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Abstract

As a common ocular complication for diabetic patients, diabetic retinopathy has become an

important public health problem in the world. Early diagnosis and early treatment with the

help of fundus imaging technology is an effective control method. In this paper, a robust

inverse diffusion equation combining a self-similarity filtering is presented to detect and

evaluate diabetic retinopathy using retinal image enhancement. A flux corrected transport

technique is used to control diffusion flux adaptively, which eliminates overshoots inherent

in the Laplacian operation. Feature preserving denoising by the self-similarity filtering

ensures a robust enhancement of noisy and blurry retinal images. Experimental results

demonstrate that this algorithm can enhance important details of retinal image data effec-

tively, affording an opportunity for better medical interpretation and subsequent processing.

Introduction

With the development of economy and the aging population, people’s visual impairments has

become a major public health problem all over the world. All kinds of ophthalmic diseases

causing visual defects not only increase the burden of public health care system, more impor-

tantly, they also pose serious threats to social and economic activities [1, 2]. Among them, as

one of main blinding eye diseases, diabetic retinopathy is the most common ocular complica-

tion in diabetic patients, which includes a series of typical lesions with retinal microvascular

and neuron damages caused by sugar metabolic abnormalities. It is a chronic and progressive

blinding fundus disease which can be characterized by such clinical features as decreased

vision, fundus bleeding and exudation, macular edema and hyperplastic lesions [3]. The overall

prevalence of diabetic retinopathy was 34.6% according to a meta-analysis of 35 international

renowned epidemiological studies (22896 cases of diabetes) of the world [4]. The fact of high

PLOSONE | DOI:10.1371/journal.pone.0158480 July 7, 2016 1 / 13

a11111

OPEN ACCESS

Citation:Wang L, Liu G, Fu S, Xu L, Zhao K, Zhang

C (2016) Retinal Image Enhancement Using Robust

Inverse Diffusion Equation and Self-Similarity

Filtering. PLoS ONE 11(7): e0158480. doi:10.1371/

journal.pone.0158480

Editor: Yuanquan Wang, Beijing University of

Technology, CHINA

Received: February 23, 2016

Accepted: June 17, 2016

Published: July 7, 2016

Copyright: © 2016 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

Funding: The research has been supported in part

by the National Natural Science Foundation of China

(61272239, 61070094, 61020106001); the NSFC

Joint Fund with Guangdong (U1201258); the Science

and Technology Development Project of Shandong

Province of China (2014GGX101024); and the

Fundamental Research Funds of Shandong

University (2014JC012).

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158480&domain=pdf
http://creativecommons.org/licenses/by/4.0/


prevalence, high blindness rate, high fashion trend, high social and economic burden, and low

cognition rate makes things worse [2].

Early diagnosis and early treatment is an effective method for the control of diabetic retinop-

athy [5, 6]. Fundus imaging by digital fundus camera is a standard diagnostic mode in ophthal-

mology, which captures the intensity of light reflected from the retinal surface in three different

wavelength ranges [7, 8]. By reason of imaging mechanism and system of fundus retina imaging

itself, and the disturbance of various noise in image formation process, one often obtain noisy

and blurry retinal image with nonuniform and distorted illumination, which is difficult to inter-

pret medically and to process subsequently [7, 9–11]. Thus, it is indispensable to remove noise

and disturbances, to improve signal-to-noise rate of image, to adjust image contrast and to

enhance vessels and fine details of retinal image data [9, 12, 13]. By above image preprocessing,

useful information in retinal image is highlighted, while useless one is weakened or removed, to

make the result more suitable to clinical diagnosis and treatment [3, 7, 9, 14–17].

Many different methods have been put forth for retinal image denoising and enhancement

[7, 9, 18, 19], such as the Gamma transformation [18], histogram equalization [20, 21], sharp-

ening by the Laplacian operation [22], filtering methods in transformation fields [19], varia-

tional methods and partial differential equations (PDEs) [13, 23, 24]. However, one of major

challenges faced by these methods is, how to avoid enhancing noise, producing overshoot arti-

facts around edges, and erasing fine details in enhanced images [23, 25, 26].

