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Abstract

Many important eye diseases as well as systemic diseases manifest themselves in the retina. While 

a number of other anatomical structures contribute to the process of vision, this review focuses on 

retinal imaging and image analysis. Following a brief overview of the most prevalent causes of 

blindness in the industrialized world that includes age-related macular degeneration, diabetic 

retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods 

and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical 

coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative 

techniques for analysis of fundus photographs with a focus on clinically relevant assessment of 

retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, 

building retinal atlases, and to automated methods for population screening for retinal diseases. A 

separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation 

and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-

associated derangements, as well as to OCT-based analysis of ONH morphology and shape. 

Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are 

treated together considering their mutually interlinked relationships.

Index Terms

Computer-aided diagnosis; fundus photography; optical coherence tomography (OCT); population 

screening; retina

I. Introduction

The retina is a layered tissue lining the interior of the eye that enables the conversion of 

incoming light into a neural signal that is suitable for further processing in the visual cortex 
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of the brain. It is thus an extension of the brain. The ability to image the retina and develop 

techniques for analyzing the images is of great interest. As its function requires the retina to 

see the outside world, the involved ocular structures have to be optically transparent for 

image formation. Thus, with proper techniques, the retina is visible from the outside, making 

the retinal tissue, and thereby brain tissue, accessible for imaging noninvasively (Fig. 1). 

Because the retina’s function makes it a highly metabolically active tissue with a double 

blood supply, the retina allows direct noninvasive observation of the circulation.

Thus, because of its architecture—dictated by its function—both diseases of the eye, as well 

as diseases that affect the circulation and the brain can manifest themselves in the retina. 

These include ocular diseases, such as macular degeneration and glaucoma, the first and 

third most important causes of blindness in the developed world. A number of systemic 

diseases also affect the retina. Complications of such systemic diseases include diabetic 

retinopathy from diabetes, the second most common cause of blindness in the developed 

world, hypertensive retinopathy from cardiovascular disease, and multiple sclerosis. Thus, 

on the one hand, the retina is vulnerable to organ-specific and systemic diseases, while on 

the other hand, imaging the retina allows diseases of the eye proper, as well as complications 

of diabetes, hypertension and other cardiovascular diseases, to be detected, diagnosed and 

managed.

This review focuses on quantitative approaches to retinal image analysis. Principles of 2-D 

and 3-D retinal imaging are outlined first. Special emphasis is given to fundus and optical 

coherence tomography (OCT) image analysis and its use to provide comprehensive 

descriptions of retinal morphology and function. The described methods cover the 

developments of the past decade and were selected with respect to their potential for 

screening-motivated computer-aided detection of retinal abnormalities as well as for 

translational clinical applications including improved retinal disease diagnoses and image-

guided retinal therapy. As such, the methods presented are expected to influence routine 

clinical patient care in the years to come.

A. Eye Anatomy

This review focuses on the retina, nevertheless, a brief review of gross eye anatomy is in 

place (Fig. 2). The visible parts of the eye include the transparent cornea, the normally white 

sclera, the colored (blue, green, brown or a mixture of these) iris, and an opening in the iris, 

the normally black pupil. A ray of light, after passing through the cornea, which partially 

focuses the image, passes through the anterior chamber, the pupil, the lens, which focuses 

the image further, the vitreous and is then focused on the retina. The retina itself is supported 

by its retinal pigment epithelium, which is normally opaque, the choroid and the sclera. The 

blood supply of the retina is primarily (~65%) through the choroid and secondarily (~35%) 

through the retinal vasculature which lies on top of the retina. It is useful to divide the retina 

and choroid into the following layers:

1. internal limiting membrane;

2. nerve fiber layer (the axons of the ganglion cells, that transmit the visual signal 

to the lateral geniculate nucleus and thence the visual cortex);
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3. ganglion cell layer (the cell bodies of the ganglion cells);

4. inner plexiform layer (the axons of the bipolar cells);

5. inner nuclear layer (the cell bodies of the bipolar and horizontal cells);

6. outer plexiform layer (the dendrites of the horizontal cells and the inner segments 

of the rod and cone photoreceptor cells);

7. outer nuclear layer (cell bodies—outer segments—of the photoreceptor cells);

8. external limiting membrane;

9. pigment epithelium;

10. Bruch’s membrane;

11. capillary choroid (capillaries of the choroid);

12. choroid plexus.

Most of the retinal layers can be seen on optical coherence tomography (OCT) images 

(Section V). However, imaging of the capillary choroid and choroid plexus, though available 

in a research setting, cannot yet be done with commercially available devices.

B. Retinal Manifestations of Eye and Systemic Disease

Many important diseases manifest themselves in the retina and originate either in the eye, 

the brain, or the cardiovascular system. A brief overview of the most prevalent diseases that 

can be studied via eye imaging and image analysis follows.

1) Diabetes—Diabetes mellitus, according to the current definition from the World Health 

Organization [4], is typically diagnosed if a patient has a fasting plasma glucose over 7.0 

mmol/l. Its causes are not fully understood, but genetic background, obesity, and sedentary 

lifestyle all confer increased risk of developing diabetes. Treatment is primarily through diet 

changes, administration of insulin and/or anti-hyperglycemic drugs. Hyperglycemia, the 

presence of elevated blood glucose, is known to damage small and large blood vessels, as 

well as nerve cells, and thereby damages the kidneys, heart, brain and eyes, and results in a 

retinal complication of diabetes called diabetic retinopathy.

