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Abstract

Trained on large datasets, deep learning (DL) can ac-

curately classify videos into hundreds of diverse classes.

However, video data is expensive to annotate. Zero-shot

learning (ZSL) proposes one solution to this problem. ZSL

trains a model once, and generalizes to new tasks whose

classes are not present in the training dataset. We pro-

pose the first end-to-end algorithm for ZSL in video clas-

sification. Our training procedure builds on insights from

recent video classification literature and uses a trainable

3D CNN to learn the visual features. This is in contrast

to previous video ZSL methods, which use pretrained fea-

ture extractors. We also extend the current benchmarking

paradigm: Previous techniques aim to make the test task

unknown at training time but fall short of this goal. We

encourage domain shift across training and test data and

disallow tailoring a ZSL model to a specific test dataset.

We outperform the state-of-the-art by a wide margin. Our

code, evaluation procedure and model weights are avail-

able at github.com/bbrattoli/ZeroShotVideoClassification.

1. Introduction

Training image and video classification algorithms re-

quires large training datasets [21, 27, 51, 52, 53]. With

no task-specific training data available one may still at-

tempt to train a model using related information and trans-

fer the learned knowledge to classify previously unseen

categories. This approach is called zero-shot learning

(ZSL) [29, 34] and it is quite successful in the image do-

main [41, 42, 44, 45, 47, 56].

We focus on ZSL for video action recognition, where

data sourcing and annotation is particularly expensive.

∗Work done during an internship at Amazon.

Figure 1: (Top) Our model is state-of-the-art (error com-

puted on the UCF test dataset.) (Bottom) Our e2e model

is simple but powerful. URL [64], Action2Vec [18] and

TARN [4] are state-of-the-art approaches. Gray blocks rep-

resent modules fixed during training. Colors (blue, red, or-

ange, yellow) indicate modules trained in separate stages.

Since the set of possible human actions is huge, action

recognition is a great ZSL testbed. Trained on large-scale

academic datasets [11, 17, 24, 25, 28, 50], supervised 3D

convolutional neural networks (CNNs) proved successful in

this domain [12, 51, 52]. How well modern deep networks

can recognize human actions in the ZSL setting is, however,

an open question.

To our knowledge, all current ZSL methods for video
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recognition use pretrained visual embeddings [1, 4, 18, 33,

35, 54, 55, 58, 59, 60, 61, 64]. This provides a good trade-

off between training efficiency and using prior knowledge.

Shallow trainable models then convert the pretrained repre-

sentations to ZSL embeddings, as shown in Fig. 1 (Bottom).

Low training space complexity of shallow models allows

them to benefit from long video sequences [51] and large

feature extractors [21].

In contrast, state-of-the-art algorithms in the fundamen-

tal CV domains of image classification [21], object detec-

tion [36, 38, 49] and segmentation [8, 20, 63] all rely on

end-to-end (e2e) training. Representation learning is at the

core of deep networks’ success across machine learning do-

mains [3], and deeper models can better utilize information

available in large datasets [2, 21]. This poses a question:

How can an e2e ZSL compete with current methods?

Our contributions involve multiple aspects of ZSL video

classification:

Novel Modeling: We propose the first e2e-trained model

for zero-shot action recognition. The training proce-

dure is inspired by modern supervised video classifica-

tion practices. Fig. 1 shows that our method is simple,

yet outperforms previous work. Moreover, we devise

a novel easy pretraining technique that targets the ZSL

scenario for video recognition.

Evaluation Protocol: We propose a novel ZSL training

and evaluation protocol that enforces a realistic ZSL

setting. Extending the work of Roitberg et al. [40], we

test a single trained model on multiple test datasets,

where sets of training and test classes are disjoint.

In addition, we argue that training and test domains

should not be identical.

In-depth Analysis: We perform an in-depth analysis of the

e2e model and a pretrained baseline. In a series of

guided experiments we explore the characteristics of

good ZSL datasets.

Our model, training and evaluation code, are available at

github.com/bbrattoli/ZeroShotVideoClassification.

2. Related work

We focus on inductive ZSL in which test data is fully

unknown at training time. There exists a body of literature

on transductive ZSL [1, 33, 54, 55, 59, 58, 60], where test

images or videos are available during training but test labels

are not. We do not discuss the transductive approach in this

work.

