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Abstract—Image analysis is becoming increasingly prominent
as a non intrusive diagnosis in modern ophthalmology. Blood
vessel morphology is an important indicator for diseases like
diabetes, hypertension and retinopathy. This paper presents an
automated and unsupervised method for retinal blood vessels
segmentation using the graph cut technique. The graph is con-
structed using a rough segmentation from a pre-processed image
together with spatial pixel connection. The proposed method was
tested on two public datasets and compared with other methods.
Experimental results show that this method outperforms other
unsupervised methods and demonstrate the competitiveness with
supervised methods.

Index Terms—Retinal images, vessel segmentation, graph cut.

I. INTRODUCTION

The retinal blood vessel morphology is an important

indicator for diseases like diabetes, hypertension and

retinopathy. An inspection of the retinal vascular system

represents an effective approach to detect the symptoms of

the above diseases. Due to the non invasive characteristics,

fundus image analysis has been of great interest [1].

Blood vessels can be seen as thin elongated structures

in the retina, with variation in width and length. Different

retinal images datasets have been collected under different

conditions of illumination, resolution, field of view (FOV), etc.

Frequently vascular retinal segmentation methods are

designed for a specific dataset, or parameters are adjusted to

adapt them for different imaging conditions. It is important

to have a segmentation algorithm that does not depend on

parameter configuration, so the analysis can be unified for

images of different datasets.

Structured filtering is a common approach for the retinal

image analysis. The method presented in [2] uses an adaptive

local thresholding based on a multithreshold probing scheme.

The method presented in [3] utilizes a matched filter response,

followed by a threshold probing. Wu [4] proposed an adaptive

detection method which consists of three stages, enhancement

using an extended adaptive histogram equalization, feature

extraction through Gabor filter responses with different

orientations, and tracing of the vascular networks for

postprocessing. Mendonca [5] addressed the segmentation

problem by detecting the vessel centerline first, followed by

a vessel filling using global intensity characteristics and local

vessel width information. Usman presents in [6] an enhancing

preprocessing stage applying a Gabor Wavelet transform,

follow by a histogram thresholding.

Supervised methods are effective models but their need

for training with manual labeling makes them labor intensive.

In [7] image ridges are used to form line elements, which

are used to divide the image into patches. Pixel features

are extracted using this representation. Various features are

presented, and those that offer the best classification are

selected. A segmentation process based on feature vector

classification is presented in [8]. The feature vector is

composed of pixel intensity, and two dimensional Gabor

wavelet transform responses at multiple scales, followed by a

Bayessian classifier with class conditional probability. In [9]

the blood vessel characteristics are obtained at different scale,

using image derivatives. These features are used in a growing

procedure thereafter.

The normalized cut technique is used for the blood vessel

segmentation in [10]. It presents an unsupervised method,

using a gradient matrix to select a candidate window which

may contain blood vessels. The normalized cut is utilized to

segment the blood vessels on the selected window. Vessel

tracking is used for postprocessing to improve results.

In this paper, we present a method for automatic retinal

vascular network segmentation using the graph cut technique.

Our approach takes as a first step the enhancement of blood

vessels, followed by a rough segmentation, where prior

information together with spatial pixel connection is used

to construct the graph to obtain the final segmentation. The

parameters of our method do not need to be adjusted for

different image characteristics.

The rest of the paper is organized as follows. In section 2 we

provide a brief review on graph cut technique and the concept

of flux. The implementation of our algorithm is detailed in

section 3. Section 4 presents the experimental results on two

public datasets and performance comparison to other methods.

II. GRAPH CUT

Graph cut is a widely used technique for interactive image

segmentation in computer vision and medical image analysis

[11]. It minimizes the energy function consisting of regional

(computing likelihoods of foreground and background) and
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boundary terms (calculated by pixel intensity, texture, color,

etc). Discrete graph cut is easy to implement, and is flexible

to include various forms of regional, boundary, or geometric

constraints.

A graph G(ν, ǫ) is defined as a set of nodes ν and edges ǫ

connecting neighboring nodes. An example of graph is shown

in Figure 1(a). There are two special nodes called terminals,

S source (foreground) and T sink (background) [12]. Edges

between pixels are called n-links, while t-links are referred

to the edges connecting pixels to terminals. All graph edges

e ∈ ǫ including n-links and t-links are assigned some non

negative weight (cost).