2) Diabetic Retinopathy—Diabetic retinopathy (DR) is a complication of diabetes 

mellitus and the second most common cause of blindness and visual loss in the U.S., and the 

most important cause in the working age population. The number of patients with diabetes in 

the U.S. is increasing rapidly and in 2007 reached 23.5 million [5]–[7]. There is abundant 

evidence that blindness and visual loss in these patients can be prevented through annual 

screening and early diagnosis [8]. In the eye, hyperglycemia damages the retinal vessel 

walls, which can lead to:

1. ischemia, resulting in the growth of new blood vessels, which may subsequently 

bleed and/or cause retinal detachment, a condition called proliferative diabetic 

retinopathy;
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2. breakdown of the blood-retinal barrier, leading to fluid leakage, diabetic macular 

edema (DME) and damage to photoreceptors.

The primary cause of visual loss in people with diabetes is DME, which is more common in 

type 2 diabetes. The breakdown of the blood-retinal barrier causes leakage of dilated 

hyperpermeable capillaries and microaneurysms into intracellular and extracellular retinal 

tissue with subsequent fluid accumulation [9], [10]. Clinically significant macular edema 

(CSME) occurs if there is thickening of the retina involving the center of the retina (macula) 

or the area within 500 m of the center, if there are hard exudates at or within 500 m of the 

center with thickening of adjacent retina, or if there is a zone of retinal thickening one optic 

disc area or larger in size, any part of which is within one disc diameter of the center of the 

retina [9]. This definition of CSME generally refers to the threshold level at which laser 

photocoagulation treatment is considered. While visual loss occurs when macular edema 

involves the visual center, lesser degrees of DME may cause visual deterioration.

It is clear that DME affects macular structure in both the short and long term. The leaking 

exudate in DME initially enters the cytoplasm of Müller’s cells (radial glial cells of the 

retina), preferentially in the outer retina, though fluid accumulation has been found to extend 

through most macular layers in more advanced stages of DME [11]. Cysts (retinal 

extracellular fluid) occur predominantly in the outer retina. Over time, cysts tend to fuse and 

extend from the outer into the inner retina. In these cases, atrophy or apoptosis of the 

remaining retinal tissue occurs [11], [12]. Serous detachment may occur in ~20% of DME 

cases and does not seem to correlate with visual acuity. Hard exudates can occur and tend to 

be located at the level of the outer plexiform layer. Patients with longstanding DME with 

impaired visual acuity show decreased directional sensitivity of photoreceptors and 

decreased visual pigment density [13].

The management of diabetes primarily involves lowering of blood sugar, through diet, 

lifestyle changes and anti-diabetic drugs. If DR is present, management of CSME and 

proliferative DR through laser photocoagulation, administration of anti-vascular growth 

factors, and of steroids have been shown in large randomized clinical trials to prevent 

blindness and further visual loss [9], [14]–[16].

3) Age-Related Macular Degeneration—Age-related macular degeneration (AMD) is 

the most common cause of visual loss in the U.S. and is a growing public health problem. 

Currently, almost 7.3 million Americans (6.12% of Americans aged 40 years and older) have 

some form of AMD, and AMD is the cause of blindness for 54% of all legally blind 

Americans [17]. Severe AMD reduces the likelihood of employment by 61% and salary by 

39%, while mild AMD reduces these by 44% and 32%, respectively. The estimated annual 

cost burden from AMD in the U.S. has been estimated as $30 billion [18]. The prevalence of 

AMD is expected to double over the next 25 years [5]. The two major forms are dry and wet 

AMD, of which dry AMD typically leads to gradual loss of visual acuity. Wet AMD, also 

called choroidal neovascularization (CNV), is the most visually threatening form, 

characterized by ingrowth of a choroidal vascular structure into the macula accompanied by 

increased vascular permeability. The increase in vascular permeability leads to abnormal 

fluid collection within or below the retina that causes visual dysfunction when it involves the 
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center of the macula. The natural course of CNV is rapidly deteriorating acuity, scarring of 

the pigment epithelium, and permanent visual loss or blindness. Progression of dry AMD 

can be slowed in many patients through dietary supplements [19], while visual loss from wet 

AMD is treated with intravitreal administration of anti-vascular growth factor [20], [21].

4) Glaucoma—Glaucoma is the third leading cause of blindness in the U.S., characterized 

by gradual damage to the optic nerve and resultant visual field loss [22]. Early diagnosis and 

optimal treatment have been shown to minimize the risk of visual loss due to glaucoma [23]. 

Glaucoma is primarily a neuropathy, not a retinopathy, and acts on the retina by damaging 

ganglion cells and their axons. The hallmark of glaucoma is cupping of the optic disc, which 

is the visible manifestation of the optic nerve head (ONH) 3-D structure. The optic disc can 

be imaged two-dimensionally either through indirect stereo biomicroscopy or with stereo 

color fundus photography. The ratio of the optic disc cup and neuroretinal rim surface areas 

in these images, called cup-to-disc ratio, is an important structural indicator for assessing the 

presence and progression of glaucoma. Glaucoma is typically treated with ocular pressure 

lowering drops, and in refractory cases through surgery.

5) Cardiovascular Disease—Cardiovascular disease manifests itself in the retina in a 

number of ways. Hypertension and atherosclerosis cause changes in the ratio between the 

diameter of retinal arteries and veins, known as the A/V ratio. A decrease in the A/V ratio, 

i.e., thinning of the arteries and widening of the veins, is associated with an increased risk of 

stroke and myocardial infarction [24], [25]. Hypertension can also invoke direct retinal 

ischemia, which causes retinal infarcts visible as cotton wool spots and choroidal infarcts 

visible as deep retinal white spots. In addition, systemic vascular disease can cause arterial 

and venous occlusions, known as central and branch arterial occlusions (CRAO, BRAO) and 

central and branch venous occlusions (CRVA, BRVO).

