory controllers reorder memory requests to opti-

mize performance. A persistent memory employs ordering control mechanisms to

prevent mismatch. Most previous persistent memory designs ensure the ordering

by write-through caching [69] or bypassing the processor caches entirely, flush,

memory fence [69, 71, 94], and msync operations, each imposing high performance

17

costs. With write-through caching, each memory store needs to wait until reach-

ing the main memory. Flush and memory fence mechanisms can cause a burst of

memory traffic and block subsequent memory stores. Furthermore, most previous

designs [69, 71, 94] employ instructions such as clflush, which flushes dirty cache

lines to ensure ordering, with a latency that can be up to several milliseconds.

Besides the long latency, flushing an entire cache can also evict the working sets of

other applications from the cache. BPFS [68] adopted an epoch barrier mechanism

to minimize the flush traffic, however at the cost of reduced durability strength

that leads to potential data loss.

Chapter 3

BARCH: Bandwidth-aware Hybrid

Cache Hierarchy Design for CMPs

While many design methods involved with new memory technologies endeavor to

reduce the off-chip memory access latency, our work focuses on reducing off-chip

bandwidth demand by employing hybrid on-chip memory hierarchy and reconfig-

uration. Figure 3.1(a) depicts an overview of our BARCH design. We examine

different memory technologies in terms of read and write access latencies, dynam-

ical energy, and bandwidth under dynamic energy constraint. The bandwidth-

capacity curves of different memory technologies are shown in Figure 3.1(b). In a

given range of capacities, one memory technology may provide the highest band-

width. However, we cannot find a single memory technology that always maintain

the highest bandwidth over the whole range of capacities. Based on this observa-

tion, we employ hybrid memory technologies in BARCH. At each level of cache,

we select the memory technology which provides the highest bandwidth within a

specific capacity range. The overall bandwidth-capacity curve of BARCH is main-

tained to be the highest across the whole capacity range, shown in the solid curve

in Figure 3.1(b).

In addition, we dynamically adapt the cache hierarchy according to the band-

width demand of different applications. The total cache space at each level is

partitioned to a set of fast ways and slow ways. During run-time, we examine

the bandwidth demand of individual application at each execution time interval.

Cache space at each level is tailored according to the bandwidth demand. In order

19

Figure 3.1. Overview of the hardware configuration. (a) Configuration of reconfigurable
hybrid cache hierarchy. (b) The overall bandwidth-capacity curve of the hybrid cache
hierarchy (a generic case of Figure 3.3).

to facilitate the reconfiguration, we design a statistical prediction engine to collect

the bandwidth demands of applications at the end of each execution time inter-

val, and predict the bandwidth demands for the next time interval. Rather than

conventional last value or history table based predictors, we present a probability-

based statistical predictor which can achieve high accuracy with small performance

and area overhead.

3.1 Latency, Energy, and Bandwidth of Various

Memory Technologies

First of all, we examine the latency, dynamic energy, and bandwidth of different

memory technologies, including SRAM, STT-MRAM, ReRAM, and eDRAM. Be-

20

6
4
K
B

1
2
8
K
B

2
5
6
K
B

5
1
2
K
B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G
B

0

5

10

SRAM eDRAM STT-RAM RRAM

Capacity

ln
(L

a
te

n
c
y
) ,

 n
s

6
4
K
B

1
2
8
K
B

2
5
6
K
B

5
1
2
K
B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G
B

0

5

10

SRAM eDRAM STT-RAM RRAM

Capacity
ln

(R
e
a
d
 L

a
te

n
c
y
),

 n
s

(a)

(b)

6
4
K
B

1
2
8
K
B

2
5
6
K
B

5
1
2
K
B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G
B

-5

0

5

SRAM STT-RAM RRAM eDRAM

Capacity

ln
(D

y
n
a
m

ic
 E

n
e
rg

y
),

 n
J

(c)

Figure 3.2. Latency, bandwidth, and dynamic energy of different memory technologies.
(a) Read latency. (b) Latency with 40% of write intensity. (c) Dynamic energy with
40% of write intensity.

cause PCRAM has serious endurance issues, we do not consider it as an on-chip

memory candidate. We use NVSim [95], a circuit level performance, energy, and

area estimation tool, to evaluate different memory technologies.

Latency: The read and write latencies of the two NVRAMs, STT-MRAM and

ReRAM, are asymmetric. The write latency is much higher than read. Therefore,

21

we consider the read and write latencies separately. The read latency (dr) is

evaluated using the following equation:

dr = dHti + dwl + dbl + dcomp + dHto (3.1)

where dHti and dHto are H-tree input and output delays that determined by the

RC delay of global wires, dwl is decoder and word-line delay, dbl is bit-line and

sense amplifier delay, dcomp is comparator delay related to the read noise margin of

memory cell that is affected by off/on resistance ratio, and dHto is H-tree output

delay. Figure 3.2(a) illustrates the read latency of different memories as a function

of memory capacity with both x- and y-values in log scale. Sensing delay dominates

the read latency of the two NVRAMs at small capacities. Therefore, STT-MRAM

and ReRAM do not show any advantages in read latency. When H-tree delay

unveils at large capacities, ReRAM (with the smallest cell size) becomes faster

than other memory technologies. The read latency of SRAM will increase rapidly

after 128MB due to the large area. The write latency of NVRAMs is dominated

by the write pulse width. We evaluate the write pulse of 10ns, 20ns, and 100ns for

STT-MRAM and ReRAM. When the cache size is small (less than 4MB), the write

latency of the two NVRAMs are much higher than SRAM and eDRAM. As the

capacity grows to larger than 128MB, the write latency of SRAM becomes higher

than the NVRAMs again due to the large area. Fortunately, the write intensity of

most applications is lower than 40%. We inject 40% of write intensity, and obtain

the latency curves of different memory technologies as shown in Figure 3.2(b).

The curves meet each other at different capacities. The key observation is that

the latency benefit of STT-MRAM, eDRAM and ReRAM starts to show at large

capacities. We examine the latency curves with other write intensities, and observe

similar pattern.

Dynamic energy: Figure 3.2(c) demonstrates the dynamic energy of different

memory technologies with 40% write intensity. The first crossing point locates

between SRAM and STT-MRAM at the capacity around 2MB. STT-MRAM con-

sumes lower dynamic energy than SRAM after this cross point. The curves of

SRAM and eDRAM cross at around the capacity of 16MB. The dynamic energy

of ReRAM keeps high until hits the curve of the SRAM at the capacity of 1GB.

22

6
4
K
B

1
2
8
K
B

2
5
6
K
B

5
1
2
K
B

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G
B

4

5

6

7

8

9

10

11

SRAM STT-RAM RRAM eDRAM

Capacity

ln
(B

W
),

 M
B

/s

Figure 3.3. Bandwidth-capacity curves of different memory technologies under dynamic
energy constraint (with 40% of write intensity).

Bandwidth under energy constraint We estimate the read and write band-

widths that can be provided by different memory technologies based on our latency

and dynamic energy evaluations. The access power of a cache is approximately pro-

portional to bandwidth×√capacity [96]. Figure 3.3 shows the bandwidth curves

estimated under the energy constraint based on this relationship. In this figure,

the curves meet each other at different memory capacities. For example, the curves

of SRAM and STT-MRAM cross each other at around 2MB, and eDRAM provides

the highest bandwidth after 16MB. Therefore, a single technology can provide the

highest bandwidth within a given range of memory capacity. Based on our evalua-

tion of latency, energy, and bandwidth of different memory technologies, we select

SRAM, STT-MRAM, and eDRAM to construct our hybrid cache hierarchy. We

discard ReRAM due to its high dynamic energy and low endurance.

3.2 Hybrid Cache Hierarchy

The goal of our hybrid cache hierarchy design is to leverage different memory tech-

nologies to configure an on-chip memory system with optimal available bandwidth

23

at each level with various capacities. The on-chip memory system will therefore

always keep high bandwidth over the whole range of capacities.

As shown in Figure 3.1(a), the baseline CMP system consists of multiple cores,

where the L1 caches are private to each core and the lower level caches are shared by

the cores. With the bandwidth-capacity curves of various memory technologies, we

can optimize the bandwidth provided by the cache hierarchy with hybrid memory

technologies. To achieve this goal, we configure the cache hierarchy based on the

following factors.

Number of levels: Figure 3.1(b) is a sketch of Figure 3.3. In our case, “Mem

Tech” 1, 2, and 3 are SRAM, STT-MRAM, and eDRAM respectively. We can

observe two crossing points (SRAM and STT-MRAM, STT-MRAM and eDRAM)

of the bandwidth-capacity curves, dividing the capacity range into three regions.

Based on this observation, we configure the shared cache hierarchy as three levels.

Each level of cache is implemented with the memory technology that provides the

highest bandwidth in a specific capacity range. As a result, the overall bandwidth-

capacity curve of the shared cache hierarchy is the solid curve (“Hybrid”) in Fig-

ure 3.1(b).

Memory technology of each level: At each cache level, we select the memory

technology providing the highest bandwidth within the range of capacities between

the two crossing points in bandwidth-capacity curve. In our case, SRAM, STT-

MRAM, and eDRAM are selected as the L2, L3, and L4 caches respectively.

Capacity of each level: The total capacity of each level is determined by the

crossing point of the bandwidth curve of two memory technologies. For example,

the overall capacity of SRAM/L2 is 2MB, since the curves of SRAM and STT-

MRAM meet between the capacities of 2MB and 4MB. The total capacity of STT-

MRAM/L3 is 16MB. We limit the capacity of eDRAM/L4 to be 64MB to avoid

high area and energy overhead. Each level of cache is configured to be multiple

banks the same way as the conventional cache design.

24

3.3 Reconfiguration

Although the above hybrid memory configuration maintains the optimal provided

bandwidth over the whole range of capacities, it does not guarantee the best per-

formance of different applications with a variety of bandwidth demands. Smaller

caches provide higher bandwidth. However, the smaller the capacity, the less pro-

portion of the working set can be fit into such limited cache space. As a result, the

application may create very high bandwidth demand to the next level of cache.

Consequently, we reconfigure the each level of caches at run-time adaptive to the

bandwidth demands and the working set sizes of different applications, and balance

the available and demanded bandwidth at each cache level.

In order to reconfigure the cache spaces, we further divide the overall cache

space at each level into a set of fast ways and slow ways, which are defined as

“partitions”. The faster partitions will provide higher bandwidth, but smaller ca-

pacities. During system initialization, we configure the cache system to provide the

highest available bandwidth. Only the fastest partitions are activated. The rest of

the cache space is sent into drowsy state [97]. During run-time, we re-adjust the

cache capacities, and activate the slower partitions according to the demand band-

width of specific applications. The bandwidth-capacity curve of the hybrid cache

hierarchy appears to be monotonically decreasing as depicted in Figure 3.1(b). At

a specific time point, the demanding bandwidth of an application at each cache

level can be mapped to a single point on the curve. Accordingly, we can reconfigure

each level of cache to the available size that is the closest to the capacity point

corresponding to the demanded bandwidth.

Reconfiguration is applied at the end of each evaluation time interval. The

length of the time interval can be fixed, or depends on the operating system con-

text switch. At the end of a time interval, we determine the upper bound of

the capacity at cache level-i (su
i) by mapping the demand bandwidth (DBW) of

a specific application to the hybrid cache hierarchy’s bandwidth-capacity curve,

i.e., su
i = f−1(DBWi) where f(x) represents the bandwidth-capacity relationship

of the hybrid cache hierarchy. DBW is measured by miss per second at previous

level of cache, i.e., CmBl/t where Cm and Bl are number of cache miss and cache

line size respectively. DBWi is generated using the prediction engine, which will

25

be presented in section 3.4. In theory, higher bandwidth provided by the mem-

ory system increases both the throughput and power consumption of computing

systems. Therefore, we define a lower bound to the capacity of cache level-i as

sl
i = f−1(DBWi ∗ (1+σ)), where σ is a pre-defined threshold to constrain the pro-

vided bandwidth with limited power overhead. The capacity of cache level-i (si)

is thus selected in the range of sl
i ≤ si ≤ su

i . In addition, one or more partitions

at cache level-i can be configured to become level-i.5 as shown in Figure 3.1(a).

This may happen when the demand capacity at cache level-(i+1) is detected to be

smaller than the available free space at level-i. In this case, the primary miss path

at level-i is re-directed to level-i.5.

Our reconfigurable design exploits set associativity in conventional cache orga-

nizations. One merit of such design is the trivial modification to existing cache

architecture, since the division of ways already presents in a conventional cache

organization. An n-way set associative cache consists of n data and tag arrays.

We divide the each level of cache into partitions of fast ways and slow ways at the

granularity of the k-ways, where k is determined by the available capacity range of

the cache level. Reconfiguration will not affect the bits of the address fields that

are used as tag, index, and block offset bits. Modifications to the conventional

cache architecture include:

• Memory status vector A set of memory status vectors are stored in each

level of cache. A single 2-bit entry in the vector represents the current status

of the corresponding partition (active, drowsy, or configured as level-i.5).

• Input and output paths The input and output data paths are duplicated

to accommodate multiple active partitions in a single cache level.

• Additional multiplexers The reconfiguration also requires additional wiring

and multiplexers at address decoders and tag comparators.

3.4 Prediction Engine

Memory reconfiguration relies on accurate predictions of bandwidth demand of a

workload to address the dynamically varying application characteristics. Conven-

26

ALGORITHM 1: Statistical prediction algorithm

Require: The new demand bandwidth sample w̃i in time interval i.
Ensure: The prediction of demand bandwidth wi+1 in the next time interval i + 1.
1: Normalize the new sample to one of quantization bins as wi;
2: Update the two counters c(wi

i−2) and c(wi−1

i−2
) with wi;

3: if !hitPattern(s← wi−l+1..wi) then

4: Add an new entry s into pattern table;
5: p(s)← calcProbability(s, c(wi

i−2), c(w
i−1

i−2
);

6: else

7: p(s)← calcProbability(s, c(wi
i−2), c(w

i−1

i−2
);

8: end if

9: k ← indexOfMaxProbability(p)
10: wi+1 ← patternTable[k][l]

tional last value or table based predictors can model neither long range patterns

of an application nor patterns with variable lengths. In this work, we employ a

statistical predictor to support the BARCH design. The basic idea of the pre-

dictor is similar to the n-Gram models, which are typically used by speech and

natural language processing [98]. The n-gram models are usually formulated as a

probability distribution p(s) over a sequence of strings s, and attempt to reflect

how frequently s occurs as a sentence. Prediction on a reasonable combination of

strings is then generated based on the probability distribution. Our predictor em-

ploys the same basic idea, but with significantly different implementation details.

While language modeling is built from a set of previous collected training sentences

with finite lengths, our statistical model needs to be able to dynamically generate

predictions based on a continuous sequence of metrics. In addition, we can only

implement limited resolution for the metrics. Therefore, we need to normalize the

demanded bandwidth values with a limited number of quantization bins. In our

model, each demanded bandwidth (DBW) sample obtained in a time interval is

analogous to a string in language, and a given length (the “order”) of samples is

stored in a table as a pattern. At each time interval, the prediction engine will

update the pattern table with the new DBW sample, and calculate probability of

the updated pattern. Using the chain rule, the probability of a pattern s of length

l can be calculated without loss as the product of conditional probabilities as the

equation shown below.

27

Figure 3.4. Components of the prediction engine include the pattern table, the proba-
bility vector, and an array of counters.

p(s) = p(w1)p(w2|w1)...p(wl|w1...wl−1) (3.2)

where wl is the DBW sample obtained in current time interval, and w1 through

wl−1 are the preceding l − 1 DBW samples. Equation 3.2 can be represented as

p(s) =
l

∏

i=1

p(wi|w1...wi−1) (3.3)

In n-gram models, we make the approximation that each conditional probability

only depends on the preceding n− 1 samples and obtain the following equation.

p(s) =
l

∏

i=1

p(wi|wi−1

i−n+1) (3.4)

in which wi−1

i−n+1 denotes the sequence of wi−n+1...wi−1. In order to compute the

result of Equation 3.4, an estimation of of p(wi|wi−1

i−n+1) can be generated using

maximum likelihood estimation (MLE). In n-gram models, the widely-used largest

n is n=3, and induces a trigram model. We evaluate the prediction accuracy with

different n values, and demonstrate that the trigram model can achieve reason-

28

Figure 3.5. The control flow of the prediction engine.

Table 3.1. Prediction accuracy for different widths of the pattern table

Benchmark
Width of Pattern Table

12 10 9 8 7
canneal 100% 34% 34% 33% 31%
facesim 98% 30% 21% 19% 15%
streamcluster 100% 44% 42% 40% 33%
astar 100% 100% 100% 37% 31%
bwaves 100% 100% 100% 31% 35%
gamess 100% 100% 100% 100% 100%
GemsFDTD 100% 100% 100% 100% 100%
lbm 100% 100% 100% 56% 62%
mcf 100% 100% 100% 97% 49%
perlbench 100% 100% 100% 100% 100%
wrf 100% 100% 100% 100% 100%
zeusmp 100% 100% 100% 100% 100%

able high accuracy. Therefore, we adopt n=3 in our predictor. Each conditional

probability is calculated using MLE in Equation 3.5.

p̂(wi|wi−1

i−n+1) =
c(wi

i−2)

c(wi−1

i−2)
(3.5)

where c(wb
a) is the number of times that the sequence wa..wb appears in preceding

samples. The bandwidth demand of the next time interval is predicted to be the

last value in the pattern with the highest probability.

Figure 3.4 shows the hardware components of our prediction engine, which

includes a pattern look-up-table, a probability vector, and a set of counters. Fig-

ure 3.5 describes the control flow of our predictor. The prediction algorithm is

described in Algorithm 1. The predictor can catch a pattern of different lengths.

29

As shown in Figure 3.4, all the shaded entries in the pattern table can be predic-

tion candidates. If the predictor cannot match a pattern of the maximum available

length, it will try to match the patterns with lower orders.

3.4.1 Prediction Accuracy

Table 3.1 lists the accuracy of the prediction engine applied to both multithreaded

and single-threaded benchmarks. The DBW values are normalized using 20 quan-

tization bins. Based on our evaluation, the primary parameter that affect the

prediction accuracy is the width (order) of the pattern table. By storing longer

patterns, the predictor is less likely perturbed by a single deviated sample. As il-

lustrated in Table 3.1, our predictor achieves almost 100% accuracy with the order

of 12. Multithreaded applications, such as canneal, facesim, and streamcluster,

tend to favor higher orders than single-threaded benchmarks. Even with the order

of 9, the predictor is still 100% accurate with 9 out of 12 benchmarks.

3.4.2 Storage Overhead

Wider pattern tables lead to higher prediction accuracy, but also incur more storage

and performance overhead. To balance between the prediction accuracy and the

overhead, we configure the width of the pattern table at each cache level to be 12,

which guarantees almost 100% prediction accuracy with most of the applications.

Each probability entry is a 64-bit floating point value. The counter array is 3-byte

wide. The lengths of the pattern table and counter array are fixed to 240. The

storage overhead at each cache level is listed in Table 3.2. The prediction engine

requires only 6KB of storage at each cache level.

Table 3.2. Storage overhead of the prediction engine.

Component Width Length Storage

Pattern Table 12-byte 240 3KB
Probability Vector 8-byte 240 2KB
Counter Vector 3-byte 240 1KB

30

3.4.3 Computational overhead

The computational complexity of our prediction algorithm is O(ql), where q is the

number of quantization bins. The computational time of generating a prediction

is bounded by the size of the pattern table and the limited quantization bins. The

overall computational overhead is constrained to be on the order of microseconds.

Therefore, the prediction algorithm can be implemented by operating system dur-

ing context switch without explicit performance overhead.

3.5 Experiments

This section shows experimental results for system performance improvement with

the our novel BARCH design.

3.5.1 Experimental Setup

We use Simics [99] as the simulator to run our experiments. It is configured

to model a four-core CMP. Each core is in-order, and is similar to UltraSPARC

III architecture. Since our design focuses on shared on-chip memories, we fix

the private L1 caches to be 16KB and SRAM-based. Table 3.3 lists the detailed

parameters.

We simulate both multithreaded and multiprogrammed workloads. We se-

lected the multithreaded applications with large working sets from PARSEC bench-

mark suite [100], which consists of emerging workloads designed to represent next-

generation shared-memory programs for CMPs. Multithreaded benchmarks from

SPEC OMP2001 [101] are also evaluated. The multiprogrammed workloads are

selected from SPEC CPU2006 benchmark suite [102]. Since the performance of

Table 3.3. Baseline CMP configuration.

No. of cores 4
Configuration 1GHz, in-order, 14-stage pipeline
Private L1 SRAM, 64B line, size 64KB

Shared caches
SRAM/STT-MRAM/eDRAM/ReRAM,

64B line, 1 to 3 levels,
size of 512KB to 64MB

Main memory 4GB

31

Table 3.4. Characteristics of selected benchmarks. I’06 and F’06 represent the SPEC
CPU2006 integer and floating point benchmarks respectively.

Benchmarks Benchmark Suite Multithreaded Write% PDBW

canneal (CL) PARSEC Y 31.4% 791 MB/s
facesim (FS) PARSEC Y 30% 572 MB/s
streamcluster (SC) PARSEC Y 0.6% 552 MB/s
mgrid (MG) SPEC OMP2001 Y 3.6% 562 MB/s
swim (SW) SPEC OMP2001 Y 3.6% 643 MB/s
wupwise (WW) SPEC OMP2001 Y 4% 536 MB/s
astar I’06 N 38% 4.1 GB/s
bwaves F’06 N 24.5% 2.5 GB/s
gamess I’06 N 28.4% 1.1 GB/s
GemsFDTD F’06 N 30.5% 2.6 GB/s
lbm F’06 N 42.2% 3.9 GB/s
mcf I’06 N 26.2% 1.8 GB/s
wrf F’06 N 25.1% 2.6 GB/s
zeusmp F’06 N 5.5% 3 GB/s

different memory technologies are closely related to read and write intensities, we

selected some workloads that vary in the L2 cache write intensity (Write%) and

peak demand bandwidth (PDBW), which are listed in Table 4.3.

Table 3.5. Multithreaded and multiprogrammed workload sets.

Abbreviation Workload Sets

Multithreaded

CL canneal
FS facesim
SC streamcluster
MG mgrid
SW swim
WW wupwise

Multiprogrammed

M1 sphinx3+astar+lbm+zeusmp
M2 wrf+GemsFDTD+bwaves+mcf
M3 perlbench+milc+gamess+sphinx3
M4 sphinx3+wrf+perlbench+astar
M5 gamess+milc+perlbench+mcf
M6 mcf+milc+lbm+gamess
M7 perlbench+lbm+astar+milc
M8 zeusmp+bwaves+wrf+mcf

We evaluate the shared cache hierarchy in four different cases: pure SRAM-

based L2 cache with fixed capacity (SRAM.fix), hybrid L2/L3/L4 caches with

fixed maximum available capacity at each level (hybrid.fix), hybrid reconfigurable

caches (hybrid.rfg), and hybrid reconfigurable caches with workload partition (hy-

brid.par). SRAM.fix is the baseline. The case of hybrid.par is only applied to mul-

32

CL FS SC MG SW WW GM

0

0.5

1

1.5

2

2.5
hybrid.fix hybrid.rfg

T
h

ro
u

g
h

p
u

t
In

c
re

a
s
e

Figure 3.6. Performance improvement of multithreaded workloads, evaluated in terms
of throughput, i.e., the number of executed instructions per second.

tiprogrammed workloads. With hybrid.par, we partition the shared cache space

according to the specific demanding bandwidth of each individual application in

a workload set. The metric we evaluate is the throughput, which is the executed

instructions per second. With PARSEC multithreaded workloads, we evaluate

the result obtained within the region of interest (ROI) defined in each benchmark

source code. With SPEC OMP2001 and SPEC CPU2006 applications, we warm

up the caches with 500 million instructions and then evaluate the next 1 billion

cycles.