A cut is a subset of edges C ∈ ǫ, that separate the graph into

two regions: foreground and background. G (c) = 〈ν, ǫ\C〉.
Each cut has a cost which is defined as the sum of the costs

of the edges that it severs. A globally minimum cut on a

graph with two terminals can be computed efficiently in low

order polynomial time via standard maxflow or push-relabel

algorithms from combinatorial optimization [13].

The minimization energy using the boundary term has a

tendency to follow short edges, frequently referred to as “the

shrinking bias” problem [14]. This problem creates particular

difficulties to segment thin elongated structures like the blood

vessels.

One method to overcome the shrinking bias problem is to

impose an additional connectivity prior, where the user marks

the constrain connectivities [14]. We follow the approach

presented in [15], which addresses the shrinking problem by

adding the mechanism of flux into the construction of the

graph.

a) s\t cut on directed graph                  b) oriented surface

Fig. 1. Graph cut and flux. (a) Example of a graph, terminals S (foreground)
and T (background). (b) Field of vectors v passing through surface S.

If any field of vectors v (e.g. image gradients), see Figure

1(b), are seen as speed in a water stream, the total volume of

water passing through the hypersurface S can be compared

to the absolute value of a flux. The orientation of the surface

S determines the sign of the flux(A or B). Finsler metric, a

class of continuous metric, can be approximated by discrete

cut metric on regular grids. Finsler length can be represented

by the sum of two terms, which represent the symmetric and

antisymmetric parts of the cut metric. The symmetric part of

the cut provide the standard length of contour independently

of its orientation, while the antisymmetric part of the cut

metric is considered flux of a given vector field through the

contour [15].

III. METHOD

Our implementation can be divided in two main stages:

preprocessing and graph construction. Figure 2 gives an

overview of the method, which is described with detail next.
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Fig. 2. General algorithm scheme

A. Preprocessing

The use of green channel for retinal image analysis has

been considered in previous works [7], [3], [2] due to its high

contrast between blood vessel and retinal background. In the

preprocessing stage the green channel is separated from the

RGB retinal color image, this image will be used to construct

the symmetric part of the graph.

Similar to [4], we apply a contrast enhancement process to

the green channel image. The intensity of the image is inverted,

and the illumination is equalizated. The resulting image is

enhanced using an adaptive histogram equalization process:

IEnhanced =

⎛
⎝ ∑

p′∈R(p)

s (I2 (p) − I2 (p′))

h2

⎞
⎠

r

· M (1)

where s(d) = 1 if d > 0 and s(d) = 0 otherwise, M = 255,

p denotes the pixel and p′s is the pixel neighborhood

specified by a square window with width h. Increasing r

would also increase the contrast between vessel pixels and

the background. We have set up a window with h = 81
and r = 6. Figure 3(b) shows the result image after the

enhancement process.
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V

a) b)

c) d)

Fig. 3. Preprocessing. (a) input image, (b) enhanced image, (c) distance map,
(d) a sample of a vessel into the distance map

The pruning stage is designed to eliminate the group of

pixels with insufficient number of elements to conform a

vessel. We apply a binary morphological open process, which

eliminates the groups of pixel with less than a certain number

of elements E. Based upon experimental trials E has been set

to 200 pixels. At this stage it is important to reduce the false

positives to minimum, because this information will be used

to construct the graph connections.

From the pruned image, we create a distance map by

applying the distance transform. This image is used to

calculate the direction and magnitude of the vector v for the

blood vessel pixels. Figures 3(c) and 3(d) show the distance

map for the whole image and for a sample vessel, where we

can see the center line as the brightest pixels and reduction in

intensity to the direction of the edges (image gradients). This

vector field will be used to construct the antisymmetric part

of the graph.

B. Graph construction

Here we detail the construction of the graph. We adopt

the method described in [15]. The graph is constructed for

symmetric part g+ and antisymmetric part g− separately.

1) Symmetric part: The symmetric part corresponds to

cut geometric length and is related directly with the n-link

connections. The neighbor system can be described as a set

of edges ek, where 1 ≤ k ≤ N , for N number of neighbors.

ek is the shortest vector connecting two pixels in the direction

k. W+
k (p) is the weight of the edge ek at pixel p. ˜�W+

k (p) is

the set of the edge weights at pixel p for all directions. The

corresponding edge weights are defined according to:

ω+ =
1

2
Dg+ (2)

where D is a N x N matrix with entries

Dii = −
sin(αi+1 − αi−1)

sin(αi+1 − αi)sin(αi − αi−1)
(3)

Dij = 1
|sin(αj−αi)|

if j − 1 = ±1 mod N

Dij = 0 for all others entries

where αk is the angle of the edge ek with respect to the

positive axis X.