C. History of Retinal Imaging

Somewhat paradoxically, the optical properties of the eye that allow image formation 

prevent direct inspection of the retina. In other words, the very nature of the imaging 

transform resulting in a focused image on the retinal surface disallows depiction of the retina 

when attempting to form a focused retinal image from the outside via usage of the inverse 

transform. The red reflex, when a blurred reflection of the retina makes the pupil appear red 

if light is shined into the eye at the appropriate angle, was known for centuries. However, 

special techniques are needed to obtain a focused image of the retina. The first attempt to 

image the retina in a cat was completed by the French physician Jean Mery, who showed 

that if a live cat is immersed in water, its retinal vessels are visible from the outside. The 

impracticality of such an approach for humans lead to the invention of the principles of the 

ophthalmoscope in 1823 by Czech scientist Jan Evangelista Purkyně (frequently spelled 

Purkinje) and its reinvention in 1845 by Charles Babbage [26], [27]. Note that Babbage also 

originated the concept of a programmable computer and thus the link between computation 

[28] and retinal imaging is not a new one. Finally, the ophthalmoscope was reinvented again 

and reported by von Helmholtz in 1851 [29]. Thus, inspection and evaluation of the retina 

became routine for ophthalmologists, and the first images of the retina (Fig. 1) were 
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published by the Dutch ophthalmologist van Trigt in 1853 [1]. Earlier sketches by Purkyně 

provided drawings of his own retinal vasculature [30] (Fig. 3).

Because of the prevalence of infectious diseases at the time and because the ophthalmoscope 

required the physician to come close to the face of the patient, it was attractive to image the 

eye photographically. The first useful photographic images of the retina, showing blood 

vessels, were obtained in 1891 by the German ophthalmologist Gerloff [31]. In 1910, 

Gullstrand developed the fundus camera, a concept still used to image the retina today [32]; 

he later received the Nobel Prize for this invention. Because of its safety and cost-

effectiveness at documenting retinal abnormalities, fundus imaging has remained the 

primary method of retinal imaging.

The next important development was the invention of fluorescein angiographic imaging, 

where a fundus camera with additional narrow band filters is used to image a fluorescent dye 

injected into the bloodstream that binds to leukocytes [33]. It remains widely used because it 

allows an understanding of the functional state of the retinal circulation. Concerns about 

safety and cost-effectiveness are leading it to be slowly replaced by tomographic imaging 

methods for its primary applications, namely image-guided treatment of macular edema and 

the “wet form” of macular degeneration.

A major limitation of fundus photography is that it obtains a 2-D representation of the 3-D 

semi-transparent retinal tissues projected onto the imaging plane. The initial approach to 

depict the 3-D shape of the retina was stereo fundus photography, as first described by Allen 

in 1964 [34], where multi-angle images of the retina are combined by the human observer 

into a 3-D shape. Subsequently, confocal scanning laser ophthalmoscopy was developed, 

using the confocal aperture to obtain multiple images of the retina at different confocal 

depths, yielding estimates of 3-D shape. However, the optics of the eye limit the depth 

resolution of confocal imaging to approximately 100 μm which is poor when compared with 

the typical 300–500 μm thickness of the whole retina [35]. Tomographic imaging of the 

retina became commonplace with the development of super-luminescent diodes, 

femtosecond lasers and the application of optical coherence tomography (OCT) to retinal 

imaging [36], which allows truly 3-D optical sectioning of the retina [37].

D. History of Retinal Image Processing

Matsui et al. were the first to publish a method for retinal image analysis, primarily focused 

on vessel segmentation [38]. Their approach was based on mathematical morphology and 

they used digitized slides of fluorescein angiograms of the retina. In the following years, 

there were several attempts to segment other anatomical structures in the normal eye, all 

based on digitized slides. The first method to detect and segment abnormal structures was 

reported in 1984, when Baudoin et al. described an image analysis method for detecting 

microaneurysms, a characteristic lesion of diabetic retinopathy [39]. Their approach was 

also based on digitized angiographic images. The work of Baudoin et al. detected 

microaneurysms using a “top-hat” transform, a step-type digital image filter [40]. The field 

dramatically changed in the 1990s with the development of digital retinal imaging and the 

expansion of digital filter-based image analysis techniques. These developments resulted in a 

rapidly increasing number of publications that is continuing to expand.
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Closely related to retinal image analysis, the first multicenter, randomized clinical trials in 

the history of ophthalmology, the Diabetic Retinopathy Study and especially the Early 

Treatment of Diabetic Retinopathy Study, showed the relevance of the thickness of retinal 

structures.

II. Current Status of Retinal Imaging

Retinal imaging has developed rapidly during the last 160 years and is a now a mainstay of 

the clinical care and management of patients with retinal as well as systemic diseases. 

Fundus photography is widely used for population-based, large scale detection of diabetic 

retinopathy, glaucoma, and age-related macular degeneration. Optical coherence 

tomography (OCT) and fluorescein angiography are widely used in the diagnosis and 

management of patients with diabetic retinopathy, macular degeneration, and inflammatory 

retinal diseases. OCT is also widely used in preparation for and follow-up in vitreo-retinal 

surgery.

A. Fundus Imaging

We define fundus imaging as the process whereby a 2-D representation of the 3-D retinal 

semi-transparent tissues projected onto the imaging plane is obtained using reflected light. 

