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Abstract. Laser photocoagulation is a proven procedure to treat vari-
ous pathologies of the retina. Challenges such as motion compensation,
correct energy dosage, and avoiding incidental damage are responsible
for the still low success rate. They can be overcome with improved in-
strumentation, such as a fully automatic laser photocoagulation system.
In this paper, we present a core image processing element of such a
system, namely a novel approach for retina mosaicing. Our method re-
lies on recent developments in region detection and feature description to
automatically fuse retina images. In contrast to the state-of-the-art the
proposed approach works even for retina images with no discernable vas-
cularity. Moreover, an efficient scheme to determine the blending masks
of arbitrarily overlapping images for multi-band blending is presented.

1 Introduction

With the dramatic demographic shift towards an older population, age-related
eye diseases, such as Glaucoma and Macular Degeneration, are about to become
increasingly prevalent and to develop into a serious public health issue. However,
age-related eye diseases are not the only emerging causes of visual loss. Diabetic
retinopathy that is directly linked to the increase of diabetes in the developed
world has already surpassed age-related diseases as the main cause of blindness.

All the aforementioned potential causes of blindness can be treated with laser
photocoagulation. The small bursts from the laser cause controlled damage that
can be used to either seal leaky blood vessels, destroy abnormal blood vessels,
reattach retinal tears or destroy abnormal tumorous tissue on the retina. Photo-
coagulation laser surgery is an outpatient procedure. The treatment is performed
while the patient is seated in a chair and eye drops will be given to dilate the
pupil, immobilise and anesthetise the eye. The laser treatment itself is currently
performed manually and lasts from a few minutes up to half an hour, depending
on the type of treatment and number of laser spots to apply. Although photoco-
agulation is the most widely used treatment for the aforementioned conditions,
the success rate is still below 50% for both the first treatment and the possible
re-treatments [I]. Many of these failures can be attributed to the manual nature
of the procedure, in particular to the difficulty to quickly respond to rapid eye
and head movements of the patient that can not be completely stopped, and
the problems to quantitatively measure and control the applied laser energy.
As it takes several weeks before knowing if laser surgery has been successful or
re-treatment is required to prevent further vision loss, the success rate of the
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procedure has to be maximised. Additionally, the visual recovery declines with
each re-treatment.

A fully automatic surgery under controllable and reproducible conditions
would therefore be desirable. Computer vision methods for mosaicing retina
images would be a useful tool to achieve these goals. Such mosaics could be used
on the one hand for diagnosis and interventional planning, and on the other
hand as a spatial map for the laser guidance system during treatment.

Many retinal image registration methods have been proposed in the litera-
ture [23/4]. The automatic stitching method proposed by Can et al. marked an
important milestone in retinal image mosaicing. They used bifurcations of the
vascular tree on the retinal surface to establish image correspondences. These
bifurcations are easy to detect but sometimes lack distinctiveness, and their lo-
calisation is often quite inaccurate. To improve the landmark extraction Tsai
proposed in [5] a model-based approach that greatly increased the accuracy and
repeatability of estimating the locations where vascular structures branch or
cross over. Stewart proposed in [6] a different approach that uses one or more
initial correspondences defining the mapping only in a small area around these
bootstrap regions. In each of these regions the transformations are iteratively
refined using only information from this same area. The region is then expanded
and tested to see if a higher order transformation model can be used. The expan-
sion stops when the entire overlapping region of the images is covered. Finally,
in [7] Tsai evaluated the performance of the two methods proposed by Can and
Stewart in a clinically-oriented framework.

All the previously mentioned methods are limited to cases with clearly visible
vascular structures. Quite often, however, bleedings or tumorous tissue limits the
number of detectable bifurcations or even prevents their proper segmentation,
see Fig. for an example.

The work described below is part of a project aiming towards a fully automatic
laser photocoagulation system. As will be argued, a key component of such
a system is the automatic mosaicing method capable to stitch and blend the
captured retina images. The method should be robust against all morphologies
seen in the various pathologies subjected to laser photocoagulation.

2 Methods

Recent interest point detection/description schemes, such as SIFT [8] have br-
ought about important progress in image mosaicing [910]. Yet, in our exper-
iments, these state-of-the-art methods failed to identify sufficient number of
reliable, distinct landmarks allowing to build retinal mosaics. The use of our
very recently developed framework [T1] proved more successful.