3.5.2 Results

This section shows our experimental results and explain the reasons leading to

these results.

Multithreaded workloads: Figure 3.6 shows the results of throughput improve-

ment with multithreaded benchmarks, where throughput is the number of executed

instructions per second. Throughput of each configuration is compared to the case

when only SRAM-based L2 cache is present in CMP system. As illustrated in

Figure 3.6, hybrid.fix does not help much to improve the performance of most

multithreaded workloads. With large capacity at each level, the provided band-

width of the cache hierarchy is also fixed in a low level. Many multithreaded

workloads do not require large caches. Smaller cache sizes are sufficient to ac-

commodate their working sets. With hybrid.rfg, we tailor the cache capacities

33

M1 M2 M3 M4 M5 M6 M7 M8 GM

0

0.2

0.4

0.6

0.8

1

1.2

1.4
hybrid.fix hybrid.rfg hybrid.par

T
h

ro
u

g
h

p
u

t
In

c
re

a
s
e

Figure 3.7. Performance improvement with multiprogrammed workloads, evaluated in
terms of throughput, i.e., the number of executed instructions per second.

according to the demand of each workload. The results show that hybrid.rfg im-

proves the throughput of all the evaluated benchmarks. The geometric mean of

the performance improvement achieves 58%.

Multiprogrammed workloads: With multiprogrammed workloads, each pro-

cessor core executes one benchmark workload. Figure 3.7 illustrates the perfor-

mance improvement of different cache hierarchy configurations. The configurations

of hybrid.fix and hybrid.rfg do not improve the throughput. In fact, both configu-

rations result in performance degradation with most of workload sets. One possible

reason leading to the performance degradation of hybrid.fix is that the multipro-

grammed workloads have high bandwidth demand. The provided bandwidth of

hybrid.fix is maintained in a relatively low level. With hybrid.rfg, a factor to af-

fect the performance is the reconfiguration time. The reconfiguration controller

consumes additional cycles at each time interval. Another reason that leads to the

performance degradation of both hybrid.fix and hybrid.rfg is contention between

the working sets of different workloads. The only configuration that improves

throughput is hybrid.par. The primary benefit of hybrid.par is to minimize con-

tention. At each time interval, each workload is partitioned to a separate cache

space according to individual requirement. If all the workloads in a multipro-

grammed workload have stable working sets, the partition is also stable. Different

workloads are less likely to compete with each other for cache space. Another

benefit is that the cache hierarchy is reconfigured to fit each individual work-

load rather than the whole workload set. Different from multithreaded workloads,

34

which have relatively balanced requirement with each thread, different workloads

in a multiprogrammed workload set have different bandwidth demand. It is unfair

to tune the cache hierarchy according to the overall bandwidth demand. Rather

than global tuning the cache hierarchy, reconfiguring each partition with individual

workloads is much more flexible. Overall, the geometric mean of throughput im-

provement with hybrid.par is 14%. Based on the experimental results, hybrid.par

can be selected as reconfiguration scheme with multiprogrammed workloads.

3.6 Summary

This chapter proposed a bandwidth-aware reconfigurable cache hierarchy design

with hybrid memory technologies, including traditional SRAM, eDRAM, and emerg-

ing NVRAMs. The design consists of a hybrid cache hierarchy, reconfiguration

mechanisms, and a prediction engine. The hybrid cache hierarchy leverages differ-

ent memory technologies to provide an optimized bandwidth-capacity curve to the

on-chip portion of the memory hierarchy, which effectively reduces the bandwidth

demand to the off-chip main memory. On top of the hardware substrate of such a

hybrid cache hierarchy, we dynamically reconfigure the cache capacity at each level

adaptive to the bandwidth demands of different applications. We also present an

accurate statistical prediction engine to facilitate such reconfiguration. We evalu-

ate the proposed design method with both multithreaded and multiprogrammed

workloads. Experimental results show that reconfigurable hybrid cache leads to

58% and 14% performance improvements to multithreaded and multiprogrammed

workloads, respectively.

Chapter 4

Energy-Efficient Graphics Memory

Design

The increasing computational power of modern GPUs makes it a commonly used

solution for high-performance computing by employing hundreds of processing

units and thousands of in-flight threads [11, 12]. Although the bandwidth of graph-

ics memories continues to increase in recent years, the energy efficiency of graphics

memories is decreasing due to an increasingly significant portion of power in GPU

systems.

Various previous work explored how to address the GPU power challenge [103,

104, 105, 106, 107, 108]. Gebhart et al. investigated register file caching and multi-

level thread scheduling to reduce the number of accesses to large register files to

reduce power [103]. SRAM-DRAM hybrid memory technology was exploited by

Yu et al. to reduce the area and power consumption of GPU register files [104]. In

their work, embedded DRAM (eDRAM) with a higher density than SRAM is used

to store multiple copies of register file data. Wang et al. proposed the predictive

shader shutdown technique to exploit workload variations across frames for leak-

age reduction of GPU shader processors [108]. Software optimization was studied

by Ren et al. to improve the GPU power efficiency by modifying matrix multipli-

cation algorithms [105]. Most of the existing studies explore either GPU shader

cores and caches architecture, or software optimization, and require both hard-

ware and software modifications to current GPU processor design. In our work,

we explore power reduction techniques by limiting the architectural modifications

36

to the graphics memory interface with only minor changes to GPU compute-unit

architecture.

Most existing mechanisms seeking to save power consumption of GPU sys-

tems focused on leveraging idle states of GPU cores [109, 110] and graphics mem-

ory [111]. How to actively tune the VF states of GPU systems remains an open

question. A large body of previous work has studied CPU system power manage-

ment with DVFS techniques. Most of these studies focused on DVFS of only CPU

cores [112, 113, 114, 115]. Recent work [116, 117] showed that DVFS on memory

provides substantial energy savings. Very few work studied coordinated DVFS for

power management of the entire system including CPU processor and memory sub-

system. CoScale [118] explored power management mechanisms by coordinating

DVFS of CPU and memory subsystem under performance constraints. However,

CoScale [118] implemented its DVFS algorithm in operating system (OS) with a

typical reconfiguration interval corresponding to an OS time quantum (5 millisec-

onds). Directly adopting the CoScale [118] method in GPU systems will require

even longer reconfiguration intervals, because the DVFS algorithm that executes

on the host CPU will need to communicate with GPU through PCIe interface with

a very long turn-around latency.

The emergence of various NVRAM technologies provides promising memory

system solutions with non-volatility and low power consumption. Our study of

various GPU workloads shows that only a portion of data (less than 50% for 10

out of 20 studied application) is frequently accessed during run-time. Therefore,

the data that is infrequently accessed and of low write intensity can be stored in

NVRAM and managed in standby mode with near-zero power consumption. In

this chapter, we propose a hybrid graphics memory design, mixing DRAM, STT-

MRAM, and ReRAM. It can provide higher memory bandwidth and consumes less

power than the traditional GDDR5 memory. Replacing part of the DRAM with

a NVRAM partition, the hybrid graphics memory can run at a higher frequency

and thus provide higher peak memory bandwidth. By migrating the read-only and

infrequently-accessed data in the NVRAM partition, the hybrid memory system

also consumes less power than conventional GDDR5 memory. Although NVRAM

has a longer write latency than DRAM, our study indicates that the memory access

patterns of GPU workloads can naturally hide such latency. In order to save the

37

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G
B

1

10

100
Bandwidth (GB/s), 40% Writes

DRAM STT-RAM RRAM

(a)

(b) (c)

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G
B

1

10

100

1000
DRAM STT-RAM(read) STT-RAM(write)

RRAM(read) RRAM(write)

L
a
te

n
c
y
 (

n
s
)

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G
B

10

100

1000
Dynamic Power (mW), 40% Writes

DRAM STT-RAM RRAM

Figure 4.1. (a) Latency, (b) provided bandwidth (PBW), and (c) dynamic power of
different memory technologies with respect to different capacities.

memory power without much performance degradation, we propose an adaptive

data migration mechanism, leveraging different memory access patterns of different

GPGPU workloads.

4.1 Motivation

We evaluate the provided bandwidth (PBW) and power consumption of DRAM,

STT-MRAM, and ReRAM. NVRAMs appear to have significant power benefits,

but lower PBW than DRAM. Our hybrid memory hardware configuration is built

based on these bandwidth and power characteristics. We also study the memory

access patterns of various GPU applications, based on which we develop our energy-

efficient adaptive data migration mechanism.

38

4.1.1 Characteristics of Various Memory Technologies

We use NVSim [95], a circuit level memory model, to evaluate the performance,

bandwidth, and power of the three memory technologies of DRAM, STT-MRAM,

and ReRAM. Figure 4.1 and 4.2 illustrate the results. At each memory capacity,

the memory bank and mat organizations are optimized for read latency to min-

imize the dynamic power consumption. We only show bandwidth and dynamic

power at 40% write intensity, the maximum write intensity observed from the

GPU applications we studied.

1
M

B

2
M

B

4
M

B

8
M

B

1
6
M

B

3
2
M

B

6
4
M

B

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G
B

100

1000

10000

100000
Leakage Power (mW)

DRAM STT-RAM RRAM

Figure 4.2. Leakage power of different memory technologies with respect to various
capacities.

Latency and bandwidth: Figure 4.1(a) shows that DRAM has the lowest read

and write latencies among the three memory technologies. The read latency of

ReRAM is lower than STT-MRAM, and is comparable with DRAM at large capac-

ities. For example, ReRAM only incurs 2ns additional read latency than DRAM at

128MB. Although with higher read latency, STT-MRAM has lower write latency

than ReRAM across all capacities. Figure 4.1(b) shows the PBW curves. Due to

long write latency, the average PBW of ReRAM and STT-MRAM is only 50% and

30% that of DRAM.

Power: Due to the low access current, the dynamic power of ReRAM is lower

than DRAM. As shown in Figure 4.1(c), ReRAM consumes 17% dynamic power

less than that of DRAM at the capacities larger than 128MB. Figure 4.2 illustrates

the leakage power of different memory technologies. On average, the leakage power

of STT-MRAM and ReRAM is only 37% and 48% that of DRAM. In addition,

39

Figure 4.3. The pattern of “interleaved access”.

Figure 4.4. The pattern of “access then idle”. Can also observe the “burst” pattern
during the access period.

due to the non-volatile nature, we can obtain near-zero standby power by power

gating the idle portions STT-MRAM and ReRAM. Overall, we can not find a

single winner from the perspective of both performance and power. DRAM has

the best PBW among the three memory technologies. However, the two NVRAMs

have significant power benefits.

Based on such observation, we adopt hybrid memory design to combine the

benefits of high PBW of DRAM and low power consumption of NVRAMs.

4.1.2 Memory Access Patterns of GPGPU Workloads

We examined various GPGPU workloads on the baseline GPU system with GDDR5

graphics memory (Section 6.7), and observe three memory access patterns,

namely “interleaved access”, “access then idle”, and “burst”.

Interleaved access: Figure 4.3 demonstrates the pattern of “interleaved access”.

Here we sort the memory accesses based on ascendant order of DRAM row address.

The x-axis is the index of memory accesses. The figure on the first row represents

40

the cycle of each memory access. The figure on the second row represents the

row that is accessed by each memory request. For example, the 550000th memory

access is from the row 2051 at cycle 40000. Figure 4.3 shows that row 2051 is ac-

cessed during the entire application execution. However, we can observe three idle

periods that are twice as long as the time when the row being accessed. Although

not shown in the figure, we also observe that a significant 5

6
of memory access is

read-only. This portion of data may be corresponding to constant or texture data

in GPU applications. Since ReRAM only incur small read latency penalty, we can

maintain this portion of data into ReRAM. We can reduce the memory power by

powering off the memory space during the idle periods.

Access then idle: Figure 4.4 illustrates the pattern of “access then idle”. We can

observe that the memory rows between 2300 and 2320 are only accessed during the

initial time to the cycle 1,800,000. Afterward, this portion of memory becomes idle,

and never accessed again. Potentially, we can turn off this portion of memory to

save power. This is impossible with pure DRAM based memory. With NVRAMs,

however, it is feasible to standby some portions of memory space.

Burst: The “burst” pattern represents frequently accesses during the entire ex-

ecution time. It can be observed during the access period of both “interleaved

access” and “access then idle” patterns. For example, in Figure 4.4 row 2300 is in

“burst” state before cycle 2,400,000 is achieved. This portion of data needs to be

maintained in DRAM to minimize performance degradation.

4.2 Hybrid Graphics Memory Architecture

Figure 4.5 depicts an overview of our hybrid graphics memory design. We replace

half of the DRAM capacity with ReRAM and STT-MRAM. With half the capacity,

DRAM can provide up to 25% higher memory bandwidth by scaling up the clock

frequency. We migrate the read-only and infrequently accessed data to NVRAMs.

Due to the non-volatility, we can significantly reduce the memory power consump-

tion by powering off the idle NVRAM space. The hardware modification is limited

to the memory interface and controllers and no modification is required to the

internal structures of the GPU processors and the memory arrays.

41

Figure 4.5. Overview of GPU system with hybrid memory. (a) Conventional GPU
system with off-chip GDDRs. (b) GPU system with hybrid memory.

4.2.1 Hardware Configuration

Partitions of different memory technologies: Our hybrid graphics memory

consists of DRAM, ReRAM, and STT-MRAM partitions. Frequently accessed

data is maintained in the DRAM that has the highest PBW among the three

memory technologies. The two NVRAM partitions are used to store the data with

low access frequency. The idle rows in the NVRAM partitions are powered off.

Between the two NVRAMs, ReRAM is used to store data that is read-only or with

extremely low write intensity. Since STT-MRAM has better write performance

than ReRAM, it is used to store the infrequently accessed data with higher write

intensity.

Capacity of each partition: Our baseline GPU system (Section 6.7) employs

256MB DRAM per channel. In our hybrid graphics memory, we reduce the DRAM

capacity to 128MB per channel and replace the rest 128MB with ReRAM. This is

based on the observation that the dynamic power of DRAM is higher than ReRAM

at the capacities of higher than 128MB. In addition to power benefits, reducing

the DRAM capacity can also improve PBW. In Figure 4.1(b), we observe that the

PBW of DRAM at 128MB is 1.25× that of 256MB. We adopt 8MB STT-MRAM

per channel. This is based on the fact that the dynamic power of STT-MRAM

is the lowest among the three memory technologies at small capacities. The row

buffer size of different memory partitions are configured to be 256-bit, so that data

migration incurs minimum overhead in address mapping. The hybrid memory may

incur a small increased area (9mm2) compared to the baseline (45nm technology).

42

However, the increased memory area is only limited to the off-chip memory and

we do not expect high cost increase to the GPU system.

Memory interface: Figure 4.6 shows our memory interface configuration. As

shown in Figure 4.6, an additional bus of 32 bits is adopted to accommodate data

migration and NVRAM reads (data will be read out directly from the NVRAMs,

once it is migrated to the NVRAM partitions). GPU can read and write from

the DRAM partition. GPU can only read from the NVRAM partition. In our

experiments, we consider the additional I/O termination power incurred by this

modification and show the total system power is still reduced with such I/O over-

head. Furthermore, multiplexing is required to switch the reads between DRAM

and NVRAMs.

Memory controller: A NVRAM controller is integrated in the memory controller

to accommodate the data migration and manage the power mode of NVRAMs.

Components of the NVRAM controller include data migration buffers, read buffers,

and registers to store the memory idle states. We modify the memory controller

to facilitate data migration. Timers are employed to manage the idle state of

each DRAM row. Each row also has counters to collect memory access data. We

evaluated the area and power overhead of these timers and counters. For 32-bit

timers (counters), the total storage size will be 32.3KB (assume 2KB page size

(row-buffer size) as same as the baseline GDDR5). This is negligible in a memory

system of 256MB. An address mapping table is used to store the new address after

a row is migrated from DRAM to NVRAMs.

4.2.2 Data Migration Mechanism

Our data migration algorithm is implemented in the memory controllers. The goal

of our data migration mechanism is to improve the system energy efficiency, i.e.,

to reduce the memory power consumption with low performance degradation. Fig-

ure 4.6 illustrates the data flow between memory controller and hybrid memory.

The overall idea is to store the idle data in NVRAMs in powered-off state, and

maintain the frequently accessed data in DRAM. Based on our GPU workload

characterization, we find the opportunity of data migration in both “access and

idle” and “interleaved access” patterns. With “access then idle”, it is straight-

43

Figure 4.6. Memory interface configuration and data flow between memory controller
and hybrid memory.

forward to start migration once a row becomes idle. With “interleaved access”,

however, the start point of data migration needs to be carefully determined. To

obtain sufficient energy benefit from data migration, the idle time need to be suf-

ficiently long. Otherwise, the GPU system may suffer significant performance loss

due to the low PBW of NVRAMs and NVRAM lifetime will be reduced. Our data

migration mechanism is illustrated in Figure 4.7 and 4.8.

Figure 4.7. The loop of DRAM access management.

Figure 4.7 is the loop of DRAM access management. At each DRAM access,

we update the access counters and the row timer, based on the types of accesses.

Figure 4.8 shows the mechanism to determine the start point of data migration.

We do not immediately initialize a data migration operation at a row time-out

44

Figure 4.8. Control of data migration.

event. Instead, data migration is determined by the memory access density within

a period of execution time. In this way, we avoid the GPU system performance

degradation incurred by unnecessary data migration and extend the NVRAM life-

time. Furthermore, we evaluate the write intensity to determine which NVRAM

space will be used. STT-MRAM is used when the write intensity is higher than a

pre-defined threshold to avoid high performance degradation incurred by frequent

data migration. Some applications may have extremely low memory intensity. The

power consumed by data migration may be higher than the DRAM dynamic power.

In this case, we disable data migration when the memory intensity is lower than

a threshold. To determine the power modes (standby or wake-up), we maintain a

timer for each row in NVRAMs. Once a time-out event is detected, we power off

the row. A read or migration request to the row will wake it up.

4.3 Experimental Setup

This section describes our simulation framework, the evaluated workloads, and our

GPU system power model.

45

Table 4.1. Baseline GPU configuration. The parameters of streaming multiproces-
sors (SMs), caches, and memory controllers.

Number of SMs 16 (574MHz Clock) Warp Size 32
CTAs per SM 8 Threads per SM 1536
Shared Memory per SM 48KB Registers per SM 32768
L1 Caches per SM Texture: 12KB; DRAM Request 16

Data: 16KB Queue Size 16
Shared L2 Cache 768KB Memory Controllers 6 (FR-FCFS)

Table 4.2. DRAM configurations. Baseline is off-chip GDDR5 memory with 32-bit
bus width per chip. The maximum bus width of 3D die-stacked DRAM is 256-bit per
chip. The maximum clock frequency is 1.5GHz. The peak memory bandwidth of 3D
die-stacked DRAM can be changed by scaling down the bus width and clock frequency.

Memory Interface Baseline GDDR5 3D die-stacked DRAM
Clock Frequency 1.5GHz 375MHz - 1.5GHz
Bus Width per Chip 32 bits Maximum 256 bits
Bandwidth 144GB/s Maximum 720GB/s
Memory Timing tRAS=28ns, tRP =12ns, tRAS=22.4ns, tRP =9.6ns,

tRC=40ns, tRCD=12ns, tRC=32ns, tRCD=9.6ns,
tRRD=5.5ns tRRD=4.4ns

4.3.1 Simulation Framework

We use GPGPU-sim v.3.0 [119], a cycle accurate PTX-ISA simulator, to run our

experiments. The simulator models shader cores, texture caches, constant caches,

L1 caches, interconnection network, memory controllers, and DRAM memories.

Table 4.1 and Table 4.2 specify the configurations and parameters used in our

simulation. We assume the system is implemented with 40nm process technology.

We evaluate a GPU processor with 16 streaming multiprocessors (SMs). The SMs,

caches, and memories are configured based on NVIDIA Quadro R©6000 [12]. We

model a perfect crossbar interconnection network in the GPU processor with one-

cycle latency, so that the bandwidth demand at the processor-memory bus is not

limited by the network bandwidth. We modify the simulator to implement our

reconfiguration mechanisms.

Table 4.2 lists the DRAM configuration parameters used in our simulation.

Each memory controller has two DRAM channels. Therefore, we model a system

with in total 12 DRAM channels. The baseline is off-chip GDDR5 graphics mem-

ory with 32-bit bus width per chip and 1.5GHz clock frequency. This is in-line

with the GDDR5 memory used by NVIDIA Quadro R©6000 [12]. The low level

46

memory timing of the baseline is obtained from datasheet [120]. 3D die-stacked

memory latency is the sum of DRAM core access latency, silicon interposer pin

delay, intra-package wiring delay, and memory controller traversal delay. Our 3D

die-stacked memory employs 3D stacked DRAM dies. As reported in Tezzaron’s

datasheets [53], the access latency (tRC) of a five-layer DRAM is only 67.5% of that

of conventional 2D GDDR5 memories. Furthermore, the latency of signals passing

through silicon interposer can be reduced to 1/5 of that with standard I/Os [41].

Therefore with 3D die-stacked DRAMs, we conservatively assume 20% memory

latency reduction compared to off-chip GDDR5 memory. The refresh period of

off-chip DRAM is 64ms. To account for higher leakage rates due to higher temper-

ature operation, we assume a 32ms refresh period with 3D die-stacked DRAM. The

maximum bus width of each 3D die-stacked DRAM chip is 256 bits. We evaluated

the system energy efficiency with various peak memory bandwidths by varying

the configuration of memory interface (bus width, clock frequency, and supply

voltage). With the maximum clock frequency of 1.5GHz, 3D die-stacked graphics

memory can provide 1152GB/s peak memory bandwidth. In this dissertation, we

only evaluated up to 720GB/s peak memory bandwidth. This is sufficient to show

the benefit of our design.

4.3.2 Workloads

We evaluated various available GPU workloads from the NVIDIA CUDA SDK [121]

and Rodinia Benchmarks [122]. Table 4.3 lists the characteristics of our 26 work-

loads. The memory intensity of some applications, such as MC, MS, and BN, is

lower than 1.0. The three most memory-intensive benchmarks are KM, NW, and

BFS. We profiled our benchmarks by sweeping the instruction interval N from

one thousand to ten million. We found that we can catch the changes of mem-

ory intensity of all the benchmarks with one million instruction intervals. Further

reducing the instruction interval can incur performance overhead by frequently

invoking the reconfiguration algorithms without really reconfiguring the memory

interface. Therefore, we show the results with one million instruction interval in

Section 4.4.

47

Table 4.3. Characteristics of selected GPGPU benchmarks. (IC represents instruction
count. MI represents memory intensity.)