Video classification: Modern, DL-based video classi-

fication methods fall largely into two categories: 2D net-

works [48, 53] that operate on 1-5 frame snippets and 3D

networks [5, 6, 7, 12, 19, 31, 46, 51, 52] that operate on

16-128 frames. One of the earliest works of this type, Si-

monyan and Zisserman [48], trained with only 1-5 frames

sampled randomly from the video. At inference many more

Figure 2: Training and test classes, t-SNE [30] visualiza-

tion of Word2Vec embeddings. Red dots represent training

classes we used, and gray dots training classes we removed

in order to separate training and test data. Crosses represent

test classes. Pictures are actual dataset videoframes.

frames were sampled and the classifier outputs were aver-

aged across all samples taken for a video clip. This implied

that looking at a large chunk of the video was important

during inference but wasn’t strictly required during train-

ing. Wang et al. [53] showed that sampling multiple frames

throughout the video during training could improve perfor-

mance, opening the question whether training also requires

a large temporal context. However, a body of later work

based on more powerful 3D networks [7, 12, 51] showed

that for most datasets sampling 16 frames during training is

sufficient. Increasing training frame count from 16 to 128

improved performance only marginally.

In this work, we adapt the training-time sampling phi-

losophy of state-of-the-art video classification to the ZSL

setup. This allows us to train the visual embedding e2e. As

a consequence, the overall architecture and inference pro-

cedure are very simple compared to previous work, and the

results are state-of-the-art – as shown in Fig. 1.

Zero shot video classification: The common practice in

zero-shot video classification is to first extract visual fea-

tures from video frames using a pretrained network such

as C3D [51] or ResNet [21], then trains a temporal model

that maps the visual embedding to a semantic embedding

space [4, 13, 14, 15, 16, 18, 35, 61, 64]. Good general-

ization on semantic embeddings of class names means that

the model can be applied to new videos where the possible
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Figure 3: Removing overlapping training and test classes.

The y-axis shows Kinetics classes closest to the test sets

UCF and HMDB. x-axis shows the distance (see Eq. 4) of

the corresponding closest test class. In our experiments, we

removed training classes closer than τ = 0.05 to the test set

– to the left of the red line in the figure.

output classes are not present in training data. Inference

reduces to finding the test class whose embedding is the

nearest-neighbor of the model’s output. Word2Vec [32] is

commonly used to produce the ground-truth word embed-

dings. An alternative approach is to use manually crafted

class attributes [23]. We decided not to pursue the manual

approach as it harder to apply in general scenarios.

Two effective recent methods, Hahn et al. [18] and

Bishay et al. [4], extract C3D features from 52 clips of 16

frames from each video. They then learn a recurrent neu-

ral network [10, 22] to encode the result as a single vec-

tor. Finally, a fully connected layer maps the encoded video

into Word2Vec embedding. Fig. 1 illustrates this approach.

Both [18] and [4] use the same dataset for training and test-

ing, after splitting the available dataset classes into two sets.

Using a pretrained deep network is convenient because pre-

extracted visual features easily fit in GPU memory, even for

a large number of video frames. Alternative approaches use

generative models to compensate for the gap between se-

mantic and visual distributions [33, 62]. Unfortunately, per-

formance is limited by the inability to fine-tune the visual

embedding. We show fine-tuning is crucial to generalize

across datasets.

Our work is similar to Zhu et al. [64] in that both meth-

ods learn a universal action representation that generalizes

across datasets. However, their proposed model does not

leverage the potential of 3D CNNs. Instead, they utilize the

very deep ResNet200 [21], pretrained on ImageNet [9, 43],

which cannot utilize temporal information.

As pointed out by Roitberg et al. [40], previous works

train their models on actions overlapping with those of the

the target dataset, violating ZSL assumptions. For example,

Zhu et al. [64] train on the full ActivityNet [11] dataset.

This makes their results difficult to fairly compare with

ours. Under our definition of ZSL (Sec. 3.3), Zhu et al.

have 23 classes in their training datasets that overlap with

the test dataset. The situation is similar for all other meth-

ods to varying degrees.

3. Zero-shot action classification

We first carefully define ZSL in the context of video clas-

sification. This will allow us to propose not only a new ZSL

algorithm, but also a clear evaluation protocol that we hope

will direct future research towards practical ZSL solutions.

We stay within the inductive setting, as described in Sec. 2.

3.1. Problem setting

A video classification task is defined by a training set

(source) Ds = {(x1, c1), · · · , (xNs
, cNs

)} consisting of

pairs of videos x and their class labels c, and a video-label

test set Dt. In addition, previous work often uses pretrain-

ing datasets Dp as explained in Sec. 2.