Thus, any process which results in a 2-D image, where the image intensities represent the 

amount of a reflected quantity of light, is fundus imaging. Consequently, OCT imaging 

(Section II-B) is not fundus imaging, while the following modalities/techniques all belong to 

the broad category of fundus imaging:

1. fundus photography (including so-called red-free photography)—image 

intensities represent the amount of reflected light of a specific waveband;

2. color fundus photography—image intensities represent the amount of reflected 

R, G, and B wavebands, as determined by the spectral sensitivity of the sensor;

3. stereo fundus photography—image intensities represent the amount of reflected 

light from two or more different view angles for depth resolution;

4. hyperspectral imaging—image intensities represent the amount of reflected light 

of multiple specific wavelength bands;

5. scanning laser ophthalmoscopy (SLO)—image intensities represent the amount 

of reflected single wavelength laser light obtained in a time sequence;

6. adaptive optics SLO—image intensities represent the amount of reflected laser 

light optically corrected by modeling the aberrations in its wavefront;

7. fluorescein angiography and indocyanine angiography—image intensities 

represent the amounts of emitted photons from the fluorescein or indocyanine 

green fluo-rophore that was injected into the subject’s circulation.

1) Technical Challenges in Fundus Imaging—Since the retina is normally not 

illuminated internally, external illumination projected into the eye as well as the light 

reflected by the retina must traverse the pupillary plane. Thus the size of the pupil, the small 
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opening in the iris usually between 2 and 8 mm in diameter, has always been the primary 

technical challenge in fundus imaging [32]. Fundus imaging is complicated by the fact that 

the illumination and imaging beams cannot overlap because that results in corneal and 

lenticular reflections diminishing or eliminating image contrast. Consequently, separate 

paths are used in the pupillary plane, resulting in optical apertures on the order of only a few 

millimeters. Because the resulting imaging setup is technically challenging, fundus imaging 

historically involved relatively expensive equipment and highly trained ophthalmic 

photographers. Over the last ten years or so, there has been a major effort to make fundus 

imaging more accessible, resulting in less dependence on such experience and expertise due 

to the following three most important developments:

1. Move from film-based to digital imaging and as a consequence the importance of 

Picture Archiving and Communication Systems (PACS) increased in clinical 

ophthalmology, also allowing integration with electronic health records;

2. Requirement for population-based early detection of retinal diseases using 

fundus imaging (Section IV-B);

3. More straightforward operation of fundus cameras by non-ophthalmic 

photographers due to non-mydriatic imaging, digital imaging with near-infrared 

focusing, and increasing reproducibility through standardized imaging protocols.

Though standard fundus imaging is widely used, it is not suitable for retinal tomography, 

because of the mixed backscatter caused by the semi-transparent retinal layers. 

Consequently, the backscatter’s origin is decoupled from the specific retinal depth location.

B. Optical Coherence Tomography Imaging

The principle of Optical Coherence Tomography (OCT) is the estimation of the depth at 

which a specific backscatter originated by measuring its time of flight. Backscatters are 

typically caused by differences in refractive index in transitions from one tissue to another. 

The backscatter from deeper tissues can be differentiated from backscatter originating at 

more superficial tissues because it takes longer for the light to arrive at the sensor. As the 

total retinal thickness is between 300–500 μm, the differences in time of flight are very small 

and can only be measured through interferometry [36].

OCT employs low-coherent light interferometry, also called white light interferometry—

though the wavelengths used for OCT are usually slightly longer than visible light. Low-

coherent light autocorrelates only for a short amount of time, or equivalently, for only a 

small number of wavelengths, while autocorrelation function values are essentially zero 

beyond that.

Low-coherent illumination can be thought of as a train of highly autocorrelated overlapping 

“bursts” of light—each burst labeled by its unique autocorrelogram. While we use the term 

“burst” to make the description more intuitive, it is important to understand that the low-

coherent light is actually continuous and not pulsed. To determine the time delay of the low-

coherent light that has backscattered from the retina, and thus the depth at which the 

backscatter occurred, the bursts are identified by their autocorrelation function. By splitting 

low coherent light optically, sending one reference beam to reflect from a mirror at a specific 
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distance, the other to reflect from the tissues in the retina, non-zero cross-correlation (or 

interference) between the two reflected beams occurs only when their flight times are equal, 

being zero everywhere else because of the low coherence property. It is the envelope, or 

energy, of the non-zero interferogram that is converted into an intensity that represents the 

amount of backscatter from the image location

(1)

where kr and ks equal the splitting ratio for the reference and sample arm, respectively, Is is 

the source intensity, and γ(τ) the complex degree of coherence, equal to

(2)

with v0 being the center wavelength of Is and Δv the width of Is in the frequency domain. 

Therefore, the amount of light coherence as measured (1) is inversely proportional to the 

depth that can be resolved: the less coherent the light, the narrower the autocorrelogram, and 

thus the narrower the peak in the cross-correlation with the reference arm. Wavelengths 

longer than visible light penetrate deeper into retinal and choroidal tissue, and thus OCT 

technology is dependent on broadband near infrared or even infrared light sources, such as 

super-luminescent LEDs.

Commonly, a beam splitter is used to split the light into the two beams: a beam that reflects 

of the retinal tissue represents the sample arm and a beam that is reflected from the reference 

mirror is called the reference arm (Fig. 4). The interferogram energy between the reference 

and sample arms is converted into image intensities with a photo sensor, CCD, or a CMOS 

sensor. A depth scan, typically known as an A-scan using ultrasound terminology, with 

different intensities representing the backscatter at different depths, is created from the 

interferogram intensities. For 3-D imaging—same as in scanning laser ophthalmoscopy—the 

illuminating beam is moved across the retina, typically using galvanic mirrors that change 

the position in two directions (along x and y axes), resulting in a tomographic image with an 

A-scan for each x and y location.

Different approaches have been used to maximize the number of A-scans that can be 

obtained per unit of time, because reducing motion artifacts, patient comfort, and achieving 

high image resolution are all dependent on achieving short A-scan imaging intervals. Three 

main OCT principles were developed to create an A-scan for the desired tissue depth range.