The method for obtaining a mosaic image from multiple images of the retina,
using region detectors/descriptors, can be summarised with the following steps.
(1) Interest points are detected at different scales and their feature descriptors
are calculated in each image individually. (2) The region descriptors are robustly
matched for each image pair to find the overlapping images using the second-
nearest-neighbour ratio matching strategy [12]. (8) A graph theoretical algorithm
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is used to find the anchor image that is connected to all the other images through
the shortest path. (/) The mappings from all images into the coordinate system
of the anchor image are linearly estimated and then globally optimised. (5) All
images are warped into the coordinate frame of the anchor image and multi-band
blending is used to seamlessly fuse the individual retina images. The subsequent
paragraphs describe the aforementioned steps in more detail.

(1) Interest point detection and feature descriptors: The first task for image mo-
saicing is the identification of a possibly high number of interest points in all
images of the same scene. As described in the introduction, the previously pre-
sented retina mosaicing methods used the branches and crossovers of the vascular
tree as interest points. Although this approach works very well it is bound to fail
for pathological retinas, where the vascular tree is seriously occluded by bleeding
or tumorous tissue, see Fig. for an example. Only our recent developments
in interest point detection and characterisation [I1] made the application of this
technology possible for the highly self-similar regions generally seen in retina im-
ages. Our algorithm proved to be superior to the state-of-the-art methods with
regard to repeatability and stability. It uses a Hessian-matrix based detector in
order to identify blob-like interest points and a 128-dimensional distribution-
based vector to describe the neighbourhood of every interest point.

Given a set of N input images I, ..., Ix for the construction of the mosaic,
let each image I; have a number N; of interest points. As a first step the im-
age coordinates (u, v) of these interest points are extracted yielding p; 1, ...pi ;-
Their respective feature descriptors are defined by ¢; 1, ..., ¢; n,. Once the interest
points have been found, the overlapping images can be identified by establishing
the correspondences between all image pairs.

(2) Matching: Given a pair of images I;, I; with their respective interest points
and feature descriptors, for every interest point in the first image I;, we calculate
the euclidian distance to all feature descriptors in the second image I;. If the
ratio of the nearest neighbour e;yy and the second-nearest neighbour esypy is
smaller than the predefined threshold of 0.8, see [8I0], a match is assumed to
be correct and is therefore added to the list of putative matches, see Fig.
Note, that any given interest point p; 1. n, in I; can (in contrast to the interest
points p; 1..n; in I;) be matched by more than one interest point from image I;.

Even if the human retina is not planar, the images appear flat as the ophthal-
moscope captures only a small part of the whole retina. Therefore, homographies
can be used to roughly approximate the transformation of the putative interest
point matches for a given image pair. Let X be a point on a planar surface with
projections, x; and x;, in two images taken from different viewpoints. The ho-
mography H describes the transformation that connects x; and x; for any point
X on that surface, thus x; = Hx;. By robustly estimating the homography with
the classical RANSAC scheme [13], the transfer error d(x;, Hx;) can be used to
filter out possible mismatches from the list of putative matches.

As the initial matches are paired using a very conservative feature vector
comparison, many pairs are not matched in the first step. The advantage of
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(a)

Fig. 1. (a) Correspondences after matching SURF features (b) after the guided match-
ing. (c¢) Example graph of the connected images after pairwise matching.

this initial conservative selection is that the ratio of inliers vs. outliers is better
and thus a correct homography can be found using RANSAC. Once the initial
homography is established, more correspondences can be found with a guided
matching method. Knowing the homography, the final correspondences are es-
tablished by ignoring the feature descriptors and just matching interest points
if they are spatially close enough, see Fig. for an example.

(8) Anchor Image Selection: Once the correspondences between all image pairs
have been determined, the anchor image I4 is identified. The selection of the
anchor image among the available images I4 € I;,...In, plays a crucial role in
image mosaicing as the anchor defines the base coordinate system towards which
all other images are warped. A central image having direct correspondences
with all other ones in the data set would be an ideal candidate. However, such
an image usually does not exist. The next logical candidate would thus be an
image that connects to all other images through the least number of connections,
see Fig. Graph theoretical methods [14] allow to calculate the minimum
distances between nodes given the connectivity matrix. If more than one node
is connected to the rest with the minimal number of connections, the node with
the highest number of correspondences with its neighbouring images is selected.
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(4) Mapping Estimation: Even if overlapping regions of image pairs can be
related with homographies, a planar transformation model for the mosaic would
result in a false representation of distances and angles. The curved nature of the
retina can best be taken into account by using a quadric transformation model
O as proposed by Can et al. in [4]. It transforms a point x = (z, y) " of an input
image to a point x’ = (z', ¢') T in the anchor image I4 coordinate system.