Intuitively, ZSL is any procedure for training a classifica-

tion model on Ds (and possibly Dp) and then testing on Dt

where Dt does not overlap with Ds ∪Dp. How this overlap

is defined varies. Sec. 3.3 proposes a definition that is more

restrictive than those used by previous work, and forces the

algorithms into a more realistic ZSL setting.

ZSL classifiers need to generalize to unseen test classes.

One way to achieve this is using nearest-neighbor search in

a semantic class embedding space.

Formally, given a video x, we infer the corresponding

semantic embedding z = g(x) and classify x as the nearest-

neighbor of z in the set of embeddings of the test classes.

Then, a trained classification model M(·) outputs

M(x) = argmin
c∈Dt

cos (g(x),W2V(c)). (1)

where cos is the cosine distance and the semantic em-

bedding is computed using the Word2Vec function [32]

W2V : C → R
300.

The function g = fs ◦ fv is a composition of a visual

encoder fv : x 7→ y and a semantic encoder fs : y 7→ z ∈
R

300.



3.2. End­to­end training

In previous work, the visual embedding function fv is ei-

ther hand-crafted [60, 64] or computed by a pretrained deep

network [4, 18, 55, 64]. It is fixed during optimization, forc-

ing model development to focus on improving fs. Resulting

models need to learn to transform fixed visual embeddings

into meaningful semantic features and can be very complex,

as shown in Fig. 1 (Bottom).

Instead, we propose to optimize both fv and fs at the

same time. Such e2e training offers multiple advantages:

1. Since fv provides a complex computation engine, fs
can be a simple linear layer (see Fig. 1).

2. We can implement the full model using standard 3D

CNNs.

3. Pretraining the visual embedding on a classification

task is not necessary.

End-to-end optimization using the full video is unfeasi-

ble due to GPU memory limitations. Our implementation is

based on standard video classification methods which are

effective even when only a small snippet is used during

training, as discussed in detail in Sec 2. Formally, given

a training video/class pair (x, c) ∈ Ds we extract a snippet

xt of 16 frames at a random time t ≤ (len(x) − 16). The

network is optimized by minimizing the loss

L =
∑

(x,c)∈Ds

‖W2V (c)− (fs ◦ fv)(x
t)‖2. (2)

Inference procedure is similar but pools information from

multiple snippets following Wang et al. [53]. Sec. 4.4 de-

tails both our training and inference procedures.

To better understand our method’s performance under

various experimental conditions, we implemented a base-

line model that uses identical fs, fv and training data, but

fixes fv’s weights to values pretrained on the classification

task (available out-of-the-box in the most recent PyTorch

implementation, see Sec. 4.4). This was necessary since we

were not able to access implementations of any of the state-

of-the-art methods ([4, 18, 64]). Unfortunately, our own

re-implementations achieved results far below numbers re-

ported by their authors, even with their assistance.

3.3. Towards realistic ZSL

To ensure that our ZSL setting is realistic, we extend the

methods of [40] that carefully separates training and test

data. This is cumbersome to achieve in practice, and has not

been attempted by most previous work. We hope that our

clear formulation of the training and evaluation protocols

will make it easy for future researchers to understand the

performance of their models in true ZSL scenarios.

Non-overlapping training and test classes: Our first

goal is to make sure that Ds ∪ Dp and Dt have ”non-

overlapping classes”. The simple solution – to remove

source class names from target classes or vice-versa – does

not work, because two classes with slightly different names

can easily refer to the same concept, as shown in Fig. 3.

A distance between class names is needed. Equipped with

such a metric, we can make sure training and test classes are

not too similar. Formally, let d : C → C denote a distance

metric on the space of all possible class names C, and let

τ ∈ R denote a similarity threshold. A video classification

task fully respects the zero-shot constraint if

∀cs ∈ Ds ∪Dp, min
ct∈Dt

d(cs, ct) > τ. (3)

A straightforward way to define d is using semantic em-

beddings of class names. We define the distance between

two classes to be simply

d(c1, c2) = cos(W2V(c1),W2V(c2)) (4)

where cos indicates cosine distance. This is consistent with

the use of the cosine distance in the ZSL setting as we do

in Eq. 1. Fig. 2 shows an embedding of training and test

classes after we removed from Kinetics classes overlapping

with test data using the procedure outlined above. Fig. 3

shows the distribution of distances between training and test

classes in our datasets. There is a cliff between distances

very close to 0 and larger than 0.1. In our expeirments we

use τ = 0.05 as a natural, unbiased threshold.