We consider a grid map of 16 neighbors with edges

ek, k = 1, 2, ..., 16 (see Figure 4). For each pixel p in the

green channel image, the edge weight W̃+
k (p) is computed

according to formula (2). g+ is calculated using the pixel

intensity difference between the two nodes.

g+ = K · exp

(
−(Ip − Iq)

2

σ2

)
(4)

Fig. 4. Neighborhood system for a grid in the graph.

This function has a high value for pixels of similar

intensities, when Ip − Iq < σ. But if the pixels are very

different Ip − Iq > σ the value is small, which represents a

poor relation between the pixels, suggesting they belong to

different terminals [12].

2) Antisymmetric part: The antisymmetric part corresponds

to a flux of vector field v over a cut. Specific weights for

t-links are based on the decomposition of vector v. Different

decompositions may result in different t-links whose weights

can be interpreted as an estimation of divergence. We consider

a decomposition along grid edges using a natural choice

of n-links oriented along the main axes, X and Y . This

decomposition leads to t-link weights as
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tp =
δ2

2
· (V x + V y) (5)

where V x and V y are the components of vector v, and δ

is the size of the cell in the grid map. This is a particular

scheme for computing divergence of vector v. We add edge

(s → p) with weight C ∗ (−tp) if tp < 0, or edge (p → t)
with weight C ∗ tp otherwise. The parameter C is related

to the magnitude of the vector v, thus pixels in the center

of the blood vessel have a higher connection to the source

(foreground) than pixels in the edge of the blood vessels.

Because the distance map is calculated on the pruned image,

vector v is defined just for the pixels detected as blood vessels

in the rough segmentation. The initialization of t-link weights

for the rest of the pixel is set as (p → s) with weight t = 0
and (p → t) with weight t = K , where K is the maximum

weight sum for a pixel in the symmetric construction.

The maxflow-v3.01 implemented by Komolgorov 1 is used

in our implementation to compute the graph cut and find the

final segmentation.

IV. EXPERIMENTS AND RESULTS

Our algorithm was tested on two public datasets, the

DRIVE[7] and the STARE[3], with a total of 60 images. The

DRIVE consists of 40 digital images which were captured

from a Canon CR5 non-mydriatic 3CCD camera at 45◦ field

of view (FOV). The images have a size of 768× 584 pixeles,

eight bit per color channel. The dataset includes masks to

separate the FOV from the rest of the image. Hand labeled

images are available in two sets (set A and set B). The set A

offers the manual labeling for all the images in the dataset,

while the set B provides the manual labeling just for half of

them.

The STARE dataset consists of 20 images captured by

a TopCon TRV-50 fundus camera at 35◦ FOV. The size

of the images is 700 × 605 pixeles, eight bit per color

channel. We calculated the mask image for this dataset using

a simple threshold for each channel of color, taking the

matching results. The STARE dataset provides two sets of

hand labeled images performed by two observers. The first

observer labeled fewer vessel pixels than the second one.

To test our method we adopt the first observer labeling as

the ground truth for STARE, and set A for the DRIVE dataset.

The performance of segmentation is measured by true

positive rate, false positive rate and accuracy rate. True

positive rate (TPR) is defined as the total number of true

positives, divided by the number of blood vessel pixel

marked in the ground true image. False positive rate (FPR)

is calculated as the total number of false positives divided

by the number of pixels marked as non vessel in the ground

1maxflow-v3.01 is available at
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html.

true image. The accuracy rate is defined as the sum of true

positives and true negatives, divided by the total number of

pixel in the images. Figures 5 and 6 show the segmented

images and the manually labeled images for the DRIVE and

the STARE datasets respectively.

a) b) c)

d) e) f)

Fig. 5. The DRIVE dataset: a) and d) retinal images, b) and e) our
segmentation results, and c) and f) manually labeled results.

a) b) c)

d) e) f)

Fig. 6. The STARE dataset: a) and d) retinal images, b) and e) our
segmentation results, and c) and f) manually labeled results.

The segmentation measure between two manual labellings

for a same image establishes a reference to compare the

average performance of other methods. For the DRIVE dataset

set B is taken as a second observer. Segmentation in B is

measured taking the manually labeled set A as a reference.

At the same time the segmentation of the second observer in

STARE is measured taking the first observer as a reference.

Tables 1 and 2 show the average performance of

our method on the STARE and DRIVE datasets with a
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comparison to the results in Staal [7],Mendonca [5], Martinez

[9] and Usman [6]. We have also included the human

observer rates. All the measured results used the same set

as a reference, set A for DRIVE and first observer for STARE.