In a first step the transformations ©; 4 for each image I; € Ir,....In \ I4
overlapping with the anchor image I4 are estimated solving the linear equation
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system with SVD shown in Eq. [0l For all other images having no overlap with
the anchor image a different, indirect approach is followed. As an example, the
mapping of image I5 to the anchor image I4 in Figure can be estimated
indirectly via the already known transformations @54 and @34. To ensure the
most accurate estimation for the indirect transformations, all possible path
are used when building the linear equation system. These initial transformation
estimates ©; 4 are then subject to a global optimisation in which the sum of
squared reprojection errors is minimised (Sec. 5.2 in [I5]).

(5) Image Warping and Blending: At this stage, the geometrical relationship
between the anchor image I4 and all its surrounding images is known. In a
first step, all images I; are warped into the spatial domain of the anchor image
I4 forming a new image I?. As only the forward mapping ©;4 is known and
inverting this transformation proved to be difficult [I5], interpolation is used to
calculate all pixels in I?. The intensity at each pixel location x = (z, y) " in I?
is the weighted average of all the intensities in I? falling within a pixel radius.

With all images mapped into the same coordinate system, the images are
combined to form a single visually appealing mosaic with invisible image bound-
aries. Ideally, corresponding image pixels should have the same intensity and
colour on every image. In practice, however, this is not the case. Possible causes
are inhomogeneous illumination, changes in aperture and exposure time, mis-
registrations of the mosaicing procedure, etc. Thus, advanced image blending
methods are required to yield visually pleasing results. In order to preserve the
fine structures seen on retina images while smoothing out low frequency varia-
tions caused by irregular illumination, we decided to use the multi-band blending
method proposed by Burt [I6]. The idea behind this approach is to blend the
high frequencies over a small spatial range and the low frequencies over a large
spatial range. This can be performed for multiple frequency bands. In our im-
plementation, we consider 6 octaves using a Laplacian pyramid.

The main difficulty with this approach is the design and implementation of
suitable and computationally efficient blending masks for the arbitrarily over-
lapping images. In order to determine this blending mask for every image, we
assigned a weight w;(z,y) to each pixel in an image that varies from 1 in the
center of the image to 0 at the edge. The choice of this weighting function was
inspired by the observation that (a) retina images tend to be more focused in
the middle and (b) the illumination gets inferior with increasing distance from
the image center. The weights have to be warped into the anchor coordinate
system together with the image pixels. In case pixels from multiple images are
mapped to the same pixel location in the anchor domain, the pixel of image I?
with the strongest weight w;(z,y) is considered. By evaluating this decision for
each pixel location we obtain a binary blending mask M for each warped image
I?. For the blending to work properly, see [16], pixels at blending borders have
to be averaged. This can be easily implemented by dilating all the masks M at
each level n of the Laplacian pyramid by one pixel and then dividing the fused

1 Applied to the example in Fig. Os4 is estimated via @24 as well as via Oz4.
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Fig. 2. A summary of the steps involved for the multi-band blending of two images
(the steps for the second image are in light gray) over three octaves. First, the warped
images I? and their blending masks M? are used to generate the Gaussian pyramid
levels I}, IZ, ... and masks sizes M}, M?,...". The Laplacian pyramid is computed as the
difference between adjacent Gaussian levels (one of them must be expanded first). The
Laplacian pyramid is then masked with the dilated blending mask (&) and summed
for every image in the pyramid. Finally, the resulting blended image r° is generated by
expanding and summing all levels of the pyramid.
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Laplacian image at each level by the number of images that contributed to a
certain pixel. The data flow diagram to blend two images over three octaves is
depicted in Fig.

3 Results

We have applied the proposed technique to acquisitions from a patient database
with retinal images showing various pathologies. In particular, we also investi-
gated cases where the vascular tree is not clearly visible and thus the state-of-
the-art methods would fail. The images were taken with a high resolution digital
camera 2256 x 2032 pixels but scaled to half their size, i.e. 1128 x 1016 pixels,
to assess the performance on the more common lower resolution images.