Important medical information of a retinal image lies in its retinal vessel network and local

fine details. In order to accurately detect and evaluate diabetic retinopathy as soon as possible,

it is very crucial to properly enhance possible retinal pathological features such as microaneur-

ysm, bleeding and exudating spots. In this paper, a robust inverse diffusion equation is pre-

sented, which combines a powerful self-similarity filtering [27, 28] for detail preserving image

denoising. A flux corrected transport (FCT) technique [25, 29] is used to control diffusion flux

adaptively, which effectively eliminates overshoots inherent in the Laplacian operation. The

proposed method extends our previous work [25] to enhance noisy images while avoiding

annoying overshoots and noise magnification.

We organize this paper as follows. In Section II, related image enhancement methods by the

Gamma transformation, the shock computing and the self-similarity filtering are introduced.

In Section III, the robust inverse diffusion equation is built to enhance noisy and blurry retinal

image data, where the flux corrected transport technique is elaborated in a subsequential pro-

cess including three main steps. In Section IV, experiments on retinal images with typical dia-

betic retinopathy are carried out to verify the effectiveness of the proposed algorithm. Finally,

conclusions and future work are included to end this paper in section V.

Related image enhancement methods (II)

Intensity transformation is the simplest technique in image enhancement through mapping a

pixel value r into a pixel value z, among which the Gamma (power-law) transformation is one

of basic transformation functions [18]. It is defined as

z ¼ brg; ð1Þ

where, b and γ are positive constants. The Gamma transformation with fractional values of γ

can map a narrow range of input values into a wider range of output values. In a variety of

devices the Gamma transformation is used to appropriately enhance image contrast and details

for image capture, printing and display.

In the past decades there has been an increasing research on partial differential equations

(PDEs) in image enhancement [23, 30–32]. A great deal of successful applications of nonlinear
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evolving PDEs in image enhancement can mainly be attributed to their two basic characteris-

tics: local operation and iterative processing. Osher and Rudin introduced a novel image sharp-

ening technique, called the shock filter (SF) [30], which simulates the shock wave calculation in

computational fluid mechanics:

@u

@t
¼ �signðuNNÞjruj; uNN ¼

1

jruj
2
ðu2

xuxx þ 2uxuyuxy þ u2

yuyyÞ; ð2Þ

where sign is a sign function,r is a gradient operator, and uNN is the second directional deriva-

tive of image along local normal direction to isophote line. It detects an image edge using the

zero-crossing of uNN, where a shock is formed at a speed of the gradient magnitude |ru|.

Considering image noise in the estimation of edges, Alvarez and Mazorra added a smooth-

ing kernel and coupled the anisotropic diffusion with the shock filter (ADSF) [31, 32] for noise

elimination and edge sharpening:

@u

@t
¼ �signðGs � uNNÞjruj þ cuTT ; uTT ¼ Du� uNN ; ð3Þ

where Δ is a Laplacian operator, G
σ
is a Gaussian kernel with standard deviation σ, uTT is the

second directional derivative of image along local tangent direction, and c is a constant to bal-

ance the anisotropic diffusion and the shock filtering.

On the other hand, in order to effectively denoise images while preserving image details, a

powerful non-local means algorithm was proposed by Buades et al. [27], which fully utilizes

the big redundancy and the self-similarity of natural images in the photometric range. The dis-

crete expression of the self-similarity filtering (SSF) algorithm is as follows. Let u be a noisy

image defined in a discrete grid O � R
2. The denoised intensity at the pixel (i, j) is expressed

by

SSFðuijÞ ¼
P

ðm;nÞ2Owijðm; nÞumn

P

ðm;nÞ2Owijðm; nÞ
.