Different training and test video domains: We argue

that video domains of Ds ∪ Dp and Dt should differ. In

previous work, the standard evaluation protocol is to use

one dataset for training and testing, using 10 random splits.

This does not account for domain shifts that happen in real

world scenarios due to data compression, camera artefacts,

and so on. For this reason ZSL training and test datasets

should ideally have disjoint video sources.

Multiple test datasets: A single ZSL model should per-

form well on multiple test datasets. As outlined above, pre-

vious works train and test anew for each available dataset

(typically UCF and HMDB). In our experiments, training

happens only once on the Kinetics dataset [25], and testing

on all of UCF [50], HMDB [28] and ActivityNet [11].

3.4. Easy pretraining for video ZSL

In a real-world scenario a model is trained once and

then deployed on diverse unseen test datasets. A large and

diverse training dataset is crucial to achieve good perfor-

mance. Ideally, the training dataset would be tailored to the

general domain of inference – for example, a strong ZSL

surveillance model to be deployed at multiple unknown lo-

cations would require a large surveillance and action recog-

nition dataset.

Sourcing and labeling domain-specific video datasets is,

however, very expensive. On the other hand, annotating im-

ages is considerably faster. Therefore, we designed a simple



Dataset VisualFeat UCF HMDB Activity

URL [64] ResNet200 42.5 51.8 -

DataAug [60] - 18.3 19.7 -

InfDem [39] I3D 17.8 21.3 -

Bidirectional [55] IDT 21.4 18.9 -

FairZSL [40] - - 23.1 -

TARN [4] C3D 19 19.5 -

Action2Vec [18] C3D 22.1 23.5 -

Ours(605classes) C3D 41.5 25.0 24.8

Ours(664classes) C3D 43.8 24.7 -

Ours(605classes) R(2+1)D 18 44.1 29.8 26.6

Ours(664classes) R(2+1)D 18 48 32.7 -

Table 1: Comparison with the state-of-the-art on standard

benchmarks. We evaluate on half test classes following

Evaluation Protocol 1 (Sec. 4.3). Ours(605classes) indi-

cates we removed all training classes that overlap with UCF,

HMDB, or ActivityNet. Ours(664classes) indicates we re-

moved only training classes overlapping with UCF and

HMDB. We outperform previous work in both scenarios.

Sec. 2 argues that URL’s results are not compatible with

other works as their training and test sets overlap and their

VisualFeat is an order of magnitude deeper.

dataset augmentation scheme which creates synthetic train-

ing videos from still images. Sec. 5 shows that pretraining

our model using this dataset boosts performance, especially

if available training data is small.

We convert images to videos using the Ken Burns ef-

fect: a sequence of crops moving around the image simu-

lates video-like motion. Sec. 4.1 provides more details.

Our experiments focus on the action recognition do-

main. In action recognition (as well as in many other

classification tasks), location and scenery of the video is

strongly predictive of action category. Because of this we

choose SUN [57], a standard scene recognition dataset.

Fig. 2 shows the complete class embedding of our the scene

dataset’s class names.

4. Experimental setup

To facilitate reproducibility, we describe our training and

evaluation protocols in detail. The protocols propose one

way of training and evaluating ZSL models that is consistent

with our definitions in Sec. 3.3.

4.1. Datasets

UCF101 [50] has 101 action classes primarily focused

around sports, with 13320 videos sourced from YouTube.

HMDB51 [28] is divided into 51 human actions focused

around sports and daily activities and contains 6767 videos

Method UCF HMDB Activity

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

URL [64] 34.2 - - - - -

664classes 37.6 62.5 26.9 49.8 - -

605classes 35.3 60.6 24.8 44.0 20.0 42.7

Table 2: Evaluation on all test classes. In contrast to Table 1,

here we report results of our method applied to all three

test datasets using Evaluation Protocol 2 (Sec. 4.3). We ap-

plied a single model trained on classes dissimilar from all

of UCF, HMDB and ActivityNet. Nevertheless, we outper-

form URL [64] on UCF101. URL authors do not report

results on full HMDB51. Remaining previous work do not

report results on neither full UCF101 nor full HMDB51.