We evaluated the robustness of the matching step that automatically finds
overlapping image pairs using a set of 100 pairs. The matching method failed in
6 cases. All of these cases had an overlap of less than 20.2% (average 11.4%). On
the other hand it successfully managed to match 12 image pairs with an overlap
of 20% or less (average 14.3%). Per image pair an average of 311 correspondences
(max 1763, min 9) were found and none for the failed cases.

The sample mosaics depicted in Fig. Bl give a visual impression of the efficacy
of the proposed method. It can be clearly seen, that even retinas without visible
vascularisation in the overlapping region can be correctly mosaiced. The average
reprojection error for these mosaics was 1.01 + 0.01 pixels.
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(b)

Fig. 3. Two contrast enhanced sample mosaics with different pathologies composed of
(a) 6, (b) 7 retina images and multi-band blending over 6 octaves

4 Conclusions

In this paper, we described an approach to mosaic retina images relying on
our recently published results for region detection and characterisation [I1]. We
demonstrated that the SURF method can be efficiently used to mosaic highly
self-similar retina images even for cases with no discernable vascularisation. We
also proposed an efficient way to determine the blending masks required for
multi-band blending of arbitrarily overlapping images.

The algorithm is currently integrated into the interventional planning system.
At the same time we are working on approaches allowing to utilise the applied
feature matching method for intra-operative navigation support.

Acknowledgments

This work has been supported by the CO-ME/NCCR research network of the
Swiss National Science Foundation (http://co-me.ch). We thank the University
Hospital in Berne, Switzerland for providing the retina images.

References

1. Zimmer-Galler, 1., Bressler, N., Bressler, S.: Treatment of choroidal neovascular-
ization: updated information from recent macular photocoagulation study group
reports. Int. ophthalmology clinics 35 (1995) 37-57

2. Hart, W.E., Goldbaum, M.H.: Registering retinal images using automatically se-
lected control point pairs. In: Proc. IEEE International Conference on Image
Processing (ICIP). Volume 3. (1994) 576-81



192

10.

11.

12.

13.

14.
15.

16.

Ph.C. Cattin et al.

. Becker, D.E., Can, A., Turner, J.N., Tanenbaum, H.L., Roysam, B.: Image pro-

cessing algorithms for retinal montage synthesis, mapping, and real-time location
determination. IEEE Trans. on Biomedical Engineering 45 (1998) 105-18

. Can, A., Stewart, C.V., Roysam, B.: Robust hierarchical algorithm for construct-

ing a mosaic from images of the curved human retina. In: IEEE Conference on
Computer Vision and Pattern Recognition. Volume 2. (1999) 286-92

. Tsai, C.L., Stewart, C.V., Tanenbaum, H.L., Roysam, B.: Model-based method for

improving the accuracy and repeatability of estimating vascular bifurcations and
crossover from retinal fundus images. IEEE Transactions on Information Technol-
ogy in Biomedicine 8 (2004) 122-30

. Stewart, C.V., Tsai, C.L., Roysam, B.: The dual-bootstrap iterative closest point

algorithm with application to retinal image registration. IEEE Trans. Med. Imaging
22 (2003) 1379-1394

. Tsai, C.L., Majerovics, A., Stewart, C.V., Roysam, B.: Disease-oriented evaluation

of dual-bootstrap retinal image registration. In: MICCAI. Volume 2878 of LNCS.
(2003) 754-761

. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision (2004)

. Brown, M., Lowe, D.G.: Recognising panoramas. In: 10th International Conference

on Computer Vision. (2003) 1218-25

Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale ori-
ented patches. In: International Conference on Computer Vision and Pattern
Recognition (CVPR). (2005) 510-517

Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up robust features. In: ECCV.
Volume 3951 of LNCS. (2006) 404-17

Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. Trans-
actions on Pattern Analysis and Machine Vision (2005) Accepted to PAMI.
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press (2000)

Diestel, R.: Graph Theory. New York: Springer-Verlag (1997)

Can, A., Stewart, C., Roysam, B., Tanenbaum, H.: A feature-based technique for
joint, linear estimation of high-order image-to-mosaic transformations: Application
to mosaicing the curved human retina. In: IEEE Conf. on Computer Vision and
Pattern Recognition. Volume 2. (2000) 585-91

Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image
mosaics. ACM Transactions on Graphics 2 (1983) 217-36



	Introduction
	Methods
	Results
	Conclusions