Abbrev. Benchmarks IC MI IPC Power

MC Monte Carlo [121] 1G 0.1 526 158W
MS Merge Sort [121] 2G 0.5 522 191W
BN Binomial Options [121] 11.8G 0.6 549 196W
CT Texture Convolution [121] 5.4G 1.0 565 217W
MM Matrix Multiplication [121] 836M 1.4 397 169W
SN Sorting Networks [121] 5.6G 1.5 484 158W
HS Hot Spot [122] 297M 1.7 375 127W
NE Nearest Neighbor [122] 47M 1.8 109 148W
PF Path Finder [122] 72M 2.3 196 183W
SLA Scan of Large Arrays [121] 15.4G 3.3 437 174W
DWT Discrete Wavelet Transform [122] 20M 3.4 411 152W
GS Gaussian Elimination [122] 9M 3.6 143 149W
HG Histogram [121] 5G 3.7 491 217W
64H 64bin Histogram [121] 25.8G 3.9 423 204W
CS Separable Convolution [121] 8G 4.1 428 212W
LUD LU Decomposition [122] 5.6G 4.8 150 161W
SD Speckle Reducing Anisotropic Diffusion [122] 2.4G 5.7 379 186W
BP Back Propagation [122] 190M 6.2 388 213W
CFD CFD Solver [122] 4.9G 8.5 187 197W
BLK BlackScholes Option Pricing [122] 9.5G 9.0 203 154W
FWT Fast Walsh Transform [121] 4.4G 12.2 209 129W
SC Streamcluster [122] 2.8G 15.2 191 199W
SP Scalar Product [121] 24M 19.0 259 163W
KM K-means [122] 6.1G 23.9 260 117W
NW Needleman Wunsch [122] 211M 27.6 29 173W
BFS Breadth First Search [122] 454M 81.9 62 140W

4.3.3 Power Model

We model system power consumption of three sub-components, including GPU

cores and caches, memory controllers, and DRAMs. We calculate the power of

GPU cores, caches and memory controllers based on the power model from Mc-

PAT [123]. We modify the power model to adapt to the configuration of GPU

processor. We add GPU-specific power components to the power model, including

warp schedulers and instruction buffers, the large register file, different types of

caches, and the shared memory. The dynamic instruction execution and memory

access information is fed into the power model to calculate the run-time power con-

sumption of each component. We calculate the DRAM power based on the power

model from Micron [15]. First of all, we calculate the maximum DRAM power

48

with different interface configurations offline, assuming 100% memory bandwidth

utility. The values are stored in the central controller. During the execution of

an application, we obtain its run-time memory access statistics, and calculate the

real-time power consumption. With 3D die-stacked DRAM, on-die termination re-

sistors can be eliminated [124]. Therefore, we only model the power consumption

of I/O drivers.

4.4 Results

This section shows evaluation results on system performance, power, and energy

efficiency with the our energy-efficient graphics memory design and explain the

reasons leading to these results.

Figure 4.9 to 4.12 show the power, performance, and energy efficiency with our

hybrid graphics memory design.

S
D
1

S
L
A

B
F
S

N
W

F
W

T

P
F

N
E

G
S

P
R
F

S
D
2

M
U
M

L
U
D

B
P

B
L
K

L
P
S

H
S

R
A
Y

S
T
O

A
E
S

B
N

G
M

0.0

0.5

1.0

1.5 Normalized System Throughput

Pure

DRAM

Figure 4.9. System throughput with hybrid graphics memory, normalized to baseline.

4.4.1 Throughput Improvement

We have shown that with half the capacity of the baseline DRAM, we can obtain up

to 25% PBW improvement by scaling up the DRAM clock frequency (Section 6.2).

We evaluate the system throughput, which is the number of executed instructions

per second, with our hybrid GPU memory architecture. As shown in Figure 4.9,

the most significant throughput improvement is obtained by applications with

high DBWs, such as SD1, SLA, and BFS. Although the average DBW of PRF

and MUM is lower than 10 GB/s, the two applications suffer very heavy memory

accesses with high DBW during a period of execution time. Therefore, increasing

49

the PBW can also improve the throughput with these two applications. The mean

throughput improvement with all the applications is 12%.

S
D

1

S
L
A

B
F
S

N
W

F
W

T

P
F

N
E

G
S

P
R

F

S
D

2

M
U

M

L
U

D

B
P

B
L
K

L
P
S

H
S

R
A
Y

S
T
O

A
E
S

B
N

G
M

0

0.2

0.4

0.6

0.8

1
hybrid memory GPU system

N
o

r
m

a
li
z
e

d
 P

o
w

e
r

Figure 4.10. Memory and system power consumption with hybrid graphics memory,
normalized to the baseline pure DRAM based graphics memory.

4.4.2 Power Savings

Increasing the DRAM clock incurs power overhead, since the supply voltage is

scaled up as well. However, the reduced DRAM capacity results in significant

leakage power reduction. The NVRAM partitions also reduces the memory power

consumption with low dynamic power and near-zero standby power. We observe

that both memory and system power consumption is reduced with all evaluated

applications. Figure 4.10 shows the power consumption of hybrid graphics mem-

ory and GPU system, normalized to the baseline with pure DRAM based graphics

memory. Our proposed design is more effective on savings system power with

applications that have higher bandwidth demands, such as SD1, SLA, and BFS,

because memory consumes a large portion of total system power for these applica-

tions. The mean savings of memory and system power consumptions are 31% and

16%, respectively.

4.4.3 Power Breakdown

We also studied the power breakdown of our hybrid graphics memory design. The

results are demonstrated in Figure 4.11. Here we do not show DRAM refresh

power, since the maximum of two refreshes are observed with various applications

and incur negligible (less than 1% of total memory power) power consumption.

50

S
D

1

S
L
A

B
F
S

N
W

F
W

T

P
F

N
E

G
S

P
R

F

S
D

2

M
U

M

L
U

D

B
P

B
L
K

L
P
S

H
S

R
A
Y

S
T
O

A
E
S

B
N

0%

20%

40%

60%

80%

100%

I/O termination

NVM leakage

NVM read

data migration

DRAM dynamic

DRAM leakage

P
o

w
e

r
 B

r
e

a
k

d
o

w
n

Figure 4.11. Power breakdown of hybrid graphics memory.

S
D
1

S
L
A

B
F
S

N
W

F
W

T

P
F

N
E

G
S

P
R
F

S
D
2

M
U
M

L
U
D

B
P

B
L
K

L
P
S

H
S

R
A
Y

S
T
O

A
E
S

B
N

G
M

0.0

0.4

0.8

1.2

1.6

Normalized System Energy Efficiency

Pure

DRAM

Figure 4.12. System energy efficiency with hybrid graphics memory, normalized to
baseline.

With applications that have high DBWs, such as SD1 and SLA, the dynamic

power covers a significant portion of total memory power consumption due to the

high memory access intensity of these workloads. In contrast, DRAM leakage

power dominates the total memory power consumption of applications with low

DBWs, such as STO, AES, and BN. In this case, we cannot afford the dynamic

power consumption of data migration and it is therefore disabled with these three

applications to avoid the power overhead incurred by data migration.

4.4.4 Energy Efficiency

Figure 4.12 illustrates the results of system energy efficiency, defined as the exe-

cuted instructions per second per Watt. The system energy efficiency is improved

with all the evaluated applications. The most significant improvement can be ob-

51

served with the applications having high DBWs. The mean improvement of system

energy efficiency is 33%.

4.5 Summary

This chapter described a hybrid graphics memory design, which improves both

memory bandwidth and GPU system energy efficiency. The key insight in our

work is that hybrid graphics memory design is especially suitable for GPU ap-

plications. The memory access patterns of these applications are naturally used

to hide the latency issue of NVRAMs. Our initial results are very promising for

future GPU systems, improving 33% in system energy efficiency. Our migration

mechanism limits the frequency of write operations, and therefore we do not expect

significantly degradation of the lifetime.

Chapter 5

Kiln: Closing the Performance Gap

Between Systems With and Without

Persistence Support

Traditional computing systems have adopted a two-level storage model with sepa-

rated volatile memory and nonvolatile storage systems. Recently, this traditional

storage model is enriched by the new persistent memory technology, which blurs

the boundary between the two levels by incorporating the properties of both main

memory and storage. An application can directly access persistent data through

a memory interface with loads and stores, without paging data blocks from/to a

storage device or context switching while servicing page faults.

Applications that require high reliability, such as databases and file systems,

need to periodically store critical data in nonvolatile devices so the data can sur-

vive system failures or program crashes. Commodity computing systems employ

slow block-addressable storage media, such as spinning disks or flash, to store

this critical data. Due to hardware (PCIe or SATA I/O delay) and software

(legacy block-oriented file system interfaces) costs, applications suffer from sig-

nificant throughput degradation.

Persistent memory is a new technology incorporating the properties of both

main memory and storage. An application can directly access persistent data

through a memory interface with loads and stores, without paging data blocks

from/to a storage device or context switching while servicing page faults. Recent

53

work [69, 70] has demonstrated much higher program throughput (up to 32×)

by utilizing byte-addressable nonvolatile memory technologies (NVRAM) such as

spin-transfer torque RAM (STT-MRAM) or phase-change memory (PCM) to build

persistent memory. These studies operate directly on nonvolatile data that is acces-

sible through the processor-memory bus, eliminate the overhead of PCIe or SATA

accesses and legacy block-oriented file-system interfaces, and update the persistent

data structures at cache line granularity without the need for batching. Neither

memory (SRAM, DRAM, and flash) nor storage media (hard drives and optical

discs) in current commercial systems are both nonvolatile and byte-addressable.

Hence, NVRAM-based persistent memory enables a new class of applications that

can store pointer-rich, user-defined data structures directly in a nonvolatile mem-

ory and process a large amount of data at low latency and high bandwidth.

A caveat for persistent memory design is that system failures or program crashes

may corrupt the state of data structures. For instance, a power outage may occur

while an application is inserting a node in a doubly-linked list. If only one pointer

is written out to nonvolatile devices (NVRAM) and the other is still in volatile

devices (processor caches or DRAM), the doubly-linked list will be broken and not

usable after the crash. Ideally, a persistent memory system (hardware, software,

or a combination of both) must ensure safe data updates so that data integrity

is maintained in the presence of system failures or program crashes. Borrowing

the ACID (atomicity, consistency, isolation, and durability) [59] concept from the

database community, persistent memory systems must update a set of programmer-

defined nonvolatile locations in an atomic, consistent, and durable way to enforce

crash consistency (i.e., persistence).

Unfortunately, supporting persistence in memory still incurs significant perfor-

mance cost, even with the latest proposals. Existing persistent memory designs

employ logging or copy-on-write (COW) to manage persistent data updates. Log-

ging mechanisms track the changes to critical data by maintaining a set of journals,

which store old data values (undo logging) or new updates (redo logging). COW

stores new updates in a temporary data copy, while the real data is unchanged.

However, these mechanisms increase the demand of storage space and reduce sys-

tem performance by increasing memory traffic with extra data transfers. Further-

more, previous persistent memory designs use instructions such as flush (clflush)

54

0

0.2

0.4

0.6

0.8

1

1.2

Native Persistent
Memory

47%

T
h

ro
u

g
h

p
u

t
v
s
.

1
6
-T

h
re

a
d

 N
a
ti

v
e

0

1

2

3

4
RD WR

Native Persistent
Memory

120%

M
e
m

o
ry

 T
ra

ff
ic

 v
s
.

1
6
-T

h
re

a
d

 N
a
ti

v
e

Figure 5.1. Comparison between a native system with no persistence support (Na-
tive) and log-based persistent memory (Persistent Memory). Speedups of transaction
throughput (higher is better) and memory traffic (lower is better), including reads and
writes, are averaged across benchmarks.

and memory fence (mfence) to ensure consistency by flushing the dirty lines in

caches at the barrier of each persistent memory update. As a result, we observe a

large performance gap between a system with a persistent memory and a “native

system” (i.e., with no persistence support). Persistent memory implementations

using off-chip NVRAM and logging incur a 120% increase in memory traffic (60%

in reads and 180% in writes) and only achieve 53% of the throughput of a native

system (Figure 5.1). Therefore, our goal is to design a persistent memory with

performance close to that of the native system.

We propose Kiln1, a persistent memory design that employs a nonvolatile last

level cache and a nonvolatile memory to construct a persistent memory hierarchy.

Our design allows a persistent memory system to directly update the real in-

memory data structures, rather than performing logging or COW. We refer to

these direct updates to the real in-memory data structures as in-place updates.

We also develop a set of light-weight software and hardware extensions to facilitate

atomicity and consistency support. With in-place updates, Kiln can achieve 91%

of native system performance, which is about a 2× improvement over log-based

persistent memory designs using NVRAM.

1“Kiln” was once used by ancient Mesopotamians to bake the clay tablets with temporary
scripts and turn them into permanent records. We name our persistent memory design Kiln,
because it is analogous to the persistent memory that turns volatile data into permanent records.

55

Figure 5.2. Overview of Kiln persistent memory design and previous work. Most
previous studies ((a) and (b)) employ logging or COW to maintain multiversioning,
explicitly duplicating data in a separate journal or temporary buffer data structures. In
these studies, ordering is enforced by write-through caching, cache flush and memory
fence instructions, or fsync operations. (c) shows an overview of the proposed Kiln
design. With the multiversioned memory hierarchy consisting of the NV cache and the
NV memory, Kiln allows in-place updates to the real in-memory data structures without
logging or COW.

5.1 Design Overview

Kiln adopts a new persistent memory architecture consisting of a nonvolatile

cache (NV cache) and a nonvolatile memory (NV memory), naturally forming a

multiversioned persistent memory hierarchy (Figure 5.2 (c)). The newly updated

versions are dirty NV cache lines. The old versions are clean data stored in the

NV memory, which will be automatically updated when the dirty NV cache lines

are evicted. With this multiversioned persistent memory hierarchy, Kiln simplifies

persistent memory update operations by allowing memory stores to be performed

in-place to the persistent data structures in the NV cache, without logging or

COW. Therefore, Kiln’s memory store operations are similar to those of the native

system. As a result, Kiln’s performance is also very close to that of the native

system, yielding a significant performance improvement over previous NVRAM-

based persistent memory designs. Table 2.1 qualitatively compares Kiln with the

native system and related persistent memory designs in terms of memory update

mechanisms and support of atomicity and ordering.

56

5.1.1 Assumptions and Definitions

Mapping data to a hybrid memory address space: We assume that DRAM

and NVRAM are both deployed on the processor-memory bus and mapped to a

single physical address space. Kiln stores the user-defined critical data in NVRAM.

The DRAM is used to store data that is not required to be persistent and can

be overwritten frequently. Examples of such data are stacks and data transfer

buffers. Runtime systems such as the ones developed by prior studies [70, 69] can

be employed to expose the NVRAM address space to persistent data objects.

Program hints on persistent memory transactions: Kiln adopts program

hints to decide when and what data blocks need to be persistent. Recent NVRAM-

based persistent memory designs [69, 70] obtain this information by allowing users

to define durable STM transactions. Similarly, Kiln exposes to programmers an

interface of “persistent memory transactions”, which are groups of instructions

performing persistent memory updates. Kiln reads users’ input to define the be-

ginning and end of each transaction.

States of a persistent memory transaction: Each persistent memory transac-

tion will go through three states: in-flight, committing, and committed. After the

first instruction of a persistent memory transaction starts execution, the transac-

tion becomes an in-flight transaction. When the last instruction of the transaction

completes execution, the transaction is in committing state. In this state, Kiln will

perform the clean-on-commit operation (Section 5.1.3) and update the state of per-

sistent data structures (Section 5.1.4). When these operations are completed, the

transaction is committed. All data updated by this transaction is now persistent.

5.1.2 In-place Updates without Logging or COW

Previous persistent memory designs maintain multiversioning by software, using

application or OS libraries. From the perspective of software, a memory system is a

flat address space, consisting of a sequence of pages. Therefore, previous persistent

memory designs need to explicitly create multiple regions, logs or temporary data

copies, to maintain multiple versions of data. Different from software, hardware

views a memory system as a hierarchy with multiple levels of processor caches

and a main memory. This hierarchy naturally stores different versions of data in

57

different levels.

Leveraging this hierarchy, we design a multiversioned persistent memory that

includes a last-level NV cache and a NV memory (Figure 5.2(c)). The dirty NV

cache lines are one version and the clean data in the NV memory are another. Both

versions have the same address so this persistent memory hierarchy directly per-

forms in-place updates to real data structures. We allow in-flight and committing

persistent memory transactions to overwrite data values in processor caches (in-

cluding the NV cache), but not in the NV memory. Therefore, the version stored

in the NV memory is persistent if a system crashes when a persistent memory

transaction is executing or committing. We allow NV cache lines of committed

persistent memory transactions to be written back to the NV memory. However,

we do not allow evictions from higher-level volatile caches to overwrite a NV cache

line that is being written back. Therefore, the version stored in the NV cache is

persistent if a system crashes when writing back a NV cache line.

Our work is different from previous work that use a disk cache or flash buffer

to improve the persistence performance, such as eNVy [73], and UBJ [72]. The file

cache and flash buffer in these designs are simply used as buffers of the journal or

temporary copies of data which still serve for logging or COW, rather than as a

way of enabling in-place updates.

5.1.3 Ordering Control by Clean-on-commit

We employ an optimized flushing operation called clean-on-commit to preserve

the ordering of persistent memory updates, when a persistent memory transac-

tion is committing. Unlike previous work, Kiln allows cache controllers to issue

flush requests without explicitly executing instructions such as clflush or mfence.

We allow out-of-order write-backs of any dirty cache lines in the volatile caches,

including those being updated by in-flight persistent memory transactions. The

cache controllers will track the dirty cache lines that are updated by an in-flight

persistent memory transaction and still remain in the volatile caches. The archi-

tecture extension in the NV cache (Section 6.6) will track the dirty NV cache lines

updated by an in-flight persistent memory transaction. When a persistent memory

transaction commits, typically a large portion (demonstrated in Section 6.8) of its

58

dirty cache lines have already been written to the NV cache. Therefore, only the

remaining dirty cache lines updated by the transaction in volatile caches need to

be flushed. After all the dirty cache lines that belong to the committing trans-

action are flushed to the NV cache, the state of the transaction transitions from

committing to committed.

The clean-on-commit operation is improved over the ordering mechanisms of

previous designs in four aspects. First, clean-on-commit only flushes the volatile

dirty cache lines of the committing persistent memory transactions. Many previous

designs [69, 71] employ flushing instructions (e.g., clflush) that unnecessarily

flush the dirty cache lines out of the cache hierarchy. Second, the memory traffic to

perform the flushes is significantly reduced because we only flush a small number

of cache lines. Third, the bandwidth of processor-cache buses is much higher

than that of the off-chip memory bus, and therefore the flush operations can be

completed much faster. Finally, clean-on-commit will be issued in the same order

as the commits of persistent memory transactions, and therefore does not employ

memory fence or barrier instructions which block other memory accesses. However,

clean-on-commit requires bookkeeping functionality to be added to the volatile

cache controllers. We will discuss the mechanisms and the overhead in Section 6.6.

5.1.4 Timeline of a Transaction

With in-place updates and clean-on-commit, Kiln provides a way to reduce the

latency of data persistence by committing the persistent memory transactions right

after all the updates arrive at the NV cache, rather than waiting for the updates

to be flushed to the NV memory. Figure 5.3 shows the execution timeline of Kiln

compared to that of a persistent memory system with redo logging. We do not

show an example with undo logging, because its performance is usually worse than

that of redo logging.

Figure 5.3(a) shows the sequence of updating persistent memory that employs

redo logging to a journal in the NV memory. An in-flight persistent memory

transaction keeps adding new data values and their addresses to a journal. This

is followed by flush and memory fence operations to ensure that all the journal

updates reach the NV memory immediately after they are issued. A persistent

59

0 0 0 11 1

0 0 0 0

0 0

1 1 1 1 1 1

1 1

1 1

1 1 1

Figure 5.3. Comparison of the timeline of Kiln and previous persistent memory designs.
Block A represents the data block (with a size of multiple cache lines) of an old valid
version. Block A′ represents the new version being updated.

memory transaction becomes committed after the last instruction in a transaction

is executed and all the logs are flushed into the NV memory. Then, the system

can overwrite the real data structures in the NV memory. Figure 5.3(b) shows the

timeline of Kiln. After executing the last instruction in an in-flight transaction,

the state of the transaction becomes committing. Committing a persistent memory

transaction consists of two steps. First, Kiln performs clean-on-commit to flush

all the corresponding dirty cache lines remaining in volatile caches. Then, Kiln

updates the state of every corresponding NV cache line, from uncommitted to

committed. After these two steps are completed, a persistent memory transaction

becomes committed.

Compared with redo log based persistent memory, Kiln executes faster with

both a single persistent memory transaction and a sequence of them. As discussed

in Section 5.1.3, clean-on-commit is much more efficient than executing flush and

memory fence instructions. Therefore, Kiln completes a single persistent mem-

ory transaction faster than the redo logging method, despite the longer last-level

60

P
E

R
S

IS
T

E
N

T
_
B

E
G

IN
/

P
E

R
S

IS
T

E
N

T
_

E
N

D

Figure 5.4. Software and architecture extensions developed to facilitate Kiln. (a) A
code example with Kiln software interface. (b) Cache architecture extensions. The
shaded blocks are the modifications required over conventional architecture. Note that
the dirty bit, the invalid bit, and other cache coherence information are included in the
original tag region.

cache (NV cache) access latency. Kiln also executes much faster than redo log

based persistent memory when running a sequence of transactions. The redo log-

ging mechanism only flushes log updates when a transaction is committing. The

real data updates of a committed transaction can still remain in volatile caches.

Therefore, the NV memory needs to keep the log updates after a transaction is

committed, until all the real data updates arrive at the NV memory. As a result,

a redo log based persistent memory needs to periodically perform a truncation op-

eration, which flushes real data updates from caches to the NV memory and then

releases (free of reclamation) the corresponding log entries. Instead, Kiln releases

NV memory data blocks right after the corresponding transaction is committed.

61

CID
TID

(Bits)

Total
(bytes)

TxID

L1 L2 L3

State
Way
Set
Entries

Miss
casued by

Cache set
filled by Detect

Figure 5.5. The storage overhead of the FIFO queues added to the cache controllers.
Note that the L1 and L2 caches are private so the total overheads are calculated as the
sum of eight FIFO queues.

Therefore, Kiln reduces the total time of completing a sequence of persistent mem-

ory transactions by eliminating the truncation operations.

5.1.5 Discussion

Durable TM transactions: Persistent memory transactions are similar to file

system and database transactions, which make atomic, consistent, and durable

modifications to the storage system. TM, a concurrency control mechanism which

also borrows the concept of “transaction” from the database community for con-

trolling shared memory access, also supports atomic and consistent memory ac-

cesses. However, directly enabling durability with TM is suboptimal for persistent

memory updates, if not impossible. STM records every speculative store in a log.

Therefore, employing STM with durable memory transactions still requires main-

tenance of a journal. For example, recent studies employing STM for persistent

memory updates, including Mnemosyne [69] and NV-heaps [70], both maintain a

redo log in the persistent memory. Another type of TM implementation, hardware

transactional memory (HTM), does not necessarily require logs. Commodity HTM

implementations, such as the transactional synchronization extensions specified by

the Intel Haswell processor [125] and the transactional memory processor instruc-

tions supported by the IBM zEC12 [126], buffer speculative stores at processors’

private caches (in particular, the L1 caches) and overwrite the lower-level caches

and memory when transactions commit. These HTM implementations need to

62

support fast recovery from transaction aborts, and therefore ensure atomicity only

at higher-level caches. Unless the entire cache hierarchy is made nonvolatile, it

is impossible to ensure atomic updates crossing the persistence boundary by di-

rectly adopting these HTM implementations. Other HTM implementations, such

as IBM Blue Gene/Q’s hardware support for TM [127] and LogTM [128], allow

the speculative stores to enter the lower-level caches. However, they have other

downsides. The IBM Blue Gene/Q [127] requires write-through L1 caches or in-

validating the entire L1 cache at the beginning of each transaction. LogTM [128]

maintains a hardware-based undo log to buffer the speculative stores. Recovery

with the persistent memory from system failures is performed off-line or off the

critical path of program execution, and therefore can tolerate much longer recovery

latency. Employing durable HTM transactions to update the persistent memory

can be unnecessarily cumbersome and inflexible. With Kiln, race-free isolated data

accesses in multi-threaded or multi-process programs can be guaranteed by TM

or any other concurrency control mechanisms, such as mutexes, semaphores, or

lock-free/wait-free data structures and algorithms.

Critical-data persistence vs. whole-system persistence: Kiln supports per-

sistence for user-defined critical data structures typically used in databases or file

systems, such as search trees, hash tables, and graphs. This is especially useful

for servers running database and file system services. Another research direc-

tion focuses on the persistence of the entire system, called whole-system persis-

tence (WSP) [94], supporting instant program restart or resuming after failures.