sourced from commercial videos and YouTube. Activi-

tyNet [11] contains 27,801 untrimmed videos divided in 200

classes focusing on daily activities with videos sourced us-

ing web search. We extracted only the labeled frames from

each video. Kinetics [25] is the largest currently available

action recognition dataset, covering a wide range of hu-

man activity. The first version of the dataset contains over

200K videos divided in 400 categories. The newest version

has 700 classes for a total of 541624 videos sourced from

YouTube. SUN397 [57] (see Sec. 3.4) is a scene under-

standing image dataset. It contains 397 scene categories for

a total of over 100K high-resolution images. We converted

it to a simulated video dataset using the Ken Burns effect:

To create a 16-frame video from an image, we randomly

choose ”start” and ”end” crop locations (and crop sizes) in

the image, and linearly interpolate to obtain 16 crops. Each

of them are then resized to 112× 112.

4.2. Training protocol

Our experiments in Sec. 5 use two training methods:

Training Protocol 1: Remove from Kinetics 700 all the

classes whose distance to any class in UCF ∪ HMDB is

smaller than τ (see Eq. 4). This results in a subset of Ki-

netics with 664 classes, which we call Kinetics 664. As

explained in Sec. 3.3, this setting is already more restrictive

than that of the previous methods, which train new models

for each test dataset.

Training Protocol 2: Remove from Kinetics 700 all the

classes whose distance to any class in UCF ∪ HMDB ∪
ActivityNet is smaller than τ (see Eq. 4). This results in

a subset of Kinetics with 605 classes which we call Kinet-

ics 605. This setting is even more restrictive, but is closer to

true ZSL. Our goal is to show that it is possible to train a sin-

gle ZSL model that applies to multiple diverse test datasets.

Figure 2 shows a t-SNE projection of the semantic em-

beddings of all Kinetics 700 classes, as well as the 101 UCF



classes and the classes we removed to obtain Kinetics 664.

4.3. Evaluation protocol

We tested our model using two protocols: the first fol-

lows Sec. 3.3 to emulate a true ZSL setting, the second is

compatible with previous work. Both Evaluation Protocols

apply the same model to multiple test datasets.

Evaluation Protocol 1: In order to make our results

comparable with previous work, we use the following pro-

cedure: Randomly choose half of the test dataset’s classes,

50 for UCF and 25 for HMDB. Evaluate the classifier on

that test set. Repeat ten times and average the results for

each test dataset.

Evaluation Protocol 2: Previous work uses random

training/test splits of UCF [50] and HMDB [28] to evaluate

their algorithms. However, we train on a separate dataset

Kinetics 664 / 605 and can test on full UCF and HMDB.

This allows us to return more realistic accuracy scores. The

evaluation protocol is simple: evaluate the classifier on all

101 UCF classes and all 51 HMDB classes.

4.4. Implementation details

In our experiments, fv (see Sec. 3.1) is the PyTorch im-

plementation of R(2+1)D 18 [52] or C3D[51]. In the pre-

trained setting, we use the out-of-the-box R(2+1)D 18 pre-

trained on Kinetics 400[25], while C3D is pretrained on

Sports-1M[24]. In the e2e setting, we initialize the model

with the pretrained=False argument. The visual embedding

fv(x) is BxTx512 where B is the batch size and T is the

number of clips per video. We use T = 1 for training,

and T = 25 for evaluation in Tables 1 and 2. The clips

are 16 frames long and we choose them following stan-

dard protocols established by Wang et al. [53]. We aver-

age fv(x) across time (video snippets) similarly to previous

approaches [51, 64]. fs is a linear classifier with 512x300

weights. The output of fs ◦ fv is of shape Bx300.

We follow standard protocol in computing semantic em-

beddings of class names [4, 58, 64]. Word2Vec [32] – in

particular, the gesim [37] Python implementation – encodes

each word. We average multi-word class names. In rare

cases of words not available in the pretrained W2V model

(for example, ’rubiks’ or ’photobombing’) we manually

change the words (see the code for more details). Formally,

for a class name consisting of N words c = [c1, · · · , cN ],

we embed it as W2V (c) =
∑N

i=1 W2V (ci) ∈ R
300. We set

τ to 0.05 following the analysis in Sec. 3.3 based on Fig. 3.

To minimize the loss of Eq. 2 we use the Adam opti-

mizer [26], starting with a learning rate of 1e−3. Batch size

is 22 snippets, with 16 frames each. The model trained for

150 epochs, with a tenfold learning rate decrease at epochs

60 and 120. All experiments are performed on the Nvidia

Tesla V100 GPU.