1. Time-domain OCT, or time-of-flight OCT, where the reference mirror is moved 

mechanically to different positions, resulting in different flight time delays for 

the reference arm light. Because the speed at which the mirror can be moved is 

mechanically limited, only thousands of A-scans can be obtained per second. 

The envelope of the interferogram determines the intensity at each depth [36].
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2. Swept-source or time encoded frequency domain OCT, where instead of moving 

the reference arm, the light source is rapidly modulated over its center 

wavelength, essentially attaching a second label to the light, its wavelength. A 

photo sensor is used to measure the correlogram for each center wavelength over 

time. A Fourier transform on the multiwavelength or spectral interferogram is 

performed to determine the depth of all tissue scatters at the imaged location 

[41].

3. Spectral-domain OCT is similar to swept-source OCT, but instead of modulating 

the light source wavelength, a broadband light source is used (broader than in 

time-domain OCT), and the interferogram is decomposed spectrally using 

(typically) diffraction grating and a CMOS or CCD linear sensor. The Fourier 

transform is again applied to the spectral correlogram intensities to determine the 

depth of each scatter signal [41].

1) Three-Dimensional OCT Imaging—Originally, OCT imaging was highly limited by 

the amount of time it took to image an A-scan. Therefore the correlogram intensities were 

displayed to the user in the form of 2-D slices, called B-scans, with the A-scans in the B-

scan obtained from a single sweep of the scanning beam over the retina in a linear or circular 

fashion. Increased A-scanning speed resulted in the possibility of increased numbers of B-

scans per examination. The ability to image the retina two-dimensionally and three-

dimensionally then depends on the number of A-scans that can be acquired over time. 

Because of motion artifacts such as saccades, safety requirements limiting the amount of 

light that can be projected onto the retina, and patient comfort, 1–3 seconds per image or 

volume is essentially the limit of acceptance. Thus, the commercially available time-domain 

OCT, which allowed collecting of up to 400 A-scans per second, has not yet been suitable 

for 3-D imaging. With spectral-domain OCT, tens of thousands of A-scans can be acquired 

each second, and thus true 3-D imaging is routinely possible. Consequently, 3-D OCT is 

now in wide clinical use and has become the standard of care. With swept-source OCT, 

hundreds of thousands of A-scans can be obtained every second, promising additional 

increase in image resolution when acquiring 3-D image volumes.

2) Resolution, Isotropic Imaging—The transverse resolution of OCT scans (i.e., in the 

x, y directions) depends on the speed and quality of the galvanic scanning mirrors and is 

typically 20–40 μm. The resolution of the A-scans along the z direction depends on the 

coherence of the light source and is currently 4–8 μm in commercially available scanners.

As explained above, obtaining 2-D or 3-D OCT images is largely a matter of the scanning 

speed versus the amount of time available for scanning. A crude 3-D volume was initially 

created by juxtaposing several B-scan slices spaced widely apart. With the advent of faster 

scanners, the spaces between B-scans were minimized and currently some commercially 

available scanners are capable of acquiring close-to-isotropic 3-D volumes. Isotropic 

(isometric) means that the size of each imaged element, or voxel, is the same in all three 

dimensions. Current commercially available OCT devices routinely offer voxel sizes of 30 × 

30 × 2 μm, achieving isometricity in the x − y plane only (note the difference between 

resolution and voxel size). Another way of explaining isotropicity (in the x − y plane) is that 
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the spacing between the acquired B-scans (in what we call the y-dimension) is the same as 

the distance between each A-scan in the B-scans (in what we call the x-dimension). 

Available SD-OCT scanners are never truly isotropic, because the retinal tissue in each A-

scan is sampled at much smaller intervals in depth than are the distances between A- and/or 

B-scans. The resolution in depth (or what we call the z-dimension) is currently always 

higher than the resolution in the x − y plane. The primary advantage of x − y isotropic 

imaging when quantifying properties of the retina is that fewer assumptions have to be made 

about the tissue in-between the measured samples, thus potentially leading to more accurate 

indices of retinal morphology.

C. Areas of Active Research in Retinal Imaging

Retinal imaging is rapidly evolving and newly completed research results are quickly 

translated into clinical use. Much of the active research is beyond the scope of this review 

but several active directions deserve at least basic coverage.

1) Portable, Cost-Effective Fundus Imaging—For early detection and screening, the 

optimal place for placing fundus cameras is where the patients are: medicine and family care 

clinics, rapid clinics in shopping malls, etc., Though the transition from film based to digital 

fundus imaging has revolutionized the art of fundus imaging and made telemedicine 

applications feasible, the current cameras are still too bulky, expensive and may be difficult 

to use for nontrained staff in places lacking ophthalmic imaging expertise. Several groups 

are attempting to create more cost-effective and easier-to-use handheld fundus cameras, 

employing a variety of technical approaches [42], [43].

2) Functional Imaging—For the patient as well as for the clinician, the outcome of 

disease management is mainly concerned with the resulting organ function, not its structure. 

In ophthalmology, current functional testing is mostly subjective and patient dependent, such 

as assessing visual acuity and utilizing perimetry, which are all psychophysical metrics. 

Among more recently developed “objective” techniques, oxymetry is a hyper-spectral 

imaging technique, in which multispectral reflectance is used to estimate the concentration 

of oxygenated and deoxygenated hemoglobin in the retinal tissue [44]. The principle 

allowing to sense such differences is simple: deoxygenated hemoglobin reflects longer 

wavelengths better than does oxygenated hemoglobin. Nevertheless, measuring absolute 

oxygenation levels with reflected light is difficult because of the large variety in retinal 

reflection across individuals and the variability caused by the imaging process. The retinal 

reflectance can be modeled by a system of equations, and this system is typically under-

constrained if this variability is not accounted for adequately. Increasingly sophisticated 

reflectance models have been developed to correct for the underlying variability, with some 

reported success [45]. Near-infrared fundus reflectance in response to visual stimuli is 

another way to determine the retinal function in vivo and has been successful in cats. Initial 

progress was demonstrated in humans [46].