This method makes a persistent copy of the entire memory upon failures, by em-

ploying flush-on-fail, i.e., flush all register and cache states to the NV memory.

With sufficient backup power sources, a system employing Kiln can also provide

high-performance WSP support by mapping all the data to the NV memory ad-

dress space and performing the same flush-on-fail operation.

5.2 Implementations

This section addresses the implementation details. First, we provide a software

interface for users to define the boundary of a persistent memory transaction. Sec-

ond, we provide a finite-state machine for every NV cache line to ensure that the

63

persistent memory is in a consistent valid state with only the committed transac-

tion data. Third, we implement a set of cache architecture extensions, including

the extended tags and the selective replacement policy at the NV cache, and track

logic and FIFO queues in the cache controllers. Fourth, we provide a solution

to detect the NV cache overflow and present a fall-back path to resolve the over-

flow. Finally, we will discuss the physical implementation choices, including the

memory technologies used in the NV cache and the NV memory and integration

technologies.

5.2.1 Software Interface and ISA Extension

To define the beginning and end of a persistent memory transaction, we provide

the software interface,

persistent{...}

to define persistent memory transactions. Furthermore, we provide a software

interface that allows the users to declare strong and relaxed ordering control. The

strong ordering is denoted by

#pragma persistence inorder

With the strong ordering control declared, Kiln applies clean-on-commit for each

persistent memory transaction. Without this declaration, the users can specify the

transactions that require ordering with an attribute called inorder, i.e., using

persistent(inorder){...}

Ordering is maintained within persistent memory transactions with the inorder

attribute. Clean-on-commit operations on transactions without this attribute may

be delayed. Figure 5.4(a) shows an example of using the software interface with

relaxed ordering control. In this example, the pointers py1 and py2 will be updated

after the updates to their data objects y1 and y2 are flushed to the NV cache. The

updates to z1 and z2 may remain in volatile caches without being forced to the

NV cache.

We also extend the ISA with a pair of new instructions, PERSISTENT BEGIN

64

Evict

Evict

Figure 5.6. The state transition of NV cache lines.

and PERSISTENT END. The software interface can be translated to ISA instructions

with simple modifications to the compiler. Similar ISA and software interface

extensions have been implemented to support HTM, such as those of Intel’s Haswell

processors [125] and IBM’s zEC12 [126]. We provide a separate set of extensions

with persistent memory transactions so that HTM can be simultaneously used as

the concurrency control mechanism.

5.2.2 Maintaining the State of NV Cache Lines

The NV cache is shared by non-persistent cache lines (mapped to the DRAM ad-

dress space), the cache lines being updated by in-flight persistent transactions, and

the cache lines with the committed transactions. Each NV cache line is assigned

one of three states: free, pending, and persistent (Figure 5.6). A free cache line

stores non-persistent data mapped to the DRAM address space. A pending cache

line is updated by an in-flight persistent memory transaction, storing the new data

value. A cache line with the latest version of a committed persistent memory trans-

action is called persistent. As shown in Figure 5.6, various access events at a NV

cache line can trigger state transitions of the cache line. Note that read or write

misses do not apply to a pending cache line, due to our selective replacement policy

presented in Section 5.2.3. Although the state transition can be integrated with

a cache coherency protocol, doing this can increase the complexity of maintaining

coherence. Therefore, we maintain the state transition separately.

65

5.2.3 Cache Extensions

We develop a set of cache architecture extensions (Figure 5.4(b)) to facilitate Kiln,

including additional regions in the NV cache tags, a selective replacement policy,

and tracking logic and tables in the cache controllers.

Additional regions in the NV cache tags: We add four additional fields to

each cache tag, including the core ID (CID), the hardware thread ID (TID), the

persistent memory transaction ID (TxID), and the cache line state. The first

three IDs are used to distinguish between different persistent memory transactions

initiated by different processor cores. The cache line state is used to maintain

the state transition among the states of free, pending, and persistent. The storage

overhead of each tag entry is log2N + log2T + log2M , plus 2 bits for the cache line

state. Here N and T are the number of cores and hardware threads per core, and

M is the number of maximum in-flight persistent memory transactions supported

by Kiln. If strong ordering is enforced (i.e., #pragma persistence inorder is

declared), the number of in-flight persistent memory transactions is limited by

the total number of hardware threads, i.e., N × T . The TxID of a persistent

memory transaction can be reused after it is committed. We can estimate the

storage overhead in the NV cache tags with the following case. If we support 256

in-flight persistent memory transactions on a processor with eight cores and two

hardware threads per core, we need an additional 14 bits in each NV cache tag,

which only adds 2.7% to a 64-byte cache line. If strong ordering control is enforced,

the maximum number of in-flight persistent memory transactions is far less than

256, 16 in this example.

Selective NV cache replacement policy: Existing cache replacement policies

are not designed for data persistence. To prevent the in-flight persistent memory

transactions from corrupting the data structures stored in the NV memory, we

implement a simple selective NV cache replacement policy extension: we do not

allow the evictions of pending cache lines. Read and write misses at pending cache

lines are thus not allowed in Figure 5.6. Our extension can work with most existing

cache replacement policies. In practice, we adopted LRU as the basic replacement

policy in Section 6.8.We leave the exploration of more sophisticated optimizations

of cache replacement policy as future work.

66

Tracking in-flight persistent memory transactions in cache controllers:

We extend cache controllers with FIFO queues and persistence controllers, as illus-

trated in Figure 5.4. The FIFO queues are used to track all the dirty cache lines

updated by in-flight persistent memory transactions. Each FIFO queue entry is a

copy of the extended tag information (CID, TID, and TxID) and the location of a

dirty cache line (its set and way number). We evaluated the storage overhead of

FIFO queues in a cache hierarchy described in Table 6.4 (choose option (b) for L3

cache). We employ the number of FIFO entries that is sufficient to accommodate

the workloads described in Table 6.5: the FIFO queues at each L1 and L2 cache

have 16 entries; the one at the L3 cache has 128 entries. Figure 5.4(c) lists the

storage overhead of the FIFO queues at each L1, L2, and L3 cache. Note that

the storage device in cache controllers is volatile for fast access and easy fabrica-

tion. The information stored in the FIFO queues will be lost if the processor loses

power. In this case, all the in-flight persistent memory transactions need to be

re-executed after the system restarts. Persistence controllers are in charge of en-

queuing the FIFO and issuing the clean-on-commit operations. They also allocate

TxIDs to the new persistent memory transactions. The persistence controller at

the L1 cache controllers are extended to detect the boundary of each persistent

memory transaction, by receiving the PERSISTENT BEGIN and PERSISTENT END sig-

nals from the processor cores. The request generator in the NV cache controller is

extended to implement the selective replacement policy and the overflow detection

mechanisms.

5.2.4 NV Cache Overflow and Fall-back Path

NV cache overflow is the case when a miss at the NV cache can never be serviced

because no victim can be found for replacement. In this case, the program cannot

make forward progress without the NV cache overflow being resolved. Because we

do not allow pending cache lines to be evicted from the NV cache, the overflow

may be caused by one of two reasons: (1) the capacity is smaller than the total size

of in-flight persistent memory transactions or (2) the associativity is insufficient

to accommodate all in-flight persistent memory transactions that conflict at the

same cache set.

67

Table 5.1. Parameters of the evaluated multi-core system.

Processor/Technology Intel Core i7 like/22 nm
Cores 8 (2.5GHz), 16 threads
L1 Cache (Private) Volatile (SRAM), 64KB, 4-way, 64B blocks, 1.6ns latency
L2 Cache (Private) Volatile (SRAM), 256KB, 8-way, 64B blocks, 4.4ns latency
L3 Cache (Shared) (a) Volatile (SRAM), 16MB, 16-way, 64B blocks, 10ns latency

(b) Nonvolatile (STT-MRAM), 64MB, 16-way, 64B blocks,
15ns (19ns) read (write) latency

Memory Controller Two dual-channel memory controllers, FR-FCFS

Memory Technology 30 nm
DRAM DIMM DDR4-2133, 2GB
NV Memory DIMM STT-MRAM, 2GB, 25ns row-hit latency,

65ns (76ns) read (write) row-conflict latency

Power and Energy Processor (with L1 and L2): 149W (peak).
L3 (SRAM): read/write: 0.58nJ/access;
L3 (STT-MRAM): read (write): 0.61 (0.67) nJ/access.
NV memory : row buffer read (write): 0.93 (1.02) pJ/bit,
array read (write): 1.00 (2.89) pJ/bit

Detecting NV cache overflow: We can detect an NV cache overflow when

searching for an eviction victim at the NV cache. Figure 5.4(d) lists the scenarios

which can lead to NV cache overflows. NV cache overflows are hard to detect if

the cache set is filled by a mix of different in-flight persistent memory transactions.

It is possible that the program can continue to make progress after one of the in-

flight persistent memory transactions is committed and advance one of the cache

lines in the set to the persistent state. Unfortunately, simply waiting for next

available victim will incur performance overhead and even deadlocks. Instead, we

stall memory requests when the request queue at the higher level cache is almost

full (e.g., 80% filled) and then provide a fall-back path.

Fall-back path: We provide a fall-back path to resolve the issue of NV cache

overflows, allowing the pending cache lines to be written back to the NV memory

and maintain multiversioning in the NV memory with hardware-controlled COW

similar to that used in eNVy [73]. When an NV cache overflow is detected, Kiln

will notify the operating system by interrupt to allocate new pages to buffer the

pending cache lines evicted from the NV cache. A mapping table will be created

in the NV memory and updated with the physical addresses of buffered pending

cache lines. When a persistent memory transaction is committed, the page table

will be updated to invalidate the old data values and enable the new data values

68

according to the mapping table. Then the corresponding mapping table entries

can be discarded.

Commodity processors typically employ several megabytes of last-level cache

with high associativity (e.g., 16-way). The density of NVRAM is much higher

than SRAM, so the capacity of the NV cache can be as large as tens of or over one

hundred megabytes. The associativity of the NV cache can also be higher than

SRAM-based caches. Therefore, Kiln can support in-flight persistent transactions

with memory footprints up to tens of megabytes. The memory footprints of the

in-flight persistent memory transactions are determined by the granularity of mod-

ifications performed to the persistent data structures and upper-bounded by the

size of data structure elements (e.g., tree nodes, table entries, graph edges, etc.).

Furthermore, small-granularity data updates may dominate some commercial and

future real-world workloads. For example, several key-value workload characteris-

tics published recently by Facebook [129] showed that most queries employ keys of

less than 32 bytes and values of no more than a few hundred bytes. For this type

of workload, NV cache overflow will be less of an issue.

5.2.5 Recovery

Kiln allows easy and fast system recovery mechanisms, because most of the per-

sistent updates are applied in-place to the real in-memory data structures. Upon

restart from an abnormal termination, the system can go through the following

steps for recovery. First, we scan the NV cache tags and invalidate the cache lines

in the pending state because they are partially updated data structures in process

by in-flight persistent memory transactions before failure. Next, we scan the page

table in the NV memory to identify the temporary data copies (if any) due to NV

cache overflows. These data copies were updated by in-flight memory transactions

as well, and hence can be invalidated. These recovery steps can be performed by

hardware, reusing the tracking logic and FIFO queues in cache controllers.

5.2.6 Physical Implementation

In principle, our persistent memory architecture design does not rely on any specific

physical implementation of processors and memories. For example, all components

69

of the processor and memory can be packaged in a single package with silicon in-

terposer technology, which has been widely explored by academia and industry to

develop high-performance system-in-package designs [41, 45]. The NV cache and

the NV memory can both be implemented by STT-MRAM, which provides the

best latency and endurance among NVRAM technologies. Everspin [40] recently

launched the DDR3 compatible STT-MRAM components, which is projected to

be able to scale to Gb densities (close to NAND flash). Existing work has demon-

strated the feasibility of STT-MRAM used in lower-level caches [1] in multi-core

processors. The NV cache can be stacked on top of the CPU die for large capacity

and high bandwidth, or packaged with the NV memory, sitting beside the proces-

sor with higher-level caches. In this case, the processor can be fabricated without

the effort of integrating different memory technologies. We can also implement

the NV memory with resistive RAM (ReRAM) or PCM, because they are byte-

addressable and nonvolatile just like STT-MRAM. The main memory, including

the NV memory and DRAMs, can be implemented with an off-chip DIMM inter-

face or wide I/O interface [130, 131]. The wide I/O implementation can achieve

higher memory bandwidth between the processor and the main memory for better

performance, however it incurs complexity and higher cost.

5.3 Experimental Setup

We evaluated the performance and power of our persistent memory design on a

multi-core system. This section describes our simulation framework, processor and

memory configurations, and benchmarks.

5.3.1 Simulation Framework

Our experiments are conducted using McSim [132], a Pin-based multi- and many-

core cycle-accurate simulation infrastructure [133]. McSim models out-of-order

cores, caches, directories, on-chip networks, and memory channels. Table 6.4 lists

the detailed parameters and architecture configurations of the processor and mem-

ory system in our simulation. The multi-core processor consists of eight out-of-

order cores, each of which is similar to one of the Intel Core i7 cores [134]. Each

70

Table 5.2. Benchmarks used in our experiments.

Benchmarks Description

BTree [137] Inserts/deletes nodes in a B-tree.
Hash [70] Inserts/deletes entries in a hash table.
RBTree [70] Inserts/deletes nodes in a red-black tree.
SDG [138] Inserts/deletes edges in a scalable large graph.
SPS [70] Random swaps between entries in an array.
SSCA2 [139] A scalable large graph analysis benchmark.

processor core incorporates SRAM-based volatile private L1 and L2 caches. Kiln

employs an STT-MRAM based L3 cache (the NV cache) (option (b) in Table 6.4).

Option (a) in Table 6.4 lists the parameters of a system with SRAM as L3 cache,

which is used to validate the performance of Option (b). Note that the parameters

of the two systems are calculated based on the same silicon area, i.e., a 16MB

SRAM-based cache occupies the same silicon area of 64MB STT-MRAM based

cache. Both L3 caches are 16-way set-associative and multi-banked. The proces-

sor cores and L3 cache banks communicate with each other through a crossbar

interconnect. A two-level hierarchical directory-based MESI protocol is employed

to maintain cache coherence at the private caches and the L3 cache. The DRAM

and the NV memory are modeled as off-chip DIMMs. Memory requests to DRAM

and the NV memory are managed by two dual-channel memory controllers. The

timing and energy parameters of the NV cache and NV memory are calculated

with NVSim [135], a performance, power, and area estimation tool for NVRAM.

Our simulation framework models Kiln’s in-place updates, clean-on-commit

functionality, and architecture extensions. We also model HTM based on Ham-

mond et al.’s work [136] as one of our two concurrency control mechanisms used

in the experiments. The implementations of most commodity HTM, e.g., Intel’s

Haswell processor [125] and IBM’s zEC12 processor [126], are similar to Hammond

et al.’s work. The memory footprint of transactions is limited up to the capacity

of private caches. Overflow at the private caches will result in transaction abort

(re-execution) or transferring the control to software.

71

5.3.2 Benchmarks

The persistence interface of most existing software applications are optimized for

accesses to disk-based storage devices. Currently, no existing public benchmark

suites can be used to evaluate the Kiln design. Therefore, we constructed a set

of benchmarks as described in Table 6.5. The data structures and functionality

of these benchmarks are similar to those in the benchmark suite used by NV-

heaps [70]. The benchmarks perform search, insert, and delete to data structures

used in databases and file systems, including a search tree, hash table, sparse

graph, and array. Two sets of experiments are conducted to insert and delete

the data elements (tree nodes, table entries, graph edges, etc.) with small (512

bytes) and large (512 kilobytes) granularity, respectively. They will be referred

to as workloads of small and large footprints in the rest of the dissertation. Each

persistent memory transaction inserts or deletes a single data element. The bench-

marks are written with the strong ordering control interface (Section 6.6) to force

all the transactions to commit inorder. HTM is used as the concurrency control

mechanism for workloads of small footprint, while mutex lock is used for workloads

of large footprint. We also implemented another version of the benchmarks, which

perform undo and redo logging at word granularity to provide persistence support.

We only evaluate the hardware performance of various persistent memory designs,

so we do not count the latency of executing the logging instructions. We collect the

performance and power results of the running phase of the benchmarks, skipping

the initialization phase.

5.4 Results

This section presents our evaluation results and analyze the reasons for these re-

sults.

5.4.1 Volatile Vs. Nonvolatile Last-level Cache

We first compare throughput (in terms of the executed insert/delete operations per

second) of two systems with the L3 cache implemented by SRAM and STT-MRAM,

without providing persistence support (Figure 5.7). Despite its lower latency, the

72

70%

80%

90%

100%

1 Thread 2 Threads 4 Threads

8 Threads 16 Threads

B
tr

e
e

H
a
s
h

R
B

T
re

e

S
D

G

S
P

S

S
S

C
A

2

Large Footprint

B
tr

e
e

H
a
s
h

R
B

T
re

e

S
D

G

S
P

S

S
S

C
A

2

Small Footprint

T
h

ro
u

g
h

p
u

t

(S
T

T
-M

R
A

M
 v

s
.
S

R
A

M
)

Figure 5.7. Performance comparison between two native systems adopting STT-
MRAM and SRAM as L3 cache respectively. Results show that the two systems have
similar performance.

B
tr

e
e

H
a

s
h

R
B

T
re

e

S
D

G

S
P

S

S
S

C
A

2

G
M

B
tr

e
e

H
a

s
h

R
B

T
re

e

S
D

G

S
P

S

S
S

C
A

2

G
M

Small Footprint Large Footprint

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

2

4

6

8

10

12

14

16

18

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

N
a
ti
v
e

C
R

lo
g

R
lo

g

C
U

lo
g

U
lo

g

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads NV Memory Traffic

N
V

 M
e

m
o

ry
 T

ra
ff

ic

T
h

ro
u

g
h

p
u

t

Figure 5.8. Performance of systems that adopt a NV L3 cache, but with logging for
atomicity and flush and memory fence for ordering. We evaluate the throughput (bars)
and NV memory traffic (broken lines). All the throughputs are normalized against the
native system running 1 thread. For NV memory traffic, we only show the normalized
results running 16 threads.

SRAM-based last-level cache is only a quarter the capacity of STT-MRAM based

cache on the same silicon area. Our results show that using an STT-MRAM

based L3 cache can achieve on average 91% and 99% of the performance using

SRAM-based L3 cache on workloads of small and large footprints, respectively.

These results show that employing NV cache in a non-persistent manner as the

last-level cache does not remarkably change the system performance due to the

latency and capacity trade-offs of SRAM and STT-MRAM technologies. In the

following experiments, we use the configuration of STT-MRAM based L3 cache as

the baseline native system.

73

0
2
4
6
8

10

2 4 8 16 2 4 8 16

Native Kiln CRlog CUlog

T
h

ro
u

g
h

p
u

t
v
s
.

1
-T

h
re

a
d

 N
a
ti

v
e

Small Footprint Large Footprint

Number of Threads

Figure 5.9. Performance gap vs. number of threads.

5.4.2 Log-based Persistent Memory Performance

A log-based persistent memory system can adopt a NV L3 cache, with logging to

ensure atomicity and flush and memory fence to ensure ordering. In this system,

the logs become persistent once they arrive at the NV cache. We want to demon-

strate that the performance of such an optimized log-based system is not scalable

as the number of threads increases.

A log-based system can adopt two types of logs, redo and undo logs. We

denote the resultant systems as CRlog and CUlog, respectively. Rlog and Ulog

denote the systems where the logs are only stored in the NV memory. CXlog uses

Kiln’s cache controller extensions to track the dirty cache lines of logs and flush

them into the NV cache. Xlog uses clflush and mfence to write logs in to the NV

memory. However, the latency of executing these two instructions is not counted as

discussed in Section 6.7. Figure 5.8 shows the comparisons between CXlog (CRlog

and CUlog) and Xlog (Rlog and Ulog) for throughput of insert/delete operations

and NV memory traffic. The results show that the throughput of CRlog and

CUlog increases by an average of 38% and 33% compared with Rlog and Ulog, with

workloads of small footprints running 16 threads. The corresponding NV memory

traffic is reduced by 28% (CRlog) and 26% (CUlog) on average. With workloads of

large footprints, the average improvement of throughput is 31% (CRlog) and 28%

(CUlog). The corresponding NV memory traffic reductions are 35% and 37%.

While CXlog significantly reduces the number of accesses to the NV memory,

it can still incur an over 50% increase in the memory traffic compared with the

native system (denoted as the Native). In addition, the throughput of CXlog does

not scale well when the number of threads increases from two to 16 (Figure 5.9).

74

B
tr

e
e

H
a

s
h

R
B

T
re

e

S
D

G

S
P

S

S
S

C
A

2

G
M

B
tr

e
e

H
a

s
h

R
B

T
re

e

S
D

G

S
P

S

S
S

C
A

2

G
M

Small Footprint Large Footprint

T
h

ro
u

g
h

p
u

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
2
4
6
8

10
12
14
16
18

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

N
a
ti
v
e

K
iln

C

R
lo

g

C
U

lo
g

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads NV Cache Writes NV Cache Accesses

N
V

 C
a

c
h

e
 T

r
a

ff
ic

Figure 5.10. The throughput (bars) and NV cache traffic (broken lines) of Kiln. All
the throughputs are normalized against the native system running 1 thread. For NV
cache traffic, we only show the normalized results running 16 threads.

With two threads, the performance gap between CUlog and Native is less than 38%

and 30% with small and large footprints, respectively. However, when the number

of threads increases to 16, this performance gap also significantly increases up to

70% and 50% with small and large footprints, respectively. CRlog performs better

than CUlog, however, the performance gap still increases from around 25% to 45%

when the number of threads increases from two to 16. With a large number of

threads running concurrently, the log size grows quickly and the NV cache will

soon be filled by logs. Furthermore, the logs in the NV cache, which will not be

reused anymore, can also lead to early evictions of reusable cache lines of the real

data structures. Sophisticated replacement policies can be employed to prioritize

the evictions of logs. However, this will be equivalent to bypassing the NV cache

or flushing the logs all the way down to the NV memory.

5.4.3 Kiln Performance

The following experiments evaluate Kiln performance in terms of the throughput

of insert/delete operations.

Throughput and NV cache traffic: For workloads of small and large footprints

running 16 threads, Kiln achieves on average 91% and 88% of the throughput of

the Native system (Figure 5.10). Therefore, the performance of Kiln is 1.6× and

3× of that of CRlog and CUlog with workloads of small footprints, and 1.2×
and 1.5× of that of CRlog and CUlog with workloads of large footprints. Kiln

performs worse for workloads of large memory footprints because the large number

75

Small Footprint Large Footprint

T
h

ro
u

g
h

p
u

t
v

s
.

N
a

ti
v

e
 (

L
a

te
n

c
y
 x

1
)

0.0

0.2

0.4

0.6

0.8

1.0

x1 x2 x4

Native Kiln CRlog CUlog

x1 x2 x4

NVRAM Latency

Figure 5.11. Throughput of insert/delete operations of 16-thread workloads with longer
NVRAM latencies, normalized to the Native throughput with ×1 latency and 16 threads.

of pending cache lines (not allowed to be evicted to the NV memory) leads to early

evictions of other reusable cache lines. Although CRlog allows the persistent data

to be updated immediately after the logs reach the NV cache, it still does not

perform as well as Kiln because CRlog needs to maintain the ordering of the

log updates with clfush and mfence, which prevent the cache controllers from

re-ordering the memory requests and block subsequent loads and stores. While

log-based persistent memory designs double the write traffic to the NV cache, Kiln

only generates 8% additional writes and 5% additional total accesses in NV cache

traffic compared to the Native, due to clean-on-commit operations.