Following [51], we reshaped each frame’s shortest side

Figure 4: Number of training classes matters in ZSL. Or-

ange curves show performance on subsets of Kinetics 664,

as we keep all the training classes and increase the subset

size. The blue curves, whose markers become progressively

brighter, indicate a separate experiment where we increased

the number of training classes starting from 2, all the way

up to 664 (Sec. 5.2). For any given training dataset size,

performance on test data is much better with more training

classes. In addition, when few training classes are available

the e2e model is not able to outperform the baseline.

to 128 pixels, and cropped a random 112x112 patch on

training and the center patch on inference.

5. Results

Our experiments have two goals: compare our method to

previous work and investigate our method’s performance vs

the baseline (see Sec. 3.2.) The first is necessary to validate

that e2e ZSL on videos can outperform more complex ap-

proaches that use pretrained features. The latter will allow

us to understand under what conditions e2e training can be

particularly beneficial.

5.1. Comparison to the state of the art

Table 1 compares our method to existing approaches. We

followed our Training and Evaluation Protocol 1, as de-

scribed in Sections 4.2 and 4.3. Our protocols are more

restrictive than that of previous methods: we removed train-

ing classes that overlap with test classes, introduced domain

shift, and applied one model to multiple test datasets. De-

spite this, we outperform previous video-based methods by

a large margin. Furthermore, when testing on UCF we out-

perform URL [64] which uses a network an order of mag-



Figure 5: Diverse training classes are good for ZSL. Here

we trained our algorithm on subsets of 50 Kinetics 664

classes. (Top left) Training classes picked uniformly at ran-

dom. (Top right) We clustered Word2Vec embeddings of

classes into two clusters, then trained and evaluated sepa-

rately using each cluster, and averaged the results. (Bottom)

Here we averaged the results of training using three and six

clusters. The figure shows that the more clusters, the less

diverse the training classes were semantically. At the same

time, less diversity caused higher errors.

nitude deeper than ours – 18 vs 200 layers – and 23 classes

overlap between training and testing (see Sec. 2).

5.2. Comparison to a baseline method

Our baseline method described in Sec. 3.2 uses a fixed,

pretrained visual feature extractor but is otherwise identi-

cal to our e2e method. This allows us to study the bene-

fits of e2e training under Evaluation Protocol 2, (see Sec-

tions 4.2 and 4.3). Using all test classes provides a more

direct evaluaition of the method.

Training dataset size: To investigate the effect of train-

ing set size on performance we subsampled Kinetics 664

uniformly at random, then re-trained and re-evaluated the

model. Fig. 4 shows that the e2e algorithm consistently

outperforms the baseline on both datasets. Both algorithms’

performance is worse with smaller training data. However,

the baseline flattens out at about 100K training datapoints,

whereas our method’s error keeps decreasing. This is ex-

pected, as the e2e model has more capacity.

Number of training classes: In many video domains

diverse data is difficult to obtain. Small datasets might not

Figure 6: Augmented pretraining with videos-from-images.

We trained our algorithm on progressively smaller subsets

of Kinetics 664 classes (Sec. 5.2). We compared the results

to training on the same dataset, after pretraining the model

on our synthetic SUN video dataset (Sec. 5.3). The pretrain-

ing procedure boosts performance up to 10% points.

only have few datapoints, but also contain only a few train-

ing classes. We show that the number of training classes

can impact ZSL results as much as training dataset size.

To obtain Fig. 4 we subsampled Kinetics 664 class-

wise. We first picked 2 Kinetics 664 classes at random, and

trained the algorithm on those classes only. We repeated

the procedure using 4, 10, 25, 50, 100, 200, 400 and all 664

classes. Naturally, the fewer classes the fewer datapoints the

training set contained. This results are compared in Fig. 4

with the procedure described above, where we removed Ki-

netics datapoints at random – independent of their classes.

The figure shows that it is better to have few training

samples from a large number of classes rather than many

from a very small number of classes. This effect is more

pronounced for the e2e model rather than the baseline.

Training dataset class diversity: We showed that ZSL

works better with more training classes. If we have a limited

budget for collecting classes and datapoints, how should

we choose them? We investigated whether the set of train-

ing classes should emphasize fine differences (e.g. ”shoot-

ing basketball” vs ”passing basketball” vs ”shooting soccer-

ball” and so on) or diversity.