; ð4Þ

where wij(m, n) is an average weight which is determined by the similarity between the pixels

(i, j) and (m, n), and is adopted as

wijðm; nÞ ¼ exp � k uðNijÞ � uðNmnÞ k
2

2;a =h
2

n o

; ð5Þ

where Nij and Nmn are similarity windows of size (2s + 1) × (2s + 1) centered at pixels (i, j) and

(m, n), respectively. The term u(Nij) denotes an image patch restricted in the similarity window

Nij. The notation k � k2,a denotes a Gaussian weighted Euclidean distance between two image

patches, where a is the standard deviation of the Gaussian function. The parameter h denotes a

smoothing factor that controls the decay of the exponential function in the Eq (5). To reduce

the computational burden and to improve the efficiency of the SSF filtering, the search window

is always restricted to a proper local neighborhood (2f + 1) × (2f + 1) in O. The denominator in

the Eq (4) is a normalizing factor.

Robust inverse diffusion equation (III)

As special inverse diffusion processing [23], although the shock computing [30–33] can effec-

tively sharpen image edges and remove image noise, there are some inherent weaknesses for

it to enhance retinal image. Firstly, for noisy and blurry retinal image data, it is difficult to

estimate its local tangential and normal directions; and for finer details these directions are

difficult to define and estimate. Secondly, in order to enhance tiny lesions important for the

detection of diabetic retinopathy, where the value of image gradient is very small, it is
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improper for the shock computing at a speed of the gradient magnitude. Thirdly, the Gauss-

ian and tangential smoothings in the shock computing easily erase important details when

removing noise and smoothing the second directional derivative. Finally, unnatural artifacts

may be produced around image edges where shocks are formed by the shock computing [23].

These defects will be compared and shown in following experiments of enhancing retinal

images.

In order to overcome above difficulties, we present the following robust inverse diffusion

(RID) equation:

@u

@t
¼ �jrujDu; ð6Þ

When solving numerically a nonlinear inverse diffusion equation like Eq (6) using a differ-

ence scheme, it must be discretized carefully because it is an instable process. Otherwise,

numerical blowing up will appear inevitably. A strategy is to try to stop from numerical fluc-

tuations before they appear, which is based on the Total Variation Diminishing (TVD) and

nonlinear limiters [32, 34]. The main idea of above flux corrected transport technique is to

use a limiter function to control the change of the numerical solution by a nonlinear way,

and the corresponding schemes satisfy the TVD condition and consequently eliminate above

disadvantage effects.

An explicit Euler method with central difference scheme is used to approximate the Eq (6)

except the gradient term. Below we detail a approach to it numerically. On the image grid O,

the approximate solution is to satisfy:

uk
ij � uðil; jl; kDtÞ; i; j; k 2 Z

þ; ð7Þ

where l and Δt are spatial and temporal steps. Let l = 1, and dþuk
ij and d

�uk
ij are forward and

backward difference schemes of uk
ij, respectively. For example, along the x direction,

d
þ

x u
k
ij ¼ uk

ðiþ1Þj � uk
ij, d

�

x u
k
ij ¼ uk

ij � uk
ði�1Þj; the case is similar along the y direction. A limiter func-

tionM(p, q) is used to approximate the gradient term (see Fig 1):

jruj
k

ij ¼ min Mðdþ

x u
k
ij; d

�

x u
k
ijÞ;Mðdþ

y u
k
ij; d

�

y u
k
ijÞ

n o

; ð8Þ

Fig 1. Illustration of limiter functionM(p, q): two situations for forward and backward difference
schemes.M function stops Eq (6) from numerical fluctuations (overshoots) along data points (Xi−1, Xi,
Xi+1).

doi:10.1371/journal.pone.0158480.g001
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where

Mðp; qÞ ¼
l; pq > 0

0; pq � 0:

(

ð9Þ

Here, λ is a constant to guarantee that tiny important details can also be enhanced effectively

regardless of its small gradient magnitude. After the numerical discretization of Eq (6), it can be

considered as an enhancement process by an iterative constrained Laplacian operation [25].

In order to improve the contrast of retinal image for the detection of tiny lesions, a Gamma

transformation [18] is first used to enhance the image within proper gray levels. Then, the pow-

erful self-similarity filtering [27] is employed to remove image noise, especially in the regions

of interest (ROI). Finally, the proposed robust inverse diffusion is carried out to further

sharpen important details of retinal image while avoiding overshoot artifacts. A whole flow

chart of our proposed algorithm is shown in Fig 2.