Sensitivity to NVRAM latency: The evaluations above are conducted with

fixed NV cache and the NV memory latencies. We also evaluated the performance

variation with longer NVRAM latencies. Figure 5.11 shows the results of normal-

ized throughput with doubling and quadrupling the original NV cache and NV

memory latencies (the NV memory clock rate is determined accordingly), aver-

aged across the benchmarks running 16 threads. We observe that the benefit of

Kiln remains at longer NVRAM latencies for workloads of both small and large

footprints. Even with quadrupled NVRAM latency, Kiln still achieves 92% and

82% of Native throughput with workloads of small and large footprints.

Frequency of NV cache overflow: The frequency of NV cache overflow sig-

nificantly affect system performance. Here we study the frequency of NV cache

overflow by further increasing the memory footprints of the persistent memory

transactions. We count the number of NV cache overflows during 100K persis-

tent memory transactions inserting and deleting to a hash table. The keys are

76

1.00 1.01 1.02 1.03

Kiln
CUlog

Kiln
CRlog
CUlog

Processor Total NV Memory

Dynamic Power

S
m

a
ll

F
o
o
tp

ri
n
t

L
a
rg

e

F
o
o
tp

ri
n
t

1.0 1.2 1.4

Figure 5.12. The average dynamic power consumption of processor (including the NV
cache) and the NV memory, normalized to the Native (workloads running 16 threads).

four-byte integers. The value size ranges from 512KB to 64MB. Each persistent

memory transaction inserts or deletes one entry of the hash table. When running

a single thread, we do not observe any NV cache overflows even with the value size

increased to 32MB. With multithreaded workloads, the frequency of NV cache

overflow is lower than 0.1% (100 overflow events out of the total 100k transac-

tions) when the total memory footprint of all the threads is smaller than 64MB.

Unfortunately, the frequency reaches 100% when the total memory footprint of all

the concurrent transactions is larger than the NV cache capacity. In such a case,

Kiln falls back to hardware-controlled COW as described in Section 5.2.4, and the

performance is similar to that of CRlog. We will leave the investigation of more

efficient methods to resolve the overflow issue as future work.

5.4.4 Dynamic Power

Maintaining data persistence with Kiln incurs additional processor and memory

dynamic power consumption due to the extra bookkeeping activities in cache con-

trollers and the increased accesses to caches and the NV memory. We calculated

the processor’s dynamic power consumption by feeding the simulation statistics of

processor and cache activities into McPAT [140]. We calculated the NV memory

power consumption based on the number of memory accesses broken down into

row buffer hits and misses, the memory energy configuration listed in Table 6.4,

and the total execution time of each benchmark. As shown in Figure 5.12, Kiln

provides up to a 23% dynamic power reduction for the NV memory compared to

CXlog due to fewer memory accesses (Figure 5.10). Compared to the Native, Kiln

77

results in dynamic power overheads of only 1.2% and 5% to the processor and the

NV memory.

5.5 Summary

NVRAM technologies can provide promising solutions to persistent memory design.

However, current NVRAM-based persistent memory designs are inefficient due to

increased latency and bandwidth demands due to log-based or COW mechanisms.

In this dissertation, we propose Kiln, a persistent memory design which employs

a multiversioned memory hierarchy consisting of an NV cache and NV memory,

enabling in-place updates to in-memory data structures, without the redundant

writes required by logging or COW. Kiln provides persistence support with only

a 9% performance overhead to the native system, hence up to 2× performance

improvement to the log-based NVRAM persistent memory. In addition, Kiln pro-

vides a simple and intuitive software interface, as well as easy and fast recovery

from failures. Our work rethinks the design of persistent memory in light of emerg-

ing NVRAM technologies, which is a critical step in reaping the full advantages of

NVRAM technologies beyond simply replacing of DRAM in main memory.

Chapter 6

FIRM: Fair and High-Performance

Memory Scheduling for

Persistent Memory Systems

Byte-addressable nonvolatile memory technologies promise a new type of “persis-

tent applications” that access user-defined in-memory persistent data objects by

loads and stores without paging from disks or flash. With such significant benefits,

these applications also bring new challenges to the design of systems that run both

persistent and non-persistent applications. One important issue is the competition

for shared resources, e.g., shared caches, memory interface, and memory capacity.

For example, a recent study [141] explored such resource competition at shared

caches. In this chapter, we identify the resource competition at the memory in-

terface raised by shared memory interface between these two types of applications

and tackle this problem by redesign memory scheduling mechanisms implemented

at the memory controllers.

Although our Kiln design does not require performing logging to ensure data

persistence, logging has irreplaceable advantages in managing persistent memory.

First, logs are portable; we can take the log from a failed system and directly

install it in a completely different system. Second, we can maintain more than two

versions in a log. Third, logging is currently the most efficient approach for large-

granularity updates. Kiln also falls back to logging or COW with large-granularity

updates which cause frequent NV cache overflows. Consequently, we expect Kiln

79

and logging (or COW) mechanisms to coexist in persistent memory designs, with

Kiln to be used to accommodate small-granularity persistent updates and logging

(or COW) used to manage large-granularity persistent updates.

6.1 The Problem

NVRAMs can be used as persistent memory or a replacement of the DRAM tech-

nology in general-purpose systems [4, 142, 45, 35, 3, 143, 144, 145, 146, 147, 148,

149]. In these studies, applications that traditionally use DRAM to hold the work-

ing set can leverage NVRAM as an extra physical memory space, which can save

the static and refresh energy consumed by a large size of DRAM. These prior work

focuses on improving the performance or energy-efficiency of such a system, with-

out differentiating between persistent and nonpersistent applications. Therefore,

strikingly little attention has been paid to the study of cases when persistent and

nonpersistent applications concurrently run in a computing system.

In such a system, these two types of applications can compete for various

system resources, such as processing units, caches, memory interface, and memory

capacity. In this work, we are interested in tackling the challenges incurred by

sharing the memory interface. We find that such a sharing imposes significant

resource contention at the memory interface due to the unique memory access

behaviors of persistent applications.

Previous memory scheduling schemes, which are designed for nonpersistent

applications, become inefficient under this new scenario. First, persistent-memory

applications enforce in-order updates to persistent data structures in NVRAM. The

beginning of a subsequent memory update depends on the completion of previous

updates. As a result, writes are on the critical execution path of persistent-memory

applications, a reverse case in most nonpersistent applications with reads on the

critical execution path [150]. Conventional memory scheduling policies that pri-

oritize reads over writes will unfairly slow down persistent applications. Second,

persistent applications periodically generate a burst of writes to update the persis-

tent data. These write requests may overflow the write queue and force the memory

controller to drain it [150], aggressively servicing these write requests by stalling

all memory reads. Without carefully balancing the memory bandwidth usage be-

80

tween reads and writes, such contention can happen periodically and eventually

slow down nonpersistent applications. Third, persistent applications typically allo-

cate a contiguous memory space (e.g., a log) to store persistent updates. Because

the write queue size is quite limited, all the writes will go to the same bank during a

write drain period. Without any bank-level parallelism, the memory bandwidth is

underutilized. Liu et al. proposed a memory scheduling mechanism to exploit the

bank-level parallelism present in the address stream of persistent applications [151].

However, their memory scheduler focused on scheduling write requests and failed

to explore the contention between reads and writes in persistent applications.

Our goal is to design a memory scheduling scheme that achieves both fair

memory accesses and high system throughput in a system concurrently running

persistent and nonpersistent applications. We propose FIRM, a fair and high-

performance memory scheduling mechanism that allows write requests from per-

sistent applications to have the same priority as reads and balances the bandwidth

usage between persistent and nonpersistent applications. Compared with the best

case of traditional memory scheduling designs, FIRM can achieve system through-

put improvement and fairness improvement by 8% and 29%, respectively.

6.2 Challenges of the Shared Memory Interface

This section investigates the challenges to the shared memory interface imposed

by concurrently-running persistent and nonpersistent applications. To this end,

we study the memory access behaviors of both applications with two microbench-

marks. From the results, we draw several key observations to discuss the reasons

that previous memory scheduling methods fail to achieve fairness and efficiency

for our scenario. Finally, we present a naive solution and elaborate its problems,

motivating the more advanced mechanism in Section 6.4.

6.2.1 Persistent Applications

Most persistent applications are database and file system applications [69, 68, 152],

which require critical data to survive sudden system failures, such as kernel crashes

or power outage. Similar to traditional databases and file systems that maintain

81

persistence in disks or flash, persistent applications perform logging [69, 70] or

shadow updates [70] to make changes to persistent data, rather than directly over-

writing the original data. In this manner, these applications can maintain multiple

versions of data available for recovery once system failure happens. We refer to the

memory stores to perform log and shadow updates as persistent writes. In a log-

based persistent memory system, each log entry is a tuple consisting of the original

data (or pointers referenced to the original data) and updated data values. Previ-

ous work implemented the log as a fixed size circular buffer [69]. Circular buffer

implementations use contiguous memory space whenever the software initializer is

able to do so. Otherwise, the initializer will allocate a linked list of fragmented

chunks. In shadow update-based persistent memory, a shadow update copies the

original data to a newly allocated memory space, modifies its values, and then

redirects the pointer from the original data to the new data values. Each log or

shadow update may generate arbitrary number of persistent writes depending on

the granularity of a single data update. For example, in a key-value store, an up-

date may be the addition of a new value at the granularity of several bytes, several

kilobytes, or several megabytes.

To ensure the consistency of persistent data structure, persistent applications

place rigorous ordering control over persistent writes with cache flush and mem-

ory fence instructions (e.g., clflush and mfence) or uncacheable writes to enforce

that the order that log or shadow updates are written into NVRAM matches the

order they are issued by CPU. Otherwise, the persistent data can lose consistency,

for example, with a new data still remain in volatile caches (will be lost upon

system crash) whereas a pointer referenced to it, being updated after the data in

program, already exists in NVRAM. The cache flushes and uncacheable writes will

periodically generate burst of writes at the memory interface. The memory fence

will serialize memory accesses, making the subsequent memory accesses dependent

on the completion of previous writes to NVRAM. Besides program phases with

log and shadow updates, persistent applications also update the original data after

a log or shadow update is completed (written into NVRAM). They may perform

read-intensive activities such as searching a key in a key-value store, without mod-

ifying persistent data. During these program phases, persistent applications will

appear to have similar memory access behavior as nonpersistent applications.

82

6.2.2 Memory Organization

Memory (either DRAM or NVRAM) is physically organized as two-dimensional

arrays of bitcells. Each read or write access to memory requires an entire row in

an array to be buffered in a row buffer (a set of sense amplifiers that act as latches

of data values). The typical size of a row buffer can be up to 8K bytes [150].

Contiguous accesses to the same row will result in row-buffer hits in an “open”

row, consuming much lower latency than accesses to a different row. Accessing a

different row results in a row-buffer miss, which requires memory to close the open

row by writing its data values back and activate the row to be accessed.

Memory arrays are further grouped into banks, ranks, and channels. The row

buffer of each bank can be accessed independently, i.e., accesses to different rows

of different banks can be performed in parallel. A memory channel consists of a

number of banks, e.g., DDR3 memories typically adopt eight banks per channel.

All the banks in a channel share a single memory bus, which only services single

direction of memory accesses (reads or writes) at a time. Switching from one

direction to the other incurs a bus turnaround latency, which is referred to as write-

to-read delay (tWTR) of approximately 7.5ns and read-to-write delay(tRTW) of

up to 15ns [153].

6.2.3 Conventional Memory Scheduling Mechanisms

Memory accesses issued from processors are buffered and scheduled by memory

controllers. A memory controller employs a memory request queue, physically or

logically separated as a read queue and a write queue, to store the memory requests

waiting to be scheduled for service. A memory controller also utilizes a memory

scheduler to decide which memory requests in the queue can be placed on the

memory bus. A large body of previous work studied the decision making with var-

ious memory scheduling policies [154, 155, 156, 157, 158, 159, 160, 161, 162]. Most

commodity systems employ first-ready first-come-first-serve (FR-FCFS) scheduling

policy [154, 155], which prioritizes memory requests that lead to row-buffer hits.

But it can unfairly deprioritize memory requests with low row-buffer hit rates,

starve these requests and the corresponding threads for long time periods, and

hurt overall system throughput [156, 157]. Several studies [158, 159, 160, 157, 161]

83

endeavor to balance between system performance and fairness. Parallel-aware

Batching Scheduling (PAR-BS) [161] improved both fairness and system through-

put by batching requests based on their arrival times and prioritize the oldest batch

over others. The proposed memory scheduling algorithm ranks batches from differ-

ent applications to allow them to access different banks in parallel. ATLAS [158]

improves system throughput by prioritizing applications that have received the

least memory service. However, as demonstrated by Cluster Memory Schedul-

ing (TCM) [159], doing so may unfairly deprioritize memory-intensive applications

and hence slow down such applications. To address this issue, TCM [159] dynami-

cally cluster applications into low and high memory-intensity clusters. It improves

system throughput by prioritizing applications with low memory intensity; im-

proves fairness by periodically shuffling priorities among applications with high

memory intensity. Most previous memory scheduling schemes are designed for

CPU applications. Staged Memory Scheduling (SMS) [162] addressed the schedul-

ing challenges of CPU/GPU heterogeneous systems, where CPU applications may

be unfairly slowed down by GPU applications that concurrently access multiple

banks with high row-buffer hit rates. Unfortunately, none of these scheduling

schemes are specifically designed for persistent memory systems. In the following,

we show that running a combination of persistent and nonpersistent applications

can pose various challenges to the design of memory scheduling schemes.

6.2.4 Memory Access Behaviors of Persistent and

Nonpersistent Applications

To illustrate the different memory access behaviors of persistent and nonpersistent

applications, we studied the memory accesses of three representative applications,

streaming, random, and btreelog, in terms of four properties: memory intensity,

write intensity, bank-level parallelism, and row-buffer locality. Streaming and ran-

dom are both memory-intensive applications, performing consecutive and random

accesses to a large array. Btreelog performs inserts and deletes of key-value pairs

(25-byte keys and 2K-byte values) to a B+ tree data structure stored in main

memory. We build this benchmark by implementing a redo logging (i.e., writing

new data updates to the log instead of the original data addresses) interface on

84

Memory Access Behavior

MPKI WR% BLP RBL

Streaming High Low Low High
100 47% 0.05 96%

Random High Low High Low
100 46% 6.3 0.4%

Btreelog High High Low High
100 77% 0.05 71%

Redo Very High High Low High
Logging 675 92% 0.01 97%

Table 6.1. Memory intensity, write intensity, bank-level parallelism, and row-buffer
locality of different applications running individually. Streaming and random are two
nonpersistent applications with streaming and random memory accesses. Btreelog per-
forms inserts and deletes to a B+ tree-based key-value store with 25-byte keys and
2K-byte values and employs redo logging to ensure data persistence. In the last row of
the table, we show the memory access behavior of btreelog when it is performing redo
logging.

top of STX C++ B+ tree [137] to provide persistence support. Memory intensity

is evaluated by the number of last-level cache misses per thousand instructions

(MPKI) [159]. Write intensity is evaluated as the portion of write misses (WR%).

Bank-level parallelism (BLP) is evaluated by the average number of banks to which

there are outstanding memory requests the application has at least one outstanding

requests [161] in our memory configuration. Row-buffer locality (RBL) is evalu-

ated as the average hit rate of the row buffer across all banks [154]. The three

applications were specifically constructed and intensity. We also construct stream-

ing and random in the manner of dramatically different bank-level parallelism and

row-buffer locality. Therefore, they are two extreme cases of memory-intensive

applications with opposite memory access behaviors in bank-level parallelism and

row-buffer locality.

Table 6.1 lists the memory access behaviors of these applications running sep-

arately. Compared with streaming and random, btreelog has much higher write

intensity. This is because each insert or delete operation triggers a redo logging

operation that appends a log entry containing the addresses and the data of the

modified key-value pair, generating extra write traffic in addition to the original

data updates. As shown in the last row of Table 6.1, the redo logging operation of

btreelog results in significantly increased memory intensity. Writes make up almost

all the memory traffic. Btreelog, especially when it is performing redo logging, has

85

low bank-level parallelism and high row-buffer locality, making its write behavior

similar to streaming ’s reads but significantly different from random. Btreelog con-

sists of key-value pairs at the granularity of more than 2K bytes and so do the log

entries. As a result, each log update makes consecutive writes to the same bank.

The first write request may be a row-buffer miss, but all the rest requests will hit

in the row-buffer.

6.3 Key Observations

In the following, we analyze the above characterization results in detail, and sum-

mary our key observations obtained from these results.

Persistent writes are also on the critical path: Persistent applications enforce

the ordering of persistent data updates by employing cache flushes and memory

fence write after issuing each log or shadow update or making the persistent writes

uncacheable. Consequently, during the period of updating a log entry or shadow

data copy, any subsequent memory reads and writes need to stall until all the

persistent writes are written into NVRAM. All the computation operations that

depend on these memory accesses also need to wait. As a result of such ordering

control, persistent writes are on the critical path of persistent applications execu-

tion. This is in contrast to the case with nonpersistent applications which have

reads on the critical path [150]. Conventional memory scheduling policies that pri-

oritize reads over writes can stall persistent applications while letting nonpersistent

applications make forward progress, unfairly slowing down persistent applications.

Bursts of persistent writes can overflow write queue: A log or shadow up-

date can generate a large number of write requests, for example, when performing

inserts and deletes key-value pairs at the granularity of several kilobytes [69, 152].

Legacy database and file system program codes may update persistent data at an

even larger granularity of megabytes or gigabytes. With a limited size, the write

queue cannot accommodate such large number of write requests consecutively gen-

erated in a short period of time. Therefore, the memory scheduler may need to

frequently drain the write queue, when persistent and nonpersistent applications

are running together. As a result, nonpersistent applications can be significantly

slowed down with stalled reads.

86

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Btreelog Streaming

Strictly prioritize reads
Log writes have the same priority as reads

Btreelog Random

Maximum

Slowdown
Maximum

Slowdown

S
lo

w
d

o
w

n

(a) (b)

Figure 6.1. Effect of simply assigning persistent writes the same priority as reads on
different workload combinations. (a) WL1 consists of Btreelog and streaming. (b) WL2

consists of Btreelog and random.

Conventional memory scheduling schemes [158, 159, 160, 157, 161, 163]

make two assumptions to concurrently running applications. First, they assume

that reads are on the critical path of application execution. This is sound when

most nonpersistent applications abound with read-dependent arithmetic, logic,

and control flow (branch) operations. Therefore, most previous memory schedul-

ing schemes prioritize reads over writes. Second, they assume that applications

are read intensive so they can delay the writes without frequently filling the write

queue. Most previous memory scheduling schemes buffer writes to let reads ag-

gressively utilize the memory bus. The memory scheduler may eventually need to

drain the write queue, when the write queue is full (or filled to a predefined “high

watermark”) to process a batch of waiting writes to prevent stalling the entire

processor pipeline. During write drain, the memory bus can only service writes,

refuting any read requests. Therefore, frequent write drain can significantly slow

down reads and harm the performance of read-intensive applications. Unfortu-

nately, these assumptions do not hold when persistent applications are sharing the

memory interface. Conventional memory scheduling schemes fail to preserve fair

and high-throughput memory accesses when persistent and nonpersistent memory

applications are running together.

6.3.1 A Naive Solution

A natural solution to resolve the issue is to assign persistent writes with the same

priority as reads. However, in practice, we find that this method fails to achieve

87

fairness of memory accesses on various workload combinations.

In Figure 6.1, we studied the fairness of two different memory scheduling

schemes, TCM [159] and a modified TCM which assigns persistent writes the

same priority as reads, by evaluating individual application’s slowdown and the

maximum slowdown between the two applications in different workload combina-

tions. In a system with streaming and btreelog workloads (WL1 in Figure 6.1(a)),

btreelog has the maximum slow down with original TCM [159]. With modified

TCM, the btreelog workload benefits from assigning persistent writes the same

priority as reads, while streaming performs much worse. Because both btreelog

and streaming have high row-buffer locality, a memory scheduler with modified

TCM tends to evenly partition the memory bandwidth between persistent writes

and streaming ’s reads, e.g., by servicing a batch of persistent writes followed by

a batch of streaming ’s reads, and vice versa. As a result, the memory bus has to

be explicitly switched between persistent writes and streaming ’s reads. This bus

turnaround delay is at the scale of 7.5 ns [153]. Frequent bus turnarounds add

considerable delays to total memory access latency, which eventually slow down

both reads and persistent writes. Streaming is more vulnerable to the frequent bus

turnarounds because it keeps performing intensive reads all the time, and most of

the reads are slowed down by such bus-turnaround overhead. The naive solution

may improve btreelog performance by reducing the stall time of persistent writes,

however, significantly slows down streaming and increases the maximum slowdown

in the workload combination.

For WL2 (Figure 6.1(b)) with applications of very different bank-level paral-

lelism and row-buffer locality, random always has the maximum slow down. The

memory accesses of random, with bank-level parallelism, can easily interference

with persistent writes of btreelog. As demonstrated by TCM [159], the interfer-

ence can reduce random’s bank-level parallelism and hurt its performance. Conse-

quently, even though persistent writes have the same priority as reads, the modified

TCM still prioritizes random over btreelog ’s persistent writes. As a result, the naive

solution does not affect the slowdown of the two applications at all, leading the

two sets of bars in Figure 5.1(b) to be the same. Unfortunately, btreelog ’s inten-

sive persistent writes can force the memory scheduler to frequently drain the write

queue. The effect is the same as forcing the memory scheduler to prioritize per-

88

...

Source1 Source2 SourceN

Source
Categorizer

Request
Batching

...

Bank2 BankN

Read Requests
Persistent Write

Requests

Bank1

Memory Scheduler

Bandwidth Partition

Strided Logging

Other Write
Requests

Priority List

Figure 6.2. Overview of FIRM design. Note that we show a logical view of source
request queues. The physical locations of memory requests are read and write queues in
memory controllers.

sistent writes over random’s reads, eventually slowing down random. As a result,

random will remain to be maximally slowed down with the naive solution. Com-

modity memory scheduling schemes, e.g., FR-FCFS, may slow down random even

more by prioritizing btreelog ’s persistent writes with high row-buffer locality.

In summary, the naive solution fails because conventional memory scheduling

designs focus on resolving contention between read requests, i.e., single-direction

bus transfers. New solutions need to be designed to manipulate the sharing of

memory interface between equivalently prioritized, dual-direction data transfers.

6.4 Mechanism

Our goal is to design a memory scheduling mechanism that achieves fairness and

high throughput in a system running both persistent and nonpersistent applica-

tions. Figure 6.2 depicts an overview of proposed FIRM design. Components of

FIRM include source categorization, memory scheduling policy, and strided log-

ging mechanism. We batch the memory requests of different applications based on

their row-buffer locality, i.e., row-hit requests from the same application will be

batched together [161]. The source categorizer monitors memory access behaviors

of running applications and dynamically classify them into persistent and various

nonpersistent sources. The memory scheduler decides which request batch can be

89

serviced. Finally, we employ a strided logging mechanism to accelerate log updates

by augmenting their bank-level parallelism. This section presents the basic idea

of FIRM mechanism. The detailed implementation methods, including software

interface and architecture extensions, will be described in Section 6.6.

6.4.1 Categorizing Sources of Memory Requests

FIRM dynamically classifies the sources of memory requests in four categories:

nonintensive, persistent, streaming, and random, based on their memory intensity,

write intensity, bank-level parallelism, and row-buffer locality. A source is referred

to as a process or a thread in a particular time period, when it is generating memory

requests in a specific behavior. For example, a persistent application is classified

as a persistent source when it is performing persistent updates (logging or shadow

updates). But it may also be a nonintensive, a streaming, or a random source in

other time periods. A nonintensive source has low memory intensity. Other sources

generate memory-intensive requests. Streaming and random sources are typically

read intensive. A streaming source generates memory accesses with low bank-

level parallelism and high row-buffer locality. A random source, on the contrary,

generates memory accesses with high bank-level parallelism and low row-buffer

locality.