3) Adaptive Optics—Through the evolutionary processes, the human eye and retina are 

well matched for optimal visual performance. The optical properties of the normal eye result 

in a point spread function width approximately the size of a photoreceptor. It is therefore 
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impossible to image individual cells or cell structure using standard fundus cameras because 

of aberrations in the human optical system. Adaptive optics uses mechanically activated 

mirrors to correct the wavefront aberrations of the light reflected from the retina and thus has 

allowed individual photoreceptors to be imaged in vivo [47]. Imaging other cells, especially 

the clinically highly important ganglion cells, has so far been unsuccessful.

4) Longer Wavelength OCT Imaging—Three-dimensional OCT imaging is now the 

clinical standard of care for several eye diseases. However, the wavelengths around 840 μ m 

used in currently available devices only allow imaging of the retina. Deeper structures, such 

as the choroidal vessels, which are important in AMD and uveitis, and the lamina cribrosa—

a deep structure in the optic nerve relevant for glaucomatous damage—are not visualized. 

Because longer wavelengths penetrate deeper into the tissue, a major research effort has 

been invested to developing low-coherence swept-source lasers with center wavelengths of 

1000–1300 μ m. Prototypes of these devices are already able to resolve detail in the choroid 

and lamina cribrosa [48].

III. Disease-Specific Analysis of Retinal Images

The everyday cost associated with eye care providers’ decisions and the ever-increasing 

numbers of retinal images to be reviewed are the major motivations for the adoption of 

image analysis in ophthalmology. Clearly, since clinicians are costly experts, they need to 

optimize the time devoted to each patient, whether their cost is born by patients, third party 

insurers, or society as a whole. As presented in the following sections, the development of 

new imaging technology invariably results in rapidly increasing amounts of data collected as 

part of any specific retinal imaging exam. The amount of information provided by the 

current generation of scanners and cameras is already exceeding the limit of clinicians’ 

ability to fully utilize it. When factoring in that clinicians are subjective, and their decisions 

suffer from the inter- and intra-observer variability, the need for reliable computerized 

approaches to retinal image analysis is more than obvious, if for no other reason, than to 

increase the precision with which patients are managed. An additional important reason for 

incorporating automated analyses of retinal images in patient management is the potential 

societal benefit of increasing clinician productivity in a routine population screening setting. 

While the patient management decision making and population screening scenarios are 

somewhat different and specific, they both require quantitative retinal image analysis to be 

rapidly translated to everyday use.

A. Early Detection of Retinal Disease From Fundus Photography

The most obvious example of a retinal screening application is retinal disease detection, in 

which the patient’s retinas are imaged in a telemedicine remote manner. This scenario 

requires utilizing easy-to-use, relatively low-cost fundus cameras, automated analyses of the 

images, and focused reporting of the results. This screening application has spread rapidly 

over the last few years, with the exception of the automated analysis behavior, and is one of 

the most successful examples of telemedicine [49]. While screening programs exist for 

detection of glaucoma, age-related macular degeneration, and retinopathy of prematurity, the 

main screening application focuses on early detection of diabetic retinopathy.
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Early detection of diabetic retinopathy (Section I-B2) via population screening associated 

with timely treatment have been shown to prevent visual loss and blindness in patients with 

retinal complications of diabetes [50], [51]. Almost 50% of people with diabetes in the U.S. 

currently do not undergo any form of regular documented dilated eye exam, in spite of 

guidelines published by the American Diabetes Association, the American Academy of 

Ophthalmology and the American Optometric Association [52]. In the U.K., a smaller 

proportion or approximately 20% of diabetics are not regularly evaluated, as a result of an 

aggressive effort to increase screening for people with diabetes. Blindness and visual loss 

can be prevented through early detection and timely management. There is widespread 

consensus that regular early detection of diabetic retinopathy via screening is necessary and 

cost-effective in people with diabetes [8], [53]–[55]. Remote digital imaging and 

ophthalmologist expert reading have been shown to be comparable or superior to an office 

visit for assessing DR [56], [57] and have been suggested as an approach to make the dilated 

eye exam available to un- and under-served populations that do not receive regular exams by 

eye care providers. If all of these underserved populations were to be provided with digital 

imaging, the annual number of retinal images requiring evaluation would exceed 32 million 

in the U.S. alone (approximately 40% of people with diabetes with at least two photographs 

per eye) [57], [58].

In the next decade, projections for the U.S. are that the average age will increase, the number 

of people with diabetes in each age category will increase, and there will be an under-supply 

of qualified eye care providers, at least in the near term. Several European countries have 

successfully instigated in their health care systems early detection programs for diabetic 

retinopathy using digital photography with reading of the images by human experts. In the 

U.K., 1.7 million people with diabetes were screened for diabetic retinopathy in 2007–2008. 

In the Netherlands, over 30 000 people with diabetes were screened since 2001 in the same 

period, through an early detection project called EyeCheck [59]. The United States 

Department of Veterans Affairs (VA) has deployed a successful photo screening program in 

the VA medical centers, through which more than 120 000 patients were screened in 2008. 

While the remote imaging followed by human expert diagnosis approach was shown 

successful for a limited number of participants, the current challenge is to make the early 

detection more accessible by reducing the cost and manpower required, while maintaining or 

improving DR detection performance. This challenge can be met by utilizing computer-

assisted or fully automated methods for detection of DR in retinal images, as described in 

Section IV.