Experimental results and analyses (IV)

Although retinal images can be represented in many color spaces (RGB, HSI, HSV, etc.), the

selection of them highly depends on the application. In this paper, a retinal image enhancement

algorithm is designed to help physicians in their task of early diagnose of retinopathy, and there-

fore the selected space must be as close as possible to human perception [35]. A well-established

agreement is that the green channel in the RGB color space provides more blood vessel struc-

tural information and is less subject to non-uniform illumination, while the HSV color space

does not preserve the fidelity of retinal images [35–37]. Because green light is absorbed by the

blood and reflected by the retinal pigment epithelium, providing a good contrast for visualizing

retinal vascular network, bleeding and exudation, we routinely extract and enhance the green

channel (in the gray range of [0, 1]) from a RGB color fundus photograph [7].

In Fig 3, a retinal image with tiny microaneurysms of size 465 × 600 is enhanced for the

early detection of diabetic retinopathy. Through sequential processings of the Gamma manipu-

lation (γ = 0.6), the self-similarity filtering (h = 0.01, f = 5, s = 3) and the robust inverse diffu-

sion (λ = 0.6, Δt = 0.15, k = 7), tiny microaneurysms and microvasculature are shown clearly

due to image contrast improvement and noise removal. Moreover, our method produces fewer

overshoot artifacts while avoiding noise magnification.

A further comparison is carried out with the histogram equalization [18], the ADSF filtering

(c = 0.2, Δt = 0.5, n = 10) after the Gamma manipulation, and the Laplacian operation after the

Gamma manipulation and the self-similarity filtering in Figs 4 and 5, where enhancement

results and their zoomed local parts are shown when enhancing the macular area by these

methods. The tiny microaneurysms are not too clear in the original image shown in Fig 3. The

Gamma transformation improves image contrasts on the whole, but fine spots and details

remain blurry without being highlighted compared with their surrounding regions. Although

the histogram equalization can enhance image contrasts to some extent, it produces

Fig 2. Flow chart of our proposed algorithm. A degraded image is enhanced through three steps in sequence: Gammamanipulation
(Gamma), self-similarity filtering (SSF) and robust inverse diffusion (RID), respectively.

doi:10.1371/journal.pone.0158480.g002
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Fig 3. Retinal image enhancement for detection of microaneurysms in diabetic retinopathy (from top-
left to bottom-right): original image, results by Gammamanipulation, self-similarity filtering and
robust inverse diffusion, successively.

doi:10.1371/journal.pone.0158480.g003

Fig 4. Retinal image enhancement for detection of microaneurysms in diabetic retinopathy (from top-
left to bottom-right): results by histogram equalization, ADSF filtering after Gammamanipulation,
Laplace operation after Gammamanipulation and self-similarity filtering, and robust inverse
diffusion, respectively.

doi:10.1371/journal.pone.0158480.g004
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Fig 5. Zoomed parts of enhanced retinal images for microaneurysm detection (from top-left to bottom-right): original
image, results by Gammamanipulation, histogram equalization, ADSF filtering after Gammamanipulation, Laplace
operation after Gammamanipulation and self-similarity filtering, and robust inverse diffusion, respectively.

doi:10.1371/journal.pone.0158480.g005
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nonuniform illumination distribution and noise magnification concealing some fine details.

The noise magnification and artifacts (overshoots and halos) from the over-enhancing by the

Laplacian operation and the ADSF filtering can be obviously observed. Moreover, the numeri-

cal blowing up will quickly come out for the multiple Laplacian operations [25], especially at

bigger gradients around image edges. Only by the proposed method are tiny microaneurysms

clearly shown while avoiding the artifacts and noise magnification.