FIRM adopts program hints (with the software interface described in Sec-

tion 6.6) to decide whether an application is a persistent application. This prevents

FIRM to classify a nonpersistent applications with a temporary write-intensive

program phase as a persistent source. FIRM identifies that a persistent appli-

cation becomes a persistent source, when it has high memory intensity and high

write intensity. We find that these two characteristics are sufficient to distinguish

persistent updates from other program phases in a persistent application. Algo-

rithm 2 shows the pseudo-code for the source categorization algorithm used by

FIRM. We perform the categorization at the beginning of each time interval of one

million cycles, which, based on our experiments, well trades off between accuracy

and performance overhead. We use TCM’s thread clustering mechanism [159] to

identify nonintensive sources. We use the parameters threshwr and threshblp as

the thresholds to identify high write intensity and high bank-level parallelism. We

90

experimented with various threshold values and find that FIRM can well categorize

persistent and random sources using 80% and 4 as the thresholds, respectively.

ALGORITHM 2: Source categorization algorithm.

Initialization:

PersistentApps← TID

Categorization: (beginning of time interval)
PersistentSource← ∅; StreamingSource← ∅;
RandomSource← ∅; NonintensiveSource← ∅;
Uncategorized← {Threadi : 1 ≤ i ≤ Nthreads}
for Threadi ∈ Uncategorized do

NonintensiveSource = TCM(Threadi)
if Threadi ∈ PersistentApps and WR%i ≥ Threshwr then

PersistentSource← PersistentSource ∪ Threadi

else if BLPi ≥ Threshblp then

RandomSource← RandomSource ∪ Threadi

else

StreamingSource← StreamingSource ∪ Threadi

end if

end for

6.5 Memory Scheduling

Priorities: Table 6.2 shows the priority of memory requests from different sources.

We allocate the highest priority to memory accesses from nonintensive sources.

Because they access memory infrequently and consume only a small fraction of

the total memory bandwidth, servicing them provides greater potential for the

corresponding applications to make forward progress. We allocate the same priority

to persistent writes and streaming reads, because they are both on the critical

execution path and have similar memory access behavior except for the access

direction. We prioritize random reads over persistent writes and streaming reads,

because they are vulnerable to the memory interference with persistent writes and

streaming reads [159].

Partitioning Memory Bandwidth Between Persistent Writes and

Streaming Reads: As discussed in Section 6.2, simply assigning persistent writes

the same priority of streaming reads can slow down both sources, by frequently

91

Priority Memory Requests

1 Non-intensive accesses
2 Random reads
3 (a) Persistent writes and (b) Streaming reads

Table 6.2. Priority strategy when at least one active persistent source is present in the
system.

turning around the driving direction of the memory bus. We address this issue

by partitioning the memory bandwidth between the two types of sources based

on their bandwidth demands and the constraint of bus turnaround overhead de-

manded by users. FIRM partitions memory bandwidth between the two types

of sources with three steps: calculating memory bandwidth demand, merging the

memory request batches of each source to be larger batches, and scheduling the

merged batches. We calculate a source’s bandwidth demand (Di) as the number

of its queued up memory requests, i.e., Di ∈ {D1, D2, ..., Dn}. These memory

requests may be batched by a previous batching scheme, such as PAR-BS [161],

to exploit their row-buffer locality and bank-level parallelism. The grouping step

merges the batches of a source based on their bandwidth demand, and reduces the

bus turnaround overhead to below the threshold defined by users. We calculate

the size of a memory request group (Gi) with the following equation:

Gi = k

⌊

Di

min{D1, D2, ..., Dn}

⌋

where k is used to tune the size of the minimum-sized group to reduce the frequency

of read-write switching. It is calculated based on the memory parameters of write

to read delay (tWTR) and row-buffer hit latency (thit):

k =

⌈

tWTR

thitµturnaround

⌉

where µturnaround is a user-defined parameter that represents the percentage of

bus turnaround time out of the total service time of memory requests. Users can

define µturnaround by configuring the system BIOS. By merging the batches, we can

effectively reduce the bus turn-around overhead. For example, with the memory

configuration described in Table 6.4, the overhead of bus turnaround is up to 21%

92

(7.5ns tWTR over 36ns row-buffer hit latency) when the memory bus services single

read and write requests in an interleaving manner. By scheduling the requests with

groups of minimum 32 requests (that hit in a 2K-byte row-buffer), we can reduce

the overhead to 0.6%. Finally in the memory scheduling step, we schedule the

groups of requests in a round-robin manner.

6.5.1 Strided Logging

Memory bus can only service one direction of data transfers at a time. When mem-

ory bus is servicing persistent writes, reads from other applications must stall. But

log updates, with low bank-level parallelism and high row-buffer locality, tend to

make consecutive accesses to a single bank in a given period of time. As described

in Section 2, most persistent applications create logs by allocating one or chunks

of contiguous memory space to store a circular buffer [69]. Commodity memory

controllers employ randomized higher-order address bits as bank index to avoid

bank conflicts of random and strided accesses (Figure 6.3(a)), however, may fail to

map log updates to different banks. As shown in Figure 6.3(b), only lower-order

address bits change among a sequence of persistent updates; the higher-order bits

are fixed. As a result, a sequence of log updates are mapped to the same bank

(Figure 6.3(b)), and thus are significantly slowed down by bank conflicts and refuse

any read requests from other applications. The memory bandwidth is significantly

under-utilized. It is impractical to exploit bank-level parallelism of log updates

by buffering their write requests due to the large buffering capacity required. For

example, when the write requests to a second bank are issued, we need to buffer at

least 32K bytes (512 entries) of writes write requests. To fully utilize all the eight

banks of a DDR3 channel, we need a write queue as large as 128K bytes.

To accelerate log updates by fully utilizing memory bandwidth, we propose a

strided logging mechanism to improve their bank-level parallelism. Figure 6.3 illus-

trates the strided updates to a log in a circular buffer. The persistent application

can still allocate a contiguous memory space for the circular buffer. But we modify

the memory scheduling such that accesses to the circular buffer are in a strided

manner and are mapped to different banks. Continuous log updates of less than a

row-buffer size can still access a group of contiguous buffer entries to explore high

93

20 19 18 17 16 15 14 6

(a)

(b)

013

016

(c)

Figure 6.3. Conventional address mapping scheme, address bits of persistent writes,
and proposed bank shuffling.

row-buffer locality. But log updates beyond the size of the row-buffer will stride

by an offset. The value of the offset is determined by the position of bank index

bits used in the address mapping scheme. For example, with the address mapping

scheme shown in Figure 6.3(a), the offset will be 128K bytes if we want to fully

utilize the eight banks with log updates. Instead of modifying the memory con-

trollers, our strided logging mechanism can be implemented in a user-mode library

as well. We will describe detailed implementation in Section 6.6.

6.5.2 Summary of FIRM Mechanism

In summary, FIRM is a persistence-aware memory scheduling design that can well

address the challenges posed by running persistent and nonpersistent applications

concurrently. First of all, to accommodate the persistent writes being on the

critical execution path, FIRM prioritizes them as if they were read requests. This

in term prevents the persistent writes from filling up the write queue and reduces

the chance of write drain. Furthermore, FIRM addresses the challenges incurred

by the different directions of data transfers between reads and persistent writes

– the overhead of bus turnaround time and the low bandwidth utilization when

servicing persistent writes. FIRM reduces this overhead by merging those short

94

memory request batches. It increases persistent writes’ bandwidth utilization by

performing strided logging.

6.6 Implementation

This section presents the implementation details. First, we provide a software inter-

face and instruction set architecture (ISA) extensions for users to define a program

as a persistent application. Second, we employ a set of hardware counters in mem-

ory controllers to monitor running workloads’ memory access behavior. Third, we

present our hardware and software modifications to implement the strided logging

mechanism.

6.6.1 Software Interface and ISA Extension

FIRM adopts program hints to determine whether a persistent application is run-

ning in a computing system. We expose to programmers the following software

interface as a declaration of performing persistent memory updates in the pro-

grams:

#pragma persistent memory

Instead of defining the entire program as a persistent-memory application, pro-

grammers can also annotate particular threads in a program as persistent threads

performing log or shadow updates. In this case, users can declare a persistent

attribute when they create such a thread. In addition, we extend the ISA with

a pair of new instructions, PM BEGIN and PM END, to indicate that a piece of code

belongs to a persistent application or thread. The software interface can be trans-

lated to the ISA instruction with simple modifications to compilers. For example,

the compiler will translate the #pragma persistent memory by adding PM BEGIN

and PM END at the beginning and the end of the application code.

6.6.2 Hardware Counters and Registers

Persistence indicators: Once a processor reads users’ input of PM BEGIN, it sig-

nals each memory controller by writing to a set of “persistence indicators” to

95

Counter Name Storage

Registers 1 + log2Nthreads = 5bits

Write counter Ncores × 10 = 80bits

Table 6.3. Storage required by hardware counters in each memory controller. The
values are calculated based on the baseline configuration described in Section 6.7.

a global register to indicate the presence of a persistent application or thread.

The persistence indicator contains two regions, a single-bit persistence and a

log2Nthreads-bit thread identifier. With a persistent-memory thread, the proces-

sor sets the persistence bit to “1” and writes the corresponding thread ID to the

other region. With a persistent-memory application, the processor will set the

thread identifier to “0”.

Hardware counters: Compared with previous work [161, 159], our design adds a

set of 10-bit write counters in each memory controller, each correlated to a hard-

ware thread of the processor. The memory controllers use these write counters to

monitor the write intensity of each source. The write counter records the number

of write misses generated by the last-level cache in each time interval. At the end

of each time interval, a memory controller calculates the write intensity of each

source using the corresponding write counter and MPKI counter (introduced by

TCM [159]). We reset the counters at the beginning of each time interval, after

the memory scheduler has made their scheduling decisions. To monitor memory

intensity, BLP, and RBL of memory requests, we adopt a set of hardware coun-

ters similar to those used in TCM [159] (including a MPKI counter, load and

BLP counters, and shadow row-buffer index and hit counters in each memory con-

troller). Table 6.3 lists the storage required by these hardware counters in each

memory controller, based on the configuration with an eight-core system described

in Section 6.7.

Supporting multiple memory controllers: Because we maintain per-thread

hardware counters in each memory controller, the memory controllers can inde-

pendently make scheduling decisions about its local memory requests based on

the hardware counter information it collects. Consequently, our design does not

require a centralized arbiter to coordinate all the memory controllers.

96

6.6.3 Implementing Strided Logging

The strided logging mechanism can be implemented in memory controller hardware

or by modifying the logging functions in a user-mode library (e.g., employed by

Mnemosyne [69]).

To implement the mechanism in user-mode library, we implement the two coun-

ters in the circular buffer implementation, and modify the log append() function

to stride with the offset with each log append request defined by programmer. By

supporting the strided log appends in memory controller, no software modification

is needed. However, the memory controller needs to maintain the two counters. In

addition, the memory controller needs to maintain a register to locate the starting

and end addresses of the circular buffer.

To implement the strided logging in a memory controller, we employ a hard-

ware counter and two registers. The two registers records the starting and the

end addresses of a circular buffer based on the hint obtained from log create()

function, so that the memory scheduler can identify the boundary of the buffer.

We call the hardware counter as group index. It records the number of appended

log entries within a group. It is used to indicate when the group is fully occupied.

In this case, memory controller will map the coming write requests to the next

group in the circular buffer by striding with an offset. When a log append loops

back to the original group, it will start to write in the neighboring group by further

striding by the size of a group.

6.7 Experimental Setup

We evaluated FIRM design with a set of multithreaded and single-threaded work-

loads running on a multi-core system. This section describes our simulation frame-

work, processor and memory configurations, and benchmarks.

6.7.1 Simulation Framework

Our experiments are conducted using McSimA+ [132], a Pin-based multi- and

many-core cycle-accurate simulation infrastructure [133]. McSimA+ models out-

of-order cores, caches, directories, on-chip networks, and memory channels. Ta-

97

Table 6.4. Parameters of the evaluated multi-core system.

Processor/Fab. Proc. Intel Core i7 / 22 nm
Cores 2.5GHz, 2 threads per core
L1 Cache (Private) 64KB, 4-way, 64B lines, 1.6ns latency
L2 Cache (Private) 256KB, 8-way, 64B lines, 4.4ns latency
L3 Cache (Shared) 2MB/core, 16-way, 64B lines, 10ns latency
Memory Controller Two dual-channel memory controllers

128-/128-entry read/write buffer

DRAM DIMM DDR3-1600, 512MB
NV Memory DIMM STT-MRAM, 2GB, 8 banks,

2KB row buffer, 36ns row-buffer hit,
65/76ns read/write row-buffer conflict

ble 6.4 lists the detailed parameters and architecture configurations of the proces-

sor and memory system to be evaluated with the proposed FIRM design. Each

processor core is similar to one of the Intel Core i7 cores [134]. The processor

incorporates SRAM-based volatile private and shared caches. The L3 cache is 16-

way set-associative and multi-banked. The cores and L3 cache banks communicate

with each other through a crossbar interconnect. A two-level hierarchical directory-

based MESI protocol is employed to maintain cache coherence at the private caches

and the L3 cache. The DRAM and the NVRAM are modeled as off-chip DIMMs

compatible with DDR31. They are mapped to a single physical address space.

DRAM is used to store stacks and data transfer buffers, while the rest of data

is mapped to the NVRAM address space. Memory requests to DRAM and the

NVRAM are managed by two dual-channel memory controllers, respectively. The

timing parameters of the NVRAM is calculated with NVSim [135], a performance,

power, and area estimation tool for NVRAM. Our simulation framework models

FIRM’s memory controller design on source categorization, scheduling policy, and

hardware-based strided logging.

6.7.2 Workloads

Table 6.5 lists the characterization results of our benchmarks running separately.

We select four benchmarks, mcf, lbm, leslie3d, povray, from SPEC CPU 2006

benchmark suite [102] with different memory intensity, bank-level parallelism, and

1Everspin recently launched the DDR3 compatible STT-MRAM components [40], which trans-
fers data at a speed comparable to current DDR3-1600.

98

Table 6.5. Benchmarks used in our experiments.

Benchmarks MPKI WR% BLP RBL

Dbacl [164] 28.2 38% 4.21 12%
FFmpeg [165] 10.5 33% 1.43 30%
Masstree [166] 25.6 27% 1.52 53%
(Logging) (528.8) (86%) (0.2) (90%)
mcf 73.4 25.6% 6.0 41.1%
lbm 28.2 42.0% 2.8 78.7%
leslie3d 15.7 4.0% 1.7 90.8%
povray 0.1 6.0% 1.2 77.6%

Table 6.6. Workloads mixed with Masstree and various nonpersistent applications.

W1 lbm, leslie3d, povray W2 mcf (2), povray
W3 mcf, lbm, povray W4 Dbacl (2), FFmpeg

row-buffer locality. We also use the following three real-world applications in our

workloads.

Dbacl is an offline text document (e.g. email) classifier based on Bayesian sta-

tistical principles. This tool has two modes, one to learn features from given sample

text documents and store the results in a file, the other to classify documents with

the given categories learned from the first mode. We use the CMU text learning

group dataset [167] as, which contains emails from 20 newsgroups. We randomly

choose 100 emails as the input for learning. The total size of the learning results

is 6.5 MB; 321 KB per category. The application then classifies new emails from

any of the 20 newsgroups by extracting features from new emails, loading training

data, and comparing the input features with the training data set. FFmpeg [165] is

a cross-platform solution to record, convert, and stream audio and video. We use

it with x264 encoding library to convert a 60M-byte video file in MPEG-1 format

to MPEG-4 format. Masstree [166] is a persistent in-memory key-value store. It

adopts B+ tree as basic data structure and uses layers of B+ trees to form a tier.

It uses write-ahead logging for persistence. In our experiments, we configure it

with 25-byte keys and 1.8K-byte values (so each log update is approximate 2K

bytes) and perform inserts and deletes to the key-value store.

To evaluate FIRM’s effectiveness on resolving the contention on the shared

memory interface, we map all the memory accesses of these applications to the

NVRAM address space, except for program stacks and data transfer buffers. Our

99

four workloads (Table 6.6) are combinations of Masstree [166] with various non-

persistent applications. Workloads W1, W2, and W3 incorporates applications

with different fractions of random and streaming memory access behaviors. We

use W4 to model a possible application in real-world personal devices. In this

workload, Masstree and FFmpeg are multithreaded applications, with two threads

in our evaluation, while dbacl is single-threaded. Therefore, we run two copies of

this application on different cores. We use the workload combinations in Table 6.6

to evaluate our design on a four-core system. We also evaluate 8-core and 16-core

systems by combining multiple copies of each workload.

6.7.3 Metrics

We evaluate system throughput using weighted speedup (WS) [161]:

WeightedSpeedup =
∑

i

Throughputshared
i

Throughputalone
i

where throughputi is calculated as instruction throughput, i.e., number of executed

instructions per cycle (IPC) with dbacl and FFmpeg. It is calculated as operation

throughput, i.e., number of completed inserts and deletes per cycle with Masstree.

We evaluate fairness using maximum slowdown [159]:

MaximumSlowdown = max
i

Throughputalone
i

Throughputshared
i

6.8 Results

This section presents the evaluation results and analyze the reasons that lead to

these results.

6.8.1 Performance and Fairness of the Naive Mechanism

We first study the performance of a naive memory scheduling scheme: assigning

persistent writes the same priority as reads in conventional memory scheduling

mechanisms. We evaluate this naive scheme applied to commodity FR-FCFS [154,

155] memory scheduling and a number of recently proposed designs [159, 162, 161,

100

Table 6.7. Weighted speedup and maximum slowdown of various workloads: a naive memory
scheduling mechanism compared with conventional memory scheduling schemes.

Schemes Normalized Weighted Speedup Normalized Maximum Slowdown

Workloads W1 W2 W3 W4 W1 W2 W3 W4

PFR-FCFS -8% -37% -19% -10% -25% -72% -52% -38%
PPAR-BS -5% -21% -9% -7% -12% -53% -38% -20%
PTCM -3% 5% 3% 0% -8% -3% -6% -9%
PSMS 2% 5% 4% 3% -6% -1% -6% -7%

158] that optimize fairness and throughput of nonpersistent applications. We add

a prefix “P” (meaning persistence-aware) to represent the naive scheme combined

with each conventional memory scheduling design. We study the weighted speedup

and maximum slowdown of various workloads by employing the naive scheme and

compare the results with each conventional memory scheduling design.

Table 6.7 shows the results evaluated on a four-core system. Because the naive

scheme prioritizes persistent writes as if they were read requests, it improves the

weighted speedup by up to 5% when incorporated with TCM and SMS mechanisms.

Compared with conventional memory scheduling schemes, the naive scheme does

not improve but degrades both fairness or system throughput with most work-

loads. In particular, W2 incorporates two copies of memory-intensive mcf, which

has high bank-level parallelism and low row-buffer locality. FR-FCFS prioritizes

read requests that will hit in the row-buffer. With PFR-FCFS, persistent writes,

i.e., Masstree’s log updates have the same priority as reads. Therefore, PFR-

FCFS will prioritize Masstree’s log updates which have high row-buffer locality,

and deprioritize mcf ’s read requests. As a result, PFR-FCFS incurs a 72% fairness

degradation in W2. In a workload mixed with applications performing consecu-

tive memory accesses to a small number of banks (W1), PFR-FCFS tends to

partition the memory bandwidth evenly among various applications. However,

prioritizing persistent writes as if they are read requests can result in frequent

switches of bus directions. As a result, both persistent and nonpersistent appli-

cations are slowed down. The original PAR-BS can improve the fairness among

nonpersistent applications, by batching the memory requests of the same appli-

cation and explore the bank-level parallelism between different nonpersistent ap-

plications. However, persistent writes and reads from nonpersistent applications

101

W
e
ig

h
te

d

S
p

e
e
d

u
p

(a) (b)

0

1

2

3

4

W1 W2 W3 W4 AVG

PFR-FCFS PPAR-BS PTCM PSMS FIRM-scheduling FIRM-strided-logging

0

1

2

3

4

5

W1 W2 W3 W4 AVG

M
a
x
im

u
m

S
lo

w
d

o
w

n

Figure 6.4. System throughput and fairness with various memory scheduling schemes.
Among listed results, FIRM-scheduling employs the proposed source categorization and
memory scheduling mechanisms but not strided logging. FIRM-strided-logging repre-
sents that all FIRM mechanisms, including hardware-based strided logging, are em-
ployed. (a) System throughput evaluated as weighted speedup. (b) System fairness
evaluated as maximum slowdown.

cannot be serviced at the same time, and therefore PPAR-BS cannot explore the

bank-level parallelism among them. Compared with the original PAR-BS mech-

anism, PPAR-BS can lead to significant fairness degradation(up to 53%). Both

TCM and PTCM tend to prioritize the memory nonintensive application povray

over memory-intensive applications in W1, W2, and W3. They also prioritize mcf

with high bank-level parallelism over other memory-intensive applications in W2

and W3. However, Masstree can become write intensive when it performs logging

and fills the write buffer. Draining the write buffer can stall the read requests of

mcf, and slow it down. PSMS can schedule a long sequence of persistent writes

in small batches. However, servicing memory requests in small batches may result

in frequent switches of bus direction, slowing down both persistent and nonpersis-

tent applications. Overall, the naive memory scheduling scheme results in fairness

degradation in all cases. It also degrades the weighted speedup compared with

original FR-FCFS and PAR-BS mechanisms due to the significant unfairness it

incurred.

6.8.2 FIRM Performance and Fairness

We evaluate the system throughput and fairness of our FIRM design by comparing

it with the naive mechanisms that we have studied in Section 6.8.1. Figure 6.4

shows our evaluation results. To illustrate the performance and fairness benefits

of different components of FIRM, we show individual results of FIRM-scheduling

102

and FIRM-strided-logging. The bars of FIRM-scheduling illustrate the results

when the proposed source categorization and memory scheduling policy are em-

ployed. In Figure 6.4, we set µturnaround to be 0.6%. As shown in the figure,

FIRM-scheduling achieves better system throughput and fairness than the naive

mechanisms. Compared with PSMS, the best of various naive mechanisms, it im-

proves system throughput and fairness by 5% and 11%, respectively. The bars

of FIRM-strided-logging illustrate the results of using hardware-based strided log-

ging combined other two components of FIRM. We employ a 128-entry write buffer,

which can store four log updates (8K bytes). Therefore, we configure the strided

logging mechanism to map the four log updates to four different banks. Our results

show that FIRM-strided-logging mechanism can further improve system through-

put and fairness by 6% and 12%, respectively. Overall, compared with the best

case of previous memory scheduling design (SMS), our design can improve system

throughput and fairness by 8% and 29%, respectively.

We also evaluate the system throughput and fairness with software-based

strided logging by modifying the logging functions. With it, we can eliminate

the performance overhead of manipulating the counter, the group index described

in Section 6.6. Accessing the counter only consumes a maximum of two cycles

(to increment the counter), while a log update of 2K-byte can take up to 2K

cycles (one row-buffer miss and 32 row-buffer hits) in our configuration (Table 6.4).

Therefore, compared with hardware-based strided logging, software-based design

reduces less than 1/1000 latency with each log update on average. As a result, we

did not observe performance and fairness difference between using hardware- and

software-based strided logging mechanisms.

6.8.3 Sensitivity to NVRAM Latency

The above evaluations employ STT-MRAM with the read and write latencies listed

in Table 6.4. However, latency can vary among different NVRAM technologies [4].

For example, PCRAM can have a much longer write latency than read latency [4].