B. Early Detection of Systemic Disease From Fundus Photography

In addition to detecting diabetic retinopathy and age-related macular degeneration, it also 

deserves mention that fundus photography allows cardiovascular risk factors to be 

determined. Such metrics are primarily based on measurement of retinal vessel properties, 

such as the arterial to venous diameter ratio, or A-V ratio, and indicate the risk for stroke, 

hypertension or myocardial infarct [60], [61].
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C. Three-Dimensional OCT and Retinal Diseases—Image Guided Therapy

With the introduction of 3-D OCT imaging, the wealth of new information about the retinal 

morphology enabled its usage for close monitoring of retinal disease status and guidance of 

retinal therapies.

The most obvious example of successful image-guided management in ophthalmology is its 

use in diabetic macular edema (DME). DME is a form of diabetic retinopathy in which 

visual loss occurs through leaking of fluid in the macula—the central part of the retina. The 

original research entitled Early Treatment in Diabetic Retinopathy Study [9], [62]–[64] 

demonstrated that early treatment of DME’s thickened areas of the retina with focal laser 

can prevent further visual loss. More recently, novel treatment using anti-VEGF agents (anti-

vascular endothelial growth factor), such as ranibizumab combined with focal laser, has 

shown to be beneficial for treatment of DME. Currently, OCT imaging is widely used to 

determine the extent and amount of retinal thickening. We expect that detailed analyses of 

retinal layer morphology and texture from OCT similar to those described in Section V will 

allow direct image-based treatment to be guided by computer-supported or automated 

quantitative analysis of OCT and subsequently optimized allowing personalized approach to 

retinal disease treatment to become a reality.

Another highly relevant example of a blinding disease that will benefit from image guided 

therapy is choroidal neovascularization—the wet form of age related macular degeneration 

(Section I-B3). With the advent of the anti-VEGF agents ranibizumab and bevacizumab, it 

has become clear that outer retinal and subretinal fluid is the main indicator of a need for 

anti-VEGF retreatment [21], [65]–[67]. Several studies are underway to determine whether 

OCT-based quantification of fluid parameters and affected retinal tissue can help improve 

the management of patients with anti-VEGF agents.

As described above, glaucoma is characterized by gradual damage to the optic nerve and 

resultant visual field loss (Section I-B4) [22]. Early diagnosis and optimal treatment have 

been shown to minimize the risk of visual loss due to glaucoma [23]. As shown below, 3-D 

analysis of the optic nerve head can be used for glaucoma management decisions. However, 

it has been previously shown that manual planimetry is time consuming with substantial 

inter-observer variability [68]. Methods for automated assessment of the cup-to-disc ratio 

and for NCO-based ONH analyses from fundus photography and from 3-D OCT imaging 

are presented as follows. Their adoption for use in routine clinical care is highly desirable.

IV. Fundus Image Analysis

As discussed previously in Section II-A, fundus imaging is the most established way of 

retinal imaging. Until recently, fundus image analysis was the only source of quantitative 

indices reflecting retinal morphology. Subjects that lend themselves for fundus image 

analysis include:

1. Image quality quantification:

a. image quality verification;

b. imaging artifact detection;
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c. iatrogenic lesion detection (laser scars, etc.).

2. Location and segmentation of retinal structures:

a. retinal vessels

• vessel diameter;

• artery and vein classification;

• vessel occlusion detection.

b. fovea

c. optic disc

• cup and rim;

• cupping.

3. Segmentation of abnormalities:

a. blood vessel related abnormalities

• hemorrhages;

• microaneurysms;

• neovascularizations;

• nerve fiber infarcts (cottonwool spots).

b. pigment epithelium related abnormalities

• drusen;

• hyper and hypopigmentation.

c. choroid related abnormalities

• nevus and melanoma detection;

• uveitis related choroidal lesions.

As this paper went to press, over 700 papers have been published on these subjects in fundus 

image analysis, and discussing each one is beyond the scope of this review. Therefore, we 

have focused only on those fundamental tasks and related approaches to fundus image 

analysis that are actively researched by a large number of groups: retinal vessel detection 

(Section IV-A), retinal lesion detection (Section IV-B), construction of fundus-imaging-

based retinal atlases (Section IV-C), and analysis of the optic nerve head morphology from 

fundus photographs (Section IV-E), in more detail. Registration of fundus images and 

change detection will be discussed in Section VI-A. In addition, individual methods have 

been combined into disease-detection systems, particularly for diabetic retinopathy [69]–

[71].
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A. Detection of Retinal Vessels

Automated segmentation of retinal vessels is a generally well understood problem, aided by 

the public availability of the annotated STARE [72] and DRIVE datasets [73] (Fig. 5) with 

hundreds of papers published [74], [75]. Pixel feature classification and identification of 

elongated structures has been highly successful in the detection of large and medium vessels 

[73], [76].

Though not by design, the similarities among the different approaches to vessel detection are 

often not obvious at first, because of different terms used for the same concepts. For 

example, template matching, kernel convolution, detector correlation all describe the same 

concept explained in more detail in the following, though implementation details may vary.

1) Pixel Feature Classification—Pixel feature classification is a machine learning 

technique that assigns one or more classes to the pixels in an image. Pixel classification uses 

multiple pixel features: numeric properties of a pixel and its surroundings. Pixel feature 

classification is typically performed using a supervised approach.

Originally, pixel intensity was used as a single feature. More recently, n-dimensional 

multifeature vectors are utilized including pixel contrast with the surrounding region, its 

proximity to an edge, and similarity. Two distinct stages are required for a supervised 

learning/classification algorithm to function: 1) a training stage, in which the algorithm 

“statistically learns” to correctly classify pixels from known classifications, and 2) a testing 

or classification stage in which the algorithm classifies previously unseen images. For proper 

assessment of supervised classification method functionality, training data and performance 

testing data sets must be completely disjoint [77].