In Fig. 5 we selected 50 training classes in four ways:

(Top Left) We randomly choose 50 classes from the whole

Kinetics 664 dataset, trained the algorithm on these classes,

and ran inference on the test set. We repeated this process

ten times and averaged inference error. (Top Right) We

clustered the 664 classes into 2 clusters in the Word2Vec

embedding space, and chose 50 classes at random within

one of the clusters, trained and ran inference. We then

repeated the procedure ten times and averaged the result.



Figure 7: Error as test classes move away from training.

For each UCF101 test class, we computed its distance to 10

nearest neighbors in the training dataset. We arranged all

such distance thresholds on the x-axis. For each threshold,

we computed the accuracy of the algorithms on test classes

whose distance from training data is larger than the thresh-

old. In other words, as x-axis moves to the right, the model

is evaluated on cumulatively smaller, but harder test sets.

(Bottom) Here we chose 50 classes in one of 3 clusters

(Left) and one of 6 clusters (Right), trained, and averaged

inference results of 10 runs. The figure shows that test error

for our method increases as class diversity decreases. This

result is not obvious, since the task becomes harder with

increasing class diversity.

5.3. Easy pretraining with images

Previous section showed that class count and diversity

are important drivers of ZSL performance. This inspired

us to develop the pretraining method described in Sec. 3.4:

we pretrain our model on a synthetic video dataset created

from still images from the SUN dataset. Fig. 6 shows that

this simple procedure consistently decreases test errors by

up to 10%. In addition, Fig. 7 shows that this initializa-

tion scheme makes the model more robust to large domain

shift between train and test classes. The following section

describes the latter finding in more detail.

5.4. Generalization and domain shift

A good ZSL model generalizes well to classes that dif-

fer significantly from training classes. To investigate the

performance of our models under heavy domain shift, we

computed the accuracy on subsets of test data with a grow-

ing distance from the training dataset. We first trained our

model on Kinetics 664. Then, for a given distance threshold

τ (see Sec. 3.3), we computed accuracy on the set of UCF

classes whose mean distance from the closest 10 Kinetics

664 classes is larger than τ . Fig. 7 shows that the base-

line model’s (not trained e2e) performance drops to zero at

around τ ∼ 0.57. Our method performs much better, never

dropping to zero accuracy for high thresholds. Finally, us-

ing the SUN pretraining further increases performance.

UCF101 accuracy 50 classes 101 classes

e2e Augment Multi Top-1 Top-5 Top-1 Top-5

26.8 55.5 19.8 40.5

X 43.0 68.2 35.1 56.4

X X 45.6 73.1 36.8 61.7

X X 48.0 74.2 37.6 62.5

X X X 49.2 77.0 39.8 65.6

Table 3: Ablation study. Numbers represent classifica-

tion accuracy. “50 classes” uses Evaluation Protocol 1

(Sec. 4.3.) “101 classes” uses Evaluation Protocol 2. e2e:

training the visual embedding as opposed to fixed, pre-

trained baseline (Sec. 3.2). Augment: pretrain using the

SUN augmentation scheme (Sec. 5.3). Multi: At test time,

extract multiple snippets from each video and average the

visual embeddings (Sec. 4.4).

5.5. Ablation study

Table 3 studies contributions of different elements of our

model to its performance. The performance is low when

the visual embedding is fixed. The e2e approach improves

the performance by a large margin. Our class augmenta-

tion method further boosts performance. Finally it helps

to extract linearly spaced snippets from a video on testing,

and average their visual embeddings. Using 25 snippets im-

proves considerably the performances without influencing

the training time of the model.

6. Conclusion

We followed practices from recent video classification

literature to train the first e2e system for video recognition

ZSL. Our evaluation protocol is stricter than that of exist-

ing work, and measures more realistic zero-shot classifica-

tion accuracy. Even under this stricter protocol, our method

outperforms previous works whose performance was mea-

sured with training and test sets overlapping and sharing

domains. Through a series of directed experiments, we

showed that a good ZSL dataset should have many diverse

classes. Guided by this insight, we formulated a simple pre-

training technique that boosts ZSL performance.

Our model is easy to understand and extend. Our

training and evaluation protocols are easy to use with

alternative approaches. We made our code available

at github.com/bbrattoli/ZeroShotVideoClassification to

encourage the community to build on our insights and

create a strong foundation for future video ZSL research.
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