To evaluate FIRM’s sensitivity to longer write latency, we study the throughput

and fairness of our design with increased write latency. In Figure 6.5, we com-

pare the naive and FIRM schemes’ sensitivity to increased write latency, averaged

103

0.0

0.2

0.4

0.6

0.8

1.0

2x 3x 4x 5x

PFR-FCFS PPAR-BS PTCM PSMS FIRM-scheduling FIRM-strided-logging
W

e
ig

h
te

d

S
p

e
e
d

u
p

(a) (b)

M
a
x
im

u
m

S

lo
w

d
o

w
n

0

1

2

3

2x 3x 4x 5x

NVRAM Write Latency (Row-buffer Miss)

Figure 6.5. Results of average system throughput and fairness, when NVRAM write
latency varies from 2× to 5× of the original write latency (Table 6.4). Weighted speedup
(a) and maximum slowdown (b) are normalized to the case using the original write
latency.

0

4

8

12

8-core 16-core

PFR-FCFS PPAR-BS
PTCM PSMS
FIRM-scheduling FIRM-strided-logging

W
e
ig

h
te

d
 S

p
e
e
d

u
p

Figure 6.6. Average weighted speedup with various memory scheduling schemes on
8-core and 16-core systems.

across our evaluated workloads. As shown in the figure, our design retains high

throughput and fair memory accesses with longer NVRAM write latency. FIRM-

strided-logging increases the bank-level parallelism of persistent writes, and there-

fore also increases row-buffer misses. As a result, FIRM-strided-logging incurs 6%

and 19% degradation on system throughput and fairness, respectively. Among var-

ious naive memory scheduling schemes, PTCM is sensitive to the increased write

latency, because it tends to deprioritize persistent writes all the time so the write

buffer can be easily filled by persistent write requests. Persistent writes that fill

the write buffer will take longer time to complete during drain write periods with

longer write latency.

6.8.4 Scalability with Cores

Figure 6.6 and Figure 6.7 illustrate the system throughput and fairness of our

design with the same number of request queues but increased number of cores. We

104

0

1

2

3

4

8-core 16-core

PFR-FCFS PPAR-BS

PTCM PSMS

FIRM-scheduling FIRM-strided-logging

M
a
x
im

u
m

 S
lo

w
d

o
w

n

Figure 6.7. Average maximum slowdown with various memory scheduling schemes on
a 8-core and 16-core systems.

combine two and four instances of each workload to saturate the system scaled up

with 8 and 16 cores, respectively. The results shown in the figures are the average

of all four workloads. Concurrently running multiple instances of workloads can

cause more contention of memory bandwidth. Therefore, doubling the number of

cores results in much less than twice of system throughput. As shown in Figure 6.6

and Figure 6.7, FIRM achieves the best system throughput and fairness among

various memory scheduling mechanisms with both 8- and 16-core systems.

6.9 Summary

The emerging byte-addressable nonvolatile memory technologies open up oppor-

tunities for persistent applications that access user-defined in-memory persistent

data objects by loads and stores without paging from disks or flash. On the other

hand, both persistent and non-persistent applications can compete for shared re-

sources, such as memory interface addressed in this dissertation. We proposed

a persistence-aware memory scheduling scheme, FIRM, which achieves both fair

memory accesses and high system throughput for the co-running applications.

FIRM classifies persistent writes from other memory requests, coordinates their

bandwidth usage with other concurrent memory requests, and increases overall

system bandwidth utilization by augmenting bank-level parallelism of persistent

writes. The experimental results show that FIRM can significantly improves both

throughput and fairness compared with previous memory scheduling designs.

Chapter 7

Conclusion

The memory hierarchy is becoming a fundamental performance and energy bot-

tleneck in computer systems, due to the performance and energy challenges posed

by the requirements of modern applications and the performance and energy limi-

tations in traditional memory technologies. Emerging NVRAM technologies yield

abundant opportunities and challenges in memory hierarchy designs as demon-

strated in this dissertation. NVRAMs are prime candidates for high-performance,

energy-efficient memory, and novel hierarchy design. By leveraging NVRAM’s

performance and energy efficiency benefits, we can replace the traditional mem-

ory technologies employed by current memory hierarchy designs in CPU and GPU

systems. Furthermore, we can re-architect the memory/storage stack by lever-

aging their nontraditional feature – incorporated with both memory and storage

properties.

7.1 Summary of Contributions

This dissertation has discussed how to re-architect the memory hierarchy to achieve

high-performance, energy-efficient data storage and movement, by leveraging NVRAMs

to replace the traditional memory technologies and redesign the memory/storage

stack. In particular, this dissertation presented three contributions.

The first contribution is a bandwidth-aware reconfigurable cache hierarchy

(BARCH) design method applied to CPU systems. It consists of three compo-

nents: the hybrid cache hierarchy, the reconfiguration method, and the prediction

106

engine. The hybrid cache hierarchy leverages different memory technologies to

provide an optimized bandwidth-capacity curve to the on-chip memory system.

Based on such hybrid cache hierarchy, we dynamically reconfigure the cache space

at each level adaptive to the demands of different applications. We also present an

accurate statistical prediction engine to facilitate such reconfiguration. We evalu-

ate the proposed design method with both multithreaded and multiprogrammed

workloads. Experimental results show that reconfigurable hybrid cache leads to

58% and 14% performance improvements to multithreaded and multiprogrammed

applications, respectively.

The second contribution is an energy-efficient graphics memory designs for

GPU systems. We have developed a hybrid graphics memory that improves both

memory bandwidth and system energy efficiency. The key insight in our work is

that hybrid graphics memory design is especially suitable for GPU applications.

The memory access patterns of these applications are naturally used to hide the

latency issue of NVMs. Our initial results are very promising for future GPU sys-

tems, improving 33% in system energy efficiency. Our migration mechanism limits

the frequency of write operations, and therefore we do not expect significantly

degradation of the lifetime.

Finally, this dissertation presented our studies on re-architecting the mem-

ory and storage stack to design a persistent memory, by leveraging NVRAM’s

unique feature of incorporating memory and storage properties in a single device.

I have presented a persistent memory design, Kiln, which employs a multiversioned

memory hierarchy consisting of an NV cache and NV memory, enabling in-place

updates to in-memory data structures, without the redundant writes required by

logging or COW. Kiln provides persistence support with up to 2× performance

improvement to the log-based NVRAM persistent memory. This dissertation also

presented a persistence-aware memory scheduling scheme, FIRM, which achieves

both fair memory accesses and high system throughput for the co-running applica-

tions. FIRM classifies persistent writes from other memory requests, coordinates

their bandwidth usage with other concurrent memory requests, and increases over-

all system bandwidth utilization by augmenting bank-level parallelism of persistent

writes. The experimental results show that FIRM can significantly improves both

throughput and fairness compared with previous memory scheduling designs.

107

7.2 Future Research Directions

Future research in re-architecting the memory hierarchy with NVRAMs can pro-

ceed in several different directions.

7.2.1 Re-architecting the Memory/Storage Stack

NVRAMs incorporate both memory and storage properties, promising to disrupt

current two-level memory/storage stack with the capability of accommodating fast

accesses to permanent data storage in a unified nonvolatile memory. This feature

brings new opportunities to address the massive online data storage and process-

ing requirements of big data applications, allowing them to directly access per-

manent data storage in memory without the performance and energy overheads

of transferring data from/to storage. Unfortunately, current hardware and hard-

ware/software interface are optimized for the two-level memory/storage stack with

vastly discrepant speed (fast memory and slow storage), interfaces (memory buses

and storage I/Os), and functions (hardware-accelerated memory access and soft-

ware managed permanent data storage). Consequently, architects need to redesign

the memory/storage stack to unify the two functions through a memory interface

with optimized system energy efficiency and reliability. I am actively working in

this area. In particular, this dissertation is the first to demonstrate substantial

performance improvement on a stand-alone computer with hardware-based man-

agement of permanent data storage in memory, eliminating the performance and

energy overheads of storage systems (e.g., file systems and databases) software

mechanisms. Yet this is only an initial step. I wish to conduct substantial follow-

up research to address various design challenges.

• Memory hierarchy design: Memory hierarchy (processor caches, mem-

ory controllers, memory buses, and their management mechanisms) has been

well-studied for fast access but not for efficient, reliable accesses to perma-

nent data. For instance, this dissertation shows a large system performance

degradation with current memory controller designs when applications need

to update permanent data stored in memory 6. We addressed this issue by

designing sophisticated memory scheduling policies that balance the service

108

of reads and writes. Memory controller is just one of the various components

in the memory hierarchy. It will be interesting to investigate the optimal

design of various components and mechanisms, e.g., data mapping in shared

caches and memory address space, cache coherence, and data prefetching.

• Reliability: Current storage system software supports strong reliability by

replicating data in disks (e.g., with RAID techniques). With permanent

data stored in memory, copying data will stress memory bus bandwidth and

capacity with more than doubled redundant reads and writes. To address

this issue, It will be interesting to investigate hardware acceleration for reli-

ability management. I would like to start from exploring initial approaches

based on novel circuit and architecture designs: mitigating the memory bus

stress by modifying memory circuit designs to enable data copies with in-

ternal buses; reducing redundant memory copies by continuously monitoring

memory errors and replicating data only needed.

• Security/privacy: Storing permanent data in memory also motivates the

development of new security/ privacy features. Existing architectural sup-

port for security, such as paging and segmentation, can only protect data

from being corrupted, but not permanently retain them. Software-based

encryption used in storage systems are complex and time consuming. Con-

sequently, it is time to rethink architectural support for security/privacy in

light of critical data being permanently stored in memory.

• From single node to distributed systems (e.g., data centers): I also

wish to investigate the scalability of the solutions to aforementioned chal-

lenges in distributed systems. Furthermore, distributed systems may raise

additional challenges to memory system designs, e.g., data portability.

7.2.2 Hybrid Memory Architectures

It is also interesting to extend our exploration to the overall memory hierarchy

design, including on-chip caches, shared memories, and off-chip memories. Fur-

thermore, we want to explore energy optimization techniques to enhance the en-

ergy efficiency of the system. For example, instead of considering the application’s

109

bandwidth demand as the only metric for reconfiguration, we can reconfigure the

cache hierarchy based on a cost function of both bandwidth demand and power

consumption predictions. Another interesting research direction is to improve the

memory lifetime. For example, in the hybrid graphics memory, the STT-MRAM

can be employed as the replacement of portions of ReRAM with error bits. How

to balance between performance and power of such design needs to be studied.

Bibliography

[1] Wu, X., J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie

(2009) “Hybrid cache architecture with disparate memory technologies,” in
Proceedings of the International Symposium on Computer Architecture, pp.
34–45.

[2] Sun, G., X. Dong, Y. Xie, J. Li, and Y. Chen (2009) “A novel archi-
tecture of the 3D stacked MRAM L2 cache for CMPs,” in Proceedings of the
International Symposium on High Performance Computer Architecture, pp.
239–249.

[3] Qureshi, M. K., J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali (2009) “Enhancing Lifetime and Security of
PCM-based Main Memory with Start-gap Wear Leveling,” in Proceedings of
the 42Nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 14–23.

[4] Lee, B. C., E. Ipek, O. Mutlu, and D. Burger (2009) “Architecting
Phase Change Memory As a Scalable Dram Alternative,” in International
Symposium on Computer Architecture, pp. 2–13.

[5] McKee, S. A. (2004) “Reflections on the memory wall,” in Proceedings of
the Conference on Computing Frontiers, p. 162.

[6] Burger, D., J. R. Goodman, and A. Kägi (1996) “Memory bandwidth
limitations of future microprocessors,” in Proceedings of the International
Symposium on Computer Architecture, pp. 78–89.

[7] et al, B. M. R. (2009) “Scaling the bandwidth wall: challenges in and
avenues for CMP scaling,” in Proceedings of the International Symposium
on Computer Architecture, pp. 371–382.

111

[8] Huh, J., D. Burger, and S. W. Keckler (2001) “Exploring the design
space of future CMPs,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, pp. 199–210.

[9] Lindholm, E., J. Nickolls, S. Oberman, and J. Montrym (2008)
“NVIDIA Tesla: a unified graphics and computing architecture,” IEEE Mi-
cro, 28, pp. 39–55.

[10] Yu, C. and P. Petrov (2010) “Off-chip memory bandwidth minimization
through cache partitioning for multi-core platforms,” in Proceedings of the
Design Automation Conference, pp. 132–137.

[11] AMD (2012), “AMD RadeonTMHD 7970 Graphics,”
Http://www.amd.com/us/products/desktop/graphics/7000/7970/
Pages/radeon-7970.aspx.

[12] NVIDIA (2010), “Quadro 6000 - Workstation Graphics Card
for 3D Design, Styling, Visualization, CAD, and More,”
Http://www.nvidia.com/object/product-quadro-6000-us.html.

[13] Elpida (2010) “Introduction to GDDR5 SGRAM,” .

[14] Zhao, J., C. Xu, and Y. Xie (2011) “Bandwidth-aware Reconfigurable
Cache Design with Hybrid Memory Technologies,” in Proceedings of the In-
ternational Conference on Computer-Aided Design, pp. 48–55.

[15] Janzen, J., “The Micron system-power calculator,”
Http://www.micron.com/products/dram/syscalc.html.

[16] Zhao, J. and Y. Xie (2012) “Optimizing Bandwidth and Power of Graphics
Memory with Hybrid Memory Technologies and Adaptive Data Migration,”
in Proceedings of the International Conference on Computer-Aided Design,
pp. 81–87.

[17] Zhao, J., S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi (2013) “Kiln:
Closing the Performance Gap Between Systems With and Without Persis-
tence Support,” in Proceedings of the 2013 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, IEEE Computer Society, Wash-
ington, DC, USA.

[18] Waser, R. (2009) “Resistive Non-volatile Memory Devices,” Microelectron.
Eng., 86(7-9), pp. 1925–1928.

[19] Hosomi, M., H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo,
K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto,
H. Nagao, and H. Kano (2005) “A novel nonvolatile memory with spin

112

torque transfer magnetization switching: spin-RAM,” in Electron Devices
Meeting, IEDM Technical Digest, pp. 459–462.

[20] Zhao, W., E. Belhaire, Q. Mistral, C. Chappert, V. Javerliac,
B. Dieny, and E. Nicolle (2006) “Macro-model of Spin-Transfer Torque
based Magnetic Tunnel Junction device for hybrid Magnetic-CMOS design,”
in Behavioral Modeling and Simulation Workshop, Proceedings of the 2006
IEEE International, pp. 40–43.

[21] Raoux, S., G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-

C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L.

Lung, and C. H. Lam (2008) “Phase-change Random Access Memory: A
Scalable Technology,” IBM Journal of Research and Development, 52(4), pp.
465–479.

[22] Viking Technology (2012), “Understand-
ing non-volatile memory technology whitepaper,”
Http://www.vikingtechnology.com/uploads/nv whitepaper.pdf.

[23] Degraeve, R., A. Fantini, S. Clima, B. Govoreanu, L. Goux, Y. Y.

Chen, D. Wouters, P. Roussel, G. Kar, G. Pourtois, S. Cosemans,
J. Kittl, G. Groeseneken, M. Jurczak, and L. Altimime (2012) “Dy-
namic hourglass model for SET and RESET in HfO2 RRAM,” in Proceedings
of the Symposium on VLSI Technology, pp. 75–76.

[24] Goux, L., A. Fantini, G. Kar, Y. Chen, N. Jossart, R. Degraeve,
S. Clima, B. Govoreanu, G. Lorenzo, G. Pourtois, D. Wouters,
J. Kittl, L. Altimime, and M. Jurczak (2012) “Ultralow sub-500nA op-
erating current high-performance TiN\Al2O3\HfO2\Hf\TiN bipolar RRAM
achieved through understanding-based stack-engineering,” in Proceedings of
the Symposium on VLSI Technology, pp. 159–160.

[25] Cagli, C. (2012) “Characterization and Modelling of Electrode Impact in
HfO2-based RRAM,” in Proceedings of the Memory Workshop.

[26] Sousa, V. (2012) “Phase change materials engineering for RESET current
reduction,” in Proceedings of the Memory Workshop.

[27] Kim, K.-H., S. Hyun Jo, S. Gaba, and W. Lu (2010) “Nanoscale resistive
memory with intrinsic diode characteristics and long endurance,” Applied
Physics Letters, 96(5), pp. 053 106.1–053 106.3.

[28] Lin, W. S., F. T. Chen, C. H. L. Chen, and M.-J. Tsai (2010) “Evi-
dence and solution of over-RESET problem for HfOx based resistive memory
with sub-ns switching speed and high endurance,” in Proceedings of the In-
ternational Electron Devices Meeting, pp. 19.7.1–19.7.4.

113

[29] Kim, Y.-B., S. Lee, D. Lee, C. Lee, M. Chang, J. H. Hur, M.-J. Lee,
G.-S. Park, C. J. Kim, U. Chung, I.-K. Yoo, and K. Kim (2011) “Bi-
layered RRAM with unlimited endurance and extremely uniform switching,”
in Proceedings of the Symposium on VLSI Technology, pp. 52–53.

[30] Ahn, S., Y. Song, C. Jeong, J. Shin, Y. Fai, Y. Hwang, S. Lee,
K. Ryoo, S. Lee, J.-H. Park, H. Horii, Y. Ha, J. Yi, B. Kuh, G. Koh,
G. Jeong, H. Jeong, K. Kim, and B.-I. Ryu (2004) “Highly manufac-
turable high density phase change memory of 64Mb and beyond,” in Pro-
ceedings of the International Electron Devices Meeting, pp. 907–910.

[31] Kitagawa, E., S. Fujita, K. Nomura, H. Noguchi, K. Abe,
K. Ikegami, T. Daibou, Y. Kato, C. Kamata, S. Kashiwada, N. Shi-

momura, J. Ito, and H. Yoda (2012) “Impact of ultra low power and
fast write operation of advanced perpendicular MTJ on power reduction for
high-performance mobile CPU,” in Proceedings of the International Electron
Devices Meeting, pp. 29.4.1–29.4.4.

[32] Yoda, H., S. Fujita, N. Shimomura, E. Kitagawa, K. Abe, K. No-

mura, H. Noguchi, and J. Ito (2012) “Progress of STT-MRAM technol-
ogy and the effect on normally-off computing systems,” in Proceedings of the
International Electron Devices Meeting, pp. 11.3.1–11.3.4.

[33] Abe, K., H. Noguchi, E. Kitagawa, N. Shimomura, J. Ito, and S. Fu-

jita (2012) “Novel hybrid DRAM/MRAM design for reducing power of high
performance mobile CPU,” in Proceedings of the International Electron De-
vices Meeting, pp. 10.5.1–10.5.4.

[34] Schechter, S., G. H. Loh, K. Straus, and D. Burger (2010) “Use
ECP, Not ECC, for Hard Failures in Resistive Memories,” in Proceedings of
the International Symposium on Computer Architecture, pp. 141–152.

[35] Ipek, E., J. Condit, E. B. Nightingale, D. Burger, and T. Mosci-

broda (2010) “Dynamically Replicated Memory: Building Reliable Systems
from Nanoscale Resistive Memories,” in Proceedings of the Fifteenth Edition
of ASPLOS on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS XV, ACM, New York, NY, USA, pp. 3–14.

[36] Seong, N. H., D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-

H. S. Lee (2010) “SAFER: Stuck-At-Fault Error Recovery for Memories,”
in Proceedings of the International Symposium on Microarchitecture, pp. 115–
124.

114

[37] Seong, N. H., D. H. Woo, and H.-H. S. Lee (2010) “Security Refresh:
Prevent Malicious Wear-out and Increase Durability for Phase-change Mem-
ory with Dynamically Randomized Address Mapping,” in Proceedings of the
International Symposium on Computer Architecture, pp. 383–394.

[38] Yoon, D. H., N. Muralimanohar, J. Chang, P. Ranganathan,
N. Jouppi, and M. Erez (2011) “FREE-p: Protecting non-volatile mem-
ory against both hard and soft errors,” in Proceedings of the International
Symposium on High Performance Computer Architecture, pp. 466–477.

[39] (http://www.itrs.net), “International Technology Roadmap for Semiconduc-
tors, Process Integration, Devices, and Structures 2010 Update,” .

[40] Janesky, J. (2013) “Device performance in a fully functional 800MHz
DDR3 Spin Torque Magnetic Random Access Memory,” in IMW.

[41] Dorsey, P. (2010) “Xilinx stacked silicon interconnect technology delivers
breakthrough FPGA capacity, bandwidth, and power efficiency,” in Xilinx
White Papers.

[42] Zhao, J., X. Dong, and Y. Xie (2010) “Cost-aware Three-dimensional
(3D) Many-core Multiprocessor Design,” in Proceedings of the 47th Design
Automation Conference, pp. 126–131.

[43] Xie, Y., G. H. Loh, B. Black, and K. Bernstein (2006) “Design Space
Exploration for 3D Architectures,” J. Emerg. Technol. Comput. Syst., 2(2),
pp. 65–103.

[44] Loh, G. H. (2008) “3D-stacked memory architectures for multi-core pro-
cessors,” in Proc. of the International Symposium on Computer Architecture,
pp. 453–464.

[45] Dong, X., Y. Xie, N. Muralimanohar, and N. P. Jouppi (2010) “Sim-
ple but Effective Heterogeneous Main Memory with On-Chip Memory Con-
troller Support,” in Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis,
SC ’10, IEEE Computer Society, Washington, DC, USA, pp. 1–11.

[46] Kgil, T., S. D’Souza, and A. Saidi et al. (2006) “PicoServer: using 3D
stacking technology to enable a compact energy efficient chip multiproces-
sor,” in Proc. of the International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 117–128.

[47] Liu, C. C., I. Ganusov, M. Burtscher, and S. Tiwari (2005) “Bridg-
ing the processor-memory performance gap with 3D IC technology,” IEEE
Design Test, 22, pp. 556–564.

115

[48] Loi, G. L., B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood,
and K. Banerjee (2006) “A thermally-aware performance analysis of ver-
tically integrated (3-D) processor-memory hierarchy,” in Proc. of the Design
Automation Conference, pp. 991–996.

[49] Gu, S., P. Marchal, M. Facchini, F. Wang, M. Suh, D. Lisk, and
M. Nowak (2008) “Stackable memory of 3D chip integration for mobile
applications,” in Proc. of Intl. Electron Devices Meeting, pp. 1–4.

[50] Woo, D. H., N. H. Seong, L. D.L., and H.-H. Lee (2010) “An optimized
3D-stacked memory architecture by exploiting excessive, high-density TSV
bandwidth,” in Proc. of the International Conference for High Performance
Computing, pp. 1–12.

[51] Kim, J.-S., C. S. Oh, and H. Lee et al. (2011) “A 1.2V 12.8GB/s 2Gb
mobile wide-I/O DRAM with 4 × 128 I/Os using TSV-based stacking,” in
Proc. of Intl. Solid-State Circuits Conf., pp. 496–498.

[52] Micron (2013), “Hybrid Memory Cube Specification 1.0,” .

[53] Tezzaron Semiconductors (2010), “FaStack 3D stackable DRAM,”
Http://www.tezzaron.com/memory/.

[54] Loi, I. and L. Benini (2010) “An Efficient Distributed Memory Interface
for Many-core Platform with 3D Stacked DRAM,” in Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 99–104.

[55] Jevdjic, D., S. Volos, and B. Falsafi (2013) “Die-stacked DRAM
Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have It All with
Footprint Cache,” in Proceedings of the International Symposium on Com-
puter Architecture, pp. 404–415.

[56] (2014), “AMD and Hynix announce joint development of HBM mem-
ory stacks,” Http://electroiq.com/blog/2013/12/amd-and-hynix-announce-
joint-development-of-hbm-memory-stacks/.

[57] JEDEC (2013), “High bandwidth memory (HBM) DRAM,”
Http://www.jedec.org/standards-documents/docs/jesd235.