TABLE I
PERFORMANCE COMPARISON ON THE STARE DATASET.

Method TPR FPR Accuracy

Second human observer [9] 0.8951 0.0438 0.9522
Hoover[5] 0.6751 0.0433 0.9267
Staal[7] 0.6970 0.0190 0.9541

Mendonca[5] 0.6996 0.0270 0.9440
Martinez[9] 0.7506 0.0431 0.9410
Graph Cut 0.7197 0.0335 0.9479

TABLE II
PERFORMANCE COMPARISON ON THE DRIVE DATASET.

Method TPR FPR Accuracy

Human observer B[9] 0.7760 0.0275 0.9473
Staal[7] 0.6780 0.0170 0.9441

Mendonca[5] 0.7344 0.0236 0.9452
Martinez[9] 0.7246 0.0345 0.9344
Usman[6] - - 0.9469

Graph Cut 0.6782 0.0271 0.9478

The results show a TPR of 89.51% (STARE) and 77.6%
(DRIVE) for the second observer segmentation. Most of the

methods use the whole image to measure the performance.

In [7] all the experiments are done on the FOV without

considering the performance in the dark area outside the FOV.

The method in [5] measures the performance on both the

whole image and the FOV. The dark background outside the

FOV in the retinal image is easy to segment. It is obvious

an advantage in measuring the true negatives pixels when the

whole image is considered. We have calculated the percentage

of pixels outside the FOV in the images for the two datasets,

which represents approximately the 25% of the pixels in the

whole image. However, it does not affect all the measurement

metrics, only where the true negative value is involve (e.g.

Accuracy rate). On the other hand, most of the methods utilize

the whole image for the performance measures, making the

comparion fair. Considering the accuracy rate our method

has the best performance on the DRIVE dataset. On STARE

the TPR shows the graph cut outperformance over other

approaches, including some of the supervised methods.

Any pathology presence in an image may obscure and

confuse the blood vessel appearance, making it difficult to

segment. Table 3 presents the results of normal cases (10

images) and abnormal cases (10 images) separately. Our graph

cut method presents the best TPR values for normal and

abnormal images.

Unsupervised methods have also been reported in previous

studies such as [10]. An experimental comparison between

supervised and unsupervised methods is presented in [10].

These results, combined with ours, are show in Figure 7 in

the form of receiver operating characteristic (ROC) curves.

TABLE III
PERFORMANCE COMPARISON ON THE STARE DATASET, NORMAL VERSUS

ABNORMAL CASES

Normal cases

Method TPR FPR Accuracy

Mendonca[5] 0.7258 0.0209 0.9492
Hoover[5] 0.6766 0.0338 0.9324

Graph Cut 0.7417 0.0359 0.9471
Abnormal cases

Method TPR FPR Accuracy

Mendonca[5] 0.6733 0.0331 0.9388
Hoover[5] 0.6736 0.0528 0.9211

Graph Cut 0.6978 0.0311 0.9487

ROC curve is a graphical plot of the TPR versus FPR for a

binary classifier, where its discrimination threshold is varied

producing different TPR for different FPR. We compute

different TPR by changing the initialization of the weight

edges for the pixels with the terminals S (foreground) and T

(background). The performance of the second observer B has

been marked into the graphic as a reference.

Supervised Methods

Unsupervised Methods

Soares[7]

Staal [6]

Cai[10]

Graph Cut

Second observer B

Fig. 7. ROC curve performance for supervised and unsupervised methods in
DRIVE

These results show that our algorithm outperforms the un-

supervised method presented in [10]. The supervised methods

perform slightly better but at cost of an extra, and potentially

intensive, training process.

V. CONCLUSIONS

Blood vessel segmentation is an important process in the

analysis of retinal images. A method based on the construction

of a graph has been presented in this paper. Integrating the

mechanism of flux into the graph cut method provide a

good balance between flux stretching and length shrinking

along the boundary. Our method does not require ad hoc

tuning of parameters on different datasets. Experimental results
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on the DRIVE and STARE datasets show that out method

outperforms other unsupervised methods and is comparable to

the supervised methods in the previous studies.

Currently, the initialization of the t-links for the pixels

marked as non-vessel in the rough segmentation is defined by

their probability to be background. Nevertheless we believe

that combining the regional constraints in this process can

improve the segmentation. Regional constrains can be calcu-

lated using the likelihood of the pixels on the foreground and

background.
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