In order to observe enhancement effects by these methods more clearly, local profiles

(350th row, 250-300 columns) of different results are shown in Fig 6. One can see that, the

Laplace operation produces overshoots and halos around two vessels. Because smaller uNN will

also be enhanced indiscriminately for shock computing, the ADSF filtering over enhances

image differences and leads to annoying artifacts and false edges in flat areas of image [23]. The

proposed method does not produce annoying artifacts own to its proper constrained enhance-

ment, providing a chance to early detect the diabetic retinopathy faithfully by image

enhancement.

Next, in Fig 7, a retinal image with soft exudations of size 768 × 768 is enhanced to verify

the proposed robust inverse diffusion for highlighting important medical features such as reti-

nal vascular networks and local fine details. Through sequential processings of the Gamma

manipulation (γ = 0.6), the self-similarity filtering (h = 0.03, f = 5, s = 3) and the robust inverse

diffusion (λ = 0.5, Δt = 0.15, k = 7), one can see that, the proposed method removes noise effec-

tively and preserves important image details. At the same time, vascular networks and exuda-

tive spots are shown more clearly while producing no artifacts.

In Fig 8, zoomed local parts of results by the proposed method are shown. Obviously,

through sequential processings in three steps the degraded retinal image is greatly enhanced:

image contrasts are improved, image noise is removed, and overshoots and halos are not pro-

duced, which further verify the advantages of the proposed method.

Local profiles (500th row, 510-560 columns) of different enhancement results are also

shown in Fig 9. Similarly, one can see that, both the Laplace operation and the ADSF filtering

Fig 6. Retinal image enhancement: local comparison of profiles (350th row, 250-300 columns) of enhanced images by
robust inverse diffusion, ADSF filtering and Laplacian operation, respectively.

doi:10.1371/journal.pone.0158480.g006
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produce overshoots and halos around two vessels. The proposed method does not produce

annoying artifacts, ensuring a retinal image enhancement as faithful as possible.

Finally, both retinal images are enhanced by the SF filtering (Δt = 0.5, n = 10) after the

Gamma manipulation in Fig 10. As discussed above, although the SF filtering enhances images

by sharpening their edges, noise magnification and over-enhanced artifacts by the shock com-

puting can be obviously observed. False over-enhanced details will make it difficult for a physi-

cian to identify abnormal pathologic changes correctly.

It is important to point out that the parameters in the proposed method will greatly affect

the results of retinal image enhancement. For a specific system of fundus retina imaging, the

parameters in the proposed method can be fixed by a certain amount of data simulations and

tests.

Conclusions (V)

In retinal image data enhancement for early detection of diabetic retinopathy, it is crucial to

highlight important pathological features such as microaneurysm, bleeding and exudating

spots. In this paper, a robust inverse diffusion equation is presented by combining a powerful

self-similarity filtering, where the flux corrected transport technique is used to eliminate over-

shoots inherent in the Laplacian operation. At the same time, the self-similarity filtering not

only effectively removes image noise, but also avoids noise magnification common in image

enhancement methods, resulting in a robust processing of noisy and blurry retinal image data.

Fig 7. Retinal image enhancement for detection of soft exudations in diabetic retinopathy (from top-
left to bottom-right): original image, results by Gammamanipulation, self-similarity filtering and
robust inverse diffusion, respectively.

doi:10.1371/journal.pone.0158480.g007
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Fig 8. Zoomed parts of enhanced retinal images for detection of soft exudations (from top-left to
bottom-right): original image, results by Gammamanipulation, self-similarity filtering and robust
inverse diffusion, respectively.

doi:10.1371/journal.pone.0158480.g008

Fig 9. Retinal image enhancement: local comparison of profiles (350th row, 250-300 columns) of enhanced images by robust
inverse diffusion, ADSF filtering and Laplacian operation, respectively.

doi:10.1371/journal.pone.0158480.g009
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Experimental results demonstrate that this algorithm can enhance important details of image

data effectively without overshoots and noise magnification, affording an opportunity for bet-

ter medical interpretation and subsequent processing.

For future research, we will further try to optimize the algorithm in the process of adaptive

image enhancement according to the gray-level distribution of retinal lesions.

Supporting Information

S1 Fig. Test data in diabetic retinopathy: left, image with microaneurysms; right, image

with soft exudations.
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