[58] Lin, C. J., S. H. Kang, Y. J. Wang, K. Lee, X. Zhu, W. C. Chen,
X. Li, W. N. Hsu, Y. C. Kao, M. T. Liu, W. C. Chen, Y. C. Lin,
M. Nowak, N. Yu, and L. Tran (2009) “45nm low power CMOS logic
compatible embedded STT MRAM utilizaing a reverse-connection 1T/1MTJ
cell,” in Proceedings of the International Electron Devices Meeting, pp.
11.6.1–11.6.4.

116

[59] Ramakrishnan, R. and J. Gehrke (2007) “Database Management Sys-
tems, Third Edition,” .

[60] Herlihy, M. and J. E. B. Moss (1993) “Transactional memory: architec-
tural support for lock-free data structures,” in Proceedings of the Interna-
tional Symposium on Computer Architecture.

[61] Park, S., T. Kelly, and K. Shen (2013) “Failure-atomic msync(): a
simple and efficient mechanism for preserving the integrity of durable data,”
in Proceedings of the European Conference on Computer Systems.

[62] Lee, H. G. and N. Chang (2003) “Energy-aware Memory Allocation in
Heterogeneous Non-volatile Memory Systems,” in Proceedings of the Inter-
national Symposium on Low Power Electronics and Design, pp. 420–423.

[63] Huang, Y., T. Liu, and C. J. Xue (2011) “Register Allocation for Write
Activity Minimization on Non-volatile Main Memory,” in Proceedings of the
Asia and South Pacific Design Automation Conference, pp. 129–134.

[64] Bathen, L. A. and N. Dutt (2012) “HaVOC: A Hybrid Memory-aware
Virtualization Layer for On-chip Distributed ScratchPad and Non-volatile
Memories,” in Proceedings of the Design Automation Conference, pp. 447–
452.

[65] Li, Y., Y. Chen, and A. K. Jones (2012) “A Software Approach for
Combating Asymmetries of Non-volatile Memories,” in Proceedings of the
International Symposium on Low Power Electronics and Design, pp. 191–
196.

[66] Narayanan, V., V. Saripalli, K. Swaminathan, R. Mukundrajan,
G. Sun, Y. Xie, and S. Datta (2011) “Enabling Architectural Innovations
Using Non-volatile Memory,” in Proceedings of the Great Lakes Symposium
on Great Lakes Symposium on VLSI, pp. 439–444.

[67] Roberts, D., T. Kgil, and T. Mudge (2009) “Using Non-volatile Memory
to Save Energy in Servers,” in Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 743–748.

[68] Condit, J., E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee (2009) “Better I/O Through Byte-
addressable, Persistent Memory,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, ACM, New York,
NY, USA, pp. 133–146.

117

[69] Volos, H., A. J. Tack, and M. M. Swift (2011) “Mnemosyne:
Lightweight Persistent Memory,” in Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, ACM, New York, NY, USA, pp. 91–104.

[70] Coburn, J., A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson (2011) “NV-heaps: making persistent objects
fast and safe with next-generation, non-volatile memories,” in International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pp. 105–118.

[71] Venkataraman, S., N. Tolia, P. Ranganathan, and R. H. Camp-

bell (2011) “Consistent and durable data structures for non-volatile byte-
addressable memory,” in Proceedings of the 9th USENIX Conference on File
and Storage Technologies, pp. 1–15.

[72] Lee, E., H. Bahn, and S. H. Noh (2013) “Unioning of the buffer cache
and journaling layers with non-volatile memory,” in Proceedings of the 11th
USENIX Conference on File and Storage Technologies, pp. 73–80.

[73] Wu, M. and W. Zwaenepoel (1994) “eNVy: A Non-volatile, Main Mem-
ory Storage System,” in Proceedings of the 6th International Conference on
Architectural Support for Programming Languages and Operating Systems,
pp. 86–97.

[74] Butterworth, P., A. Otis, and J. Stein (1991) “The GemStone Object
Database Management System,” Commun. ACM, 34(10), pp. 64–77.

[75] Singhal, V., V. Kakkad, and P. R. Wilson (1992) “Texas: an efficient,
portable persistent store,” in Proceedings of the International Workshop on
Persistent Object Systems, pp. 11–33.

[76] White, S. J. and D. J. DeWitt (1995) “QuickStore: A High Performance
Mapped Object Store,” The VLDB Journal, 4(4), pp. 629–673.

[77] Lamb, C., G. Landis, J. Orenstein, and D. Weinreb (1991) “The
ObjectStore Database System,” Commun. ACM, 34(10), pp. 50–63.

[78] Andrews, T. and C. Harris (1987) “Combining Language and Database
Advances in an Object-oriented Development Environment,” in Proceedings
of Object-oriented Programming Systems, Languages and Applications, pp.
430–440.

[79] Cattell, R. G. (1994) Object Data Management: Object-Oriented and
Extended, 1st ed., Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

118

[80] (http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-
140049.html), “Java persistence API,” .

[81] Marquez, A., J. N. Zigman, and S. M. Blackburn (2000) “Fast
Portable Orthogonally Persistent Java,” Softw. Pract. Exper., 30(4), pp.
449–479.

[82] Satyanarayanan, M., H. H. Mashburn, P. Kumar, D. C. Steere,
and J. J. Kistler (1993) “Lightweight Recoverable Virtual Memory,” in
Proceedings of the Fourteenth ACM Symposium on Operating Systems Prin-
ciples, pp. 146–160.

[83] Chen, P. M., W. T. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell (1996) “The Rio File Cache: Surviving Operating System
Crashes,” in Proceedings of the Seventh International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pp.
74–83.

[84] Sears, R. and E. Brewer (2006) “Stasis: Flexible Transactional Stor-
age,” in Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, pp. 29–44.

[85] Hagmann, R. (1987) “Reimplementing the Cedar File System Using Log-
ging and Group Commit,” in Proceedings of the Eleventh ACM Symposium
on Operating Systems Principles, pp. 155–162.

[86] Tweedie, S. C. (1987) “Journaling the Linux ext2fs sile system,” in Linux
Expo.

[87] Lowell, D. E. and P. M. Chen (1997) “Free Transactions with Rio Vista,”
in Proceedings of the ACM Symposium on Operating Systems Principles, pp.
92–101.

[88] Giles, E., K. Doshi, and P. Varman (2013) “Bridging the Programming
Gap Between Persistent and Volatile Memory Using WrAP,” in Proceedings
of the International Conference on Computing Frontiers, pp. 30:1–30:10.

[89] Hitz, D., J. Lau, and M. Malcolm (1994) “File System Design for an
NFS File Server Appliance,” in Proceedings of the USENIX Winter 1994
Technical Conference, pp. 19–19.

[90] Bressoud, T. C., T. Clark, and T. Kan (2001) “The Design and Use
of Persistent Memory on the DNCP Hardware Fault-Tolerant Platform,”
in Proceedings of the International Conference on Dependable Systems and
Networks, pp. 1–12.

119

[91] Copeland, G., T. Keller, R. Krishnamurthy, and M. Smith (1989)
“The Case for Safe RAM,” in Proceedings of the International Conference
on Very Large Data Bases, pp. 327–335.

[92] Eskesen, F., M. Hack, A. Iyengar, R. King, and N. Halim (1998)
“Software Exploitation of a Fault-Tolerant Computer with a Large Memory,”
in Proceedings of the International Symposium on Fault-Tolerant Computing,
pp. 336–345.

[93] Caulfield, A. M., T. I. Mollov, L. A. Eisner, A. De, J. Coburn,
and S. Swanson (2012) “Providing Safe, User Space Access to Fast, Solid
State Disks,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 387–400.

[94] Narayanan, D. and O. Hodson (2012) “Whole-system Persistence,” in
Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XVII,
ACM, New York, NY, USA, pp. 401–410.

[95] Xu, C., X. Dong, N. P. Jouppi, and Y. Xie (2011) “Design implica-
tions of memristor-based RRAM cross-point structures,” in Proceedings of
the Design, Automation and Test in Europe Conference, pp. 1–6.

[96] Sun, G., C. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, and Y.-K.

Chen (2011) “Moguls: a model to explore memory hierarchy for throughput
computing,” to appear in Proceedings of the International Symposium on
Computer Architecture.

[97] Flautner, K., N. S. Kim, S. Martin, D. Blaauw, and T. Mudge

(2002) “Drowsy caches: simple techniques for reducing leakage power,” in
Proceedings of the International Symposium on Computer Architecture, pp.
148–157.

[98] Chen, S. F. and J. Goodman (1996) “An empirical study of smoothing
techniques for language modeling,” in Proceedings of the Annual Meeting on
Association for Computational Linguistics, pp. 310–318.

[99] Magnusson, P. S., M. Christensson, J. Eskilson, D. Fors-

gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner (2002) “Simics: a full system simulation platform,” IEEE
Transactions on Computer, 35(2), pp. 50–58.

[100] Bienia, C., S. Kumar, J. P. Singh, and K. Li (2008) “The PARSEC
benchmark suite: characterization and architectural implications,” in Pro-
ceedings of the International Conference on Parallel Architectures and Com-
pilation Techniques, pp. 239–249.

120

[101] SPEC OMP, “SPEC OMP2001,” Http://www.spec.org/omp/.

[102] SPEC CPU, “SPEC CPU2006,” Http://www.spec.org/cpu2006/.

[103] Gebhart, M., D. R. Johnson, and D. e. a. Tarjan (2011) “Energy-
efficient mechanisms for managing thread context in throughput processors,”
in Proceeding of the International symposium on Computer architecture, pp.
235–246.

[104] Yu, W.-K. S., R. Huang, S. Q. Xu, S.-E. Wang, E. Kan, and G. E.

Suh (2011) “SRAM-DRAM hybrid memory with applications to efficient
register files in fine-grained multi-threading,” in Proc. of the International
symposium on Computer architecture, pp. 247–258.

[105] Ren, D. Q. and R. Suda (2010) “Modeling and optimizing the power
performance of large matrices multiplication on multi-core and GPU platform
with CUDA,” in Proc. of the International Conf. on Parallel Processing and
Applied Mathematics, pp. 421–428.

[106] Al Maashri, A., G. Sun, X. Dong, V. Narayanan, and Y. Xie (2009)
“3D GPU architecture using cache stacking: performance, cost, power and
thermal analysis,” in Proc. of the International Conferenece on Computer
Design, pp. 254–259.

[107] Galal, S. and M. Horowitz (2011) “Energy-efficient floating-point unit
design,” IEEE Trans. on Computers, 60(7), pp. 913 –922.

[108] Wang, P.-H., Y.-M. Cheng, C.-L. Yang, and Y.-J. Cheng (2009) “A
predictive shutdown technique for GPU shader processors,” Computer Ar-
chitecture Letters, 8(1), pp. 9–12.

[109] NVIDIA (2008), “PowerMizer 8.0 Intelligent Power Management Technol-
ogy,” Http://www.nvidia.com/object/feature powermizer.html.

[110] Jiao, Y., H. Lin, P. Balaji, and W. Feng (2010) “Power and Perfor-
mance Characterization of Computational Kernels on the GPU,” in Proceed-
ings of the International Conference on Green Computing and Communica-
tions and International Conference on Cyber, Physical and Social Comput-
ing, pp. 221–228.

[111] Samsung, “DDR3 and GDDR5,” Http://www.samsung.com/global/ busi-
ness/semiconductor/products/Products.html.

[112] Herbert, S. and D. Marculescu (2007) “Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors,” in Proceedings of the Inter-
national Symposium on Low Power Electronics and Design, pp. 38–43.

121

[113] Kaxiras, S. and M. Martonosi (2008) Computer Architecture Techniques
for Power-Efficiency, 1st ed., Morgan and Claypool Publishers.

[114] Isci, C., G. Contreras, and M. Martonosi (2006) “Live, Runtime
Phase Monitoring and Prediction on Real Systems with Application to Dy-
namic Power Management,” in Proceedings of the International Symposium
on Microarchitecture, pp. 359–370.

[115] Wu, Q., M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors,
Y. Wu, J. Lee, and D. Brooks (2005) “A Dynamic Compilation Frame-
work for Controlling Microprocessor Energy and Performance,” in Proceed-
ings of the International Symposium on Microarchitecture, MICRO 38, pp.
271–282.

[116] David, H., C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu

(2011) “Memory Power Management via Dynamic Voltage/Frequency Scal-
ing,” in Proceedings of the International Conference on Autonomic Comput-
ing, pp. 31–40.

[117] Deng, Q., D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini

(2011) “MemScale: Active Low-power Modes for Main Memory,” in Proceed-
ings of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 225–238.

[118] Deng, Q., D. Meisner, A. Bhattacharjee, T. F. Wenisch, and
R. Bianchini (2012) “CoScale: Coordinating CPU and Memory System
DVFS in Server Systems,” in Proceedings of the International Symposium on
Microarchitecture, pp. 143–154.

[119] Bakhoda, A., G. Yuan, W. Fung, H. Wong, and T. Aamodt (2009)
“Analyzing CUDA workloads using a detailed GPU simulator,” in Proc. of
Intl. Symp. on Performance Analysis of Systems and Software, pp. 163–174.

[120] Hynix, “GDDR5 SGRAM datasheet,” Http://www.hynix.com/products/
graphics/.

[121] NVIDIA, “CUDA SDK,” Http://www.nvidia.com/object/cudasdks.html.

[122] Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron (2009) “Rodinia: a benchmark suite for heterogeneous
computing,” in Proc. of Intl. Symp. on Workload Characterization, pp. 44–
54.

[123] Li, S., J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi (2009) “McPAT: an integrated power, area, and timing

122

modeling framework for multicore and manycore architectures,” in Proc. of
the International Symposium on Microarchitecture.

[124] Vick, E., S. Goodwin, G. Cunnigham, and D. S. Temple (2012) “Vias-
last Process Technology for Thick 2.5D Si Interposers,” in 3D Systems Inte-
gration Conference, pp. 1–4.

[125] Intel Corporation (2012) “Intel architecture instruction set extensions
programming reference, 319433-012 edition,” .

[126] Jacobi et al., C. (2012) “Transactional memory architecture and imple-
mentation for IBM System Z,” in MICRO.

[127] Wang, A., M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Bar-

ton, R. Silvera, and M. Michael (2012) “Evaluation of Blue GeneQ
Hardware Support for Transactional Memories,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation Tech-
niques, pp. 127–136.

[128] Moore, K. E., J. Bobba, M. J. Moravan, M. D. Hill, and D. A.

Wood (2006) “LogTM: log-based transactional memory,” in Proceedings of
the 12th International Symposium on High Performance Computer Architec-
ture, pp. 1–12.

[129] Atikoglu, B., Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny

(2012) “Workload Analysis of a Large-scale Key-value Store,” in Proceed-
ings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, pp. 53–64.

[130] Kim, J.-S., C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na,
J. Moon, J.-G. Kim, H. Park, J.-W. Ryu, K. Park, S. K. Kang, S.-

Y. Kim, H. Kim, J.-M. Bang, H. Cho, M. Jang, C. Han, J.-B. Lee,
J. S. Choi, and Y.-H. Jun (2012) “A 1.2 V 12.8 GB/s 2 Gb mobile wide-
I/O DRAM with 4x 128 I/Os using TSV based stacking,” IEEE Journal of
Solid-State Circuits, 47, pp. 107–115.

[131] Pawlowski, J. (2011) “Hybrid memory cube,” in Proceedings of the Hot
Chips.

[132] Ahn, J. H., S. Li, O. Seongil, and N. Jouppi (2013) “McSimA+: A
manycore simulator with application-level+ simulation and detailed microar-
chitecture modeling,” in Performance Analysis of Systems and Software (IS-
PASS), 2013 IEEE International Symposium on, pp. 74–85.

123

[133] Luk, C.-K., R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood (2005) “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’05, ACM, New York, NY, USA,
pp. 190–200.

[134] (http://www.intel.com/content/www/us/en/processors/ core/core-i7-
processor.html), “Intel Core i7,” .

[135] Dong, X., C. Xu, Y. Xie, and N. Jouppi (2012) “NVSim: A Circuit-Level
Performance, Energy, and Area Model for Emerging Nonvolatile Memory,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 31(7), pp. 994–1007.

[136] Hammond, L., V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun (2004) “Transactional Memory Coherence and Consistency,”
in Proceedings of the 31st Annual International Symposium on Computer Ar-
chitecture, pp. 102–113.

[137] Bingmann, T. (http://panthema.net/2007/stx-btree), “STX B+ Tree,
Sept. 2008,” .

[138] Siek et al., J. (http://www.boost.org/doc/libs/), “Boost: adjacency list,
ver. 1.52.0,” .

[139] Bader, D. A. and K. Madduri (2005) “Design and Implementation of
the HPCS Graph Analysis Benchmark on Symmetric Multiprocessors,” in
Proceedings of the 12th International Conference on High Performance Com-
puting, pp. 465–476.

[140] Li, S., J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi (2009) “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,” in Pro-
ceedings of the 42Nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pp. 469–480.

[141] Kannan, S., A. Gavrilovska, and K. Schwan (2014) “Reducing the cost
of persistence for nonvolatile heaps in end user devices,” in Proceedings of
the International Symposium on High Performance Computer Architecture,
pp. 1–12.

[142] Zhou, P., B. Zhao, J. Yang, and Y. Zhang (2009) “A Durable and
Energy Efficient Main Memory Using Phase Change Memory Technology,”

124

in Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pp. 14–23.

[143] Qureshi, M. K., V. Srinivasan, and J. A. Rivers (2009) “Scalable High
Performance Main Memory System Using Phase-change Memory Technol-
ogy,” in Proceedings of the 36th Annual International Symposium on Com-
puter Architecture, ISCA ’09, ACM, New York, NY, USA, pp. 24–33.

[144] Meza, J., J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan (2012)
“Enabling Efficient and Scalable Hybrid Memories Using Fine-Granularity
DRAM Cache Management,” IEEE Comput. Archit. Lett., 11(2), pp. 61–64.

[145] Yoon, H., J. Meza, R. Ausavarungnirun, R. A. Harding, and
O. Mutlu (2012) “Row Buffer Locality Aware Caching Policies for Hybrid
Memories,” in International Conference on Computer Design, pp. 1–8.

[146] Dhiman, G., R. Ayoub, and T. Rosing (2009) “PDRAM: A Hybrid
PRAM and DRAM Main Memory System,” in Proceedings of the 46th An-
nual Design Automation Conference, DAC ’09, ACM, New York, NY, USA,
pp. 664–469.

[147] Lee, B. C., E. Ipek, O. Mutlu, and D. Burger (2010) “Phase Change
Memory Architecture and the Quest for Scalability,” Commun. ACM, 53(7),
pp. 99–106.

[148] Lee, B. C., P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu,
and D. Burger (2010) “Phase-Change Technology and the Future of Main
Memory,” IEEE Micro, 30(1), pp. 143–143.

[149] Li, J. (2012) “A Case for Small Row Buffers in Non-volatile Main Memories,”
in Proceedings of the 2012 IEEE 30th International Conference on Computer
Design (ICCD 2012), ICCD ’12, IEEE Computer Society, Washington, DC,
USA, pp. 484–485.

[150] Chatterjee, N., N. Muralimanohar, R. Balasubramonian,
A. Davis, and N. P. Jouppi (2012) “Staged Reads: Mitigating the Im-
pact of DRAM Writes on DRAM Reads,” in International Symposium on
High-Performance Computer Architecture, pp. 1–12.

[151] Liu, R.-S., D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang

(2014) “NVM Duet: Unified Working Memory and Persistent Store Architec-
ture,” in Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pp. 455–470.

125

[152] Venkataraman, S., N. Tolia, P. Ranganathan, and R. H. Camp-

bell (2011) “Consistent and Durable Data Structures for Non-volatile Byte-
addressable Memory,” in Proceedings of the 9th USENIX Conference on File
and Stroage Technologies, FAST’11, USENIX Association, Berkeley, CA,
USA, pp. 5–5.

[153] Kim, Y., V. Seshadri, D. Lee, J. Liu, and O. Mutlu (2012) “A Case
for Exploiting Subarray-level Parallelism (SALP) in DRAM,” in Proceedings
of the 39th Annual International Symposium on Computer Architecture, pp.
368–379.

[154] Rixner, S., W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens

(2000) “Memory Access Scheduling,” in Proceedings of the 27th Annual In-
ternational Symposium on Computer Architecture, ISCA ’00, ACM, New
York, NY, USA, pp. 128–138.

[155] Rixner, S. (2004) “Memory Controller Optimizations for Web Servers,”
in Proceedings of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 37, IEEE Computer Society, Washington, DC,
USA, pp. 355–366.

[156] Moscibroda, T. and O. Mutlu (2007) “Memory Performance Attacks:
Denial of Memory Service in Multi-core Systems,” in Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, SS’07,
USENIX Association, Berkeley, CA, USA, pp. 18:1–18:18.

[157] Mutlu, O. and T. Moscibroda (2007) “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” in Proceedings of the International
Symposium on Microarchitecture, pp. 146–160.

[158] Kim, Y., D. Han, O. Mutlu, and M. Harchol-Balter (2010) “ATLAS:
A scalable and high-performance scheduling algorithm for multiple mem-
ory controllers,” in High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, pp. 1–12.

[159] Kim, Y., M. Papamichael, O. Mutlu, and M. Harchol-Balter (2010)
“Thread Cluster Memory Scheduling: Exploiting Differences in Memory Ac-
cess Behavior,” in International Symposium on Microarchitecture, pp. 65–76.

[160] Muralidhara, S. P., L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda (2011) “Reducing Memory Interference in Multicore Sys-
tems via Application-aware Memory Channel Partitioning,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44 ’11, ACM, New York, NY, USA, pp. 374–385.

126

[161] Mutlu, O. and T. Moscibroda (2008) “Parallelism-Aware Batch
Scheduling: Enhancing both Performance and Fairness of Shared DRAM
Systems,” in International Symposium on Computer Architecture, pp. 63–
74.

[162] Ausavarungnirun, R., K. K.-W. Chang, L. Subramanian, G. H.

Loh, and O. Mutlu (2012) “Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems,” in Proceedings of
the 39th Annual International Symposium on Computer Architecture, ISCA
’12, IEEE Computer Society, Washington, DC, USA, pp. 416–427.

[163] Ebrahimi, E., R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,
O. Mutlu, and Y. N. Patt (2011) “Parallel Application Memory Schedul-
ing,” in Proceedings of the International Symposium on Microarchitecture,
pp. 362–373.

[164] “Digramic bayesian classifier,” Http://dbacl.sourceforge.net.

[165] “FFmpeg,” Http://www.ffmpeg.org/.

[166] Mao, Y., E. Kohler, and R. T. Morris (2012) “Cache craftiness for fast
multicore key-value storage,” in European Conference on Computer Systems.

[167] Mladenic, D. (2001) “Uisng text learning to help Web browsing,” in
SIGCHI.

Vita

Jishen Zhao

Jishen Zhao received B.E. and M.E. degrees from Zhejiang University in China.
She is currently a Ph.D. Candidate in the Computer Science and Engineering De-
partment at the Pennsylvania State University. She works in the Microsystems De-
sign Laboratory (MDL) under the supervision of Professor Yuan Xie. Her research
is concerned with a broad range of computer architecture and electronic design
automation, with a particular emphasis on memory systems, high-performance
computing, and energy efficiency. Her past research results in 13 papers in top
venues of computer architecture and electronic design automation, as well as 4 US
patents. She is on the TPC of Workshop on Architectures and Systems for Big
Data (ASBD) 2014. She has also served as a TPC for Great Lakes Symposium
on VLSI (GLSVLSI) 2014 and peer reviewer for several conferences in the field of
computer architecture, electronic design automation, and VLSI design, including
Design Automation Conference (DAC) 2012, and Design Automation and Test in
Europe Conference (DATE) 2012, International Symposium on High-performance
Computer Architecture (HPCA) 2013, and International Conference on Parallel
Architectures and Compilation Techniques (PACT) 2013.