The n-dimensional multifeature vectors are calculated for each pixel, frequently utilizing 

local convolutions with multiple Gaussian derivative, Gabor, or other wavelet kernels [78]. 

The image is thus transformed into an n-dimensional feature space and pixels are classified 

according to their position in feature space. The resulting hard (categorical) or soft 

(probabilistic) classification is then used to either assign labels to each pixel (for example 

vessel or nonvessel in the case of hard classification), or to construct class-specific 

likelihood maps (e.g., a vesselness map for soft classification).

For example, an image Ii(x, y) can be transformed into the Gaussian derivative space Ii(x, y, 

σk) by convolution with Gaussian derivative kernels as follows:

(3)

where ★ represents convolution, σk ∈ [0, ∞)is the relative scale, and G is the Gaussian 

derivative kernel of order n ∈ {0, 1, 2} with orientation α ∈ [0, …, 2π].

The number of potential features in the multifeature vector that can be associated with each 

pixel is essentially infinite. One or more subsets of this infinite set can be considered optimal 

for classifying the image according to some reference standard. Hundreds of features for a 

pixel can be calculated in the training stage to cast as wide a net as possible, with 

Abràmoff et al. Page 16

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2011 July 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



algorithmic feature selection steps used to determine the most distinguishing set of features. 

Extensions of this approach include different approaches to subsequently classify groups of 

neighboring pixels by utilizing group properties in some manner, for example cluster feature 

classification, where the size, shape and average intensity of the cluster may be used.

2) Vessel Diameter and Vessel Tree Analysis—Because retinal vessel diameter and 

especially the relative diameters of arteries and veins are known to signal the risk of 

systemic diseases including stroke, accurate determination of retinal vessel diameters, as 

well as differentiation of veins and arteries have become more important, several semi-

automated and automated approaches have now been published [24], [25], [79]. Other active 

areas of research include separation of arteries and veins, detection of small vessels with 

diameters of less than a pixel, and analysis of the complete vessel trees using graphs.

B. Detection of Retinal Lesions

In this section, we will primarily focus on detection of lesions in diabetic retinopathy. It has 

the longest history as a research subject in retinal image analysis. Fig. 6 shows examples of a 

fundus photograph with the typical lesions automatically detected. Many approaches used 

the following principle (Fig. 7): A transform of some kind is used for detecting candidate 

lesions, after which a mathematical morphology template is utilized to characterize the 

candidates. This approach or a modification thereof is in use in many algorithms for 

detecting DR and AMD [80]. Additional enhancements include the contributions of Spencer, 

Cree, Frame, and co-workers [81], [82]. They added preprocessing steps, such as shade-

correction and matched filter post-processing to this basic framework, to improve 

performance. Algorithms of this kind function by detecting candidate microaneurysms of 

various shapes, based on their response to specific image filters. A supervised classifier is 

typically developed to separate the valid microaneurysms from spurious or false responses. 

However, these algorithms were originally developed to detect the high-contrast signatures 

of microaneurysms in fluorescein angiogram images. The next important development 

resulted from applying a modified version of the top-hat algorithm to red-free fundus 

photographs rather than angiogram images, as was first described by Hipwell et al. [83]. 

They tested their algorithm on a large set of >3500 images and found a sensitivity/specificity 

operating point of 0.85/0.76. Once this step had been taken, development accelerated. The 

approach was further refined by broadening the candidate detection transform, originally 

developed by Baudoin to detect candidate pixels, to a multifilter filter-bank approach [73], 

[84]. The filter responses are used to identify pixel candidates using a classification scheme. 

Mathematical morphology and additional classification steps are applied to these candidates 

to decide whether they indeed represent microaneurysms and hemorrhages. A similar 

approach was also successful in detecting other types of DR lesions, including exudates or 

cotton-wool spots, as well as drusen in AMD [85].

1) Detection of Red Lesions—Small red retinal lesions, namely microaneurysms and 

small retinal hemorrhages, are typical for diabetic retinopathy, hypertensive retinopathy, and 

other retinal disorders such as idiopathic juxtafoveal teleangiectasia. The primary 

importance of small red lesions is that they are the leading indicators of diabetic retinopathy. 

Because they are difficult to differentiate for clinicians on standard fundus images from 
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nonmydriatic cameras, hemorrhages and microaneurysms are usually detected together and 

associated with a single combined label. Larger red lesions, primarily large hemorrhages and 

retinal neovascularizations are still problematic and are discussed in Section IV-B3.

Historically, red lesion detection algorithms focused on detection of normal anatomical 

objects, especially the vessels, because they can locally mimic red lesions. Subsequently, a 

combination of one or more filtering operations combined with mathematical morphology is 

employed to detect red lesion suspects. In some cases, suspect red lesion are further 

classified in individual lesion types and refined algorithms are capable of detecting specific 

retinal structures and abnormalities as shown in Figs. 7–9.

Initially, red lesions were detected in fluoroscein angiograms because their contrast against 

the background is much higher than that of microaneurysms in color fundus photography 

images [81], [82], [86]. Hemorrhages mask out fluorescence and present as dark spots in the 

angiograms. These methods employed a mathematical morphology technique that 

eliminated the vasculature from a fundus image but left possible microaneurysm candidates 

untouched as first described in 1984 [39]. Later, this method was extended to high-resolution 

red-free fundus photographs by Hipwell et al. [83]. Instead of using morphology operations, 

a neural network was used, for example by Gardner et al. [87]. In their work, images are 

divided into 20 × 20 pixel grids and the grids are individually classified. Sinthanayothin et 

al. [88] applied a recursive region growing procedure to segment both the vessels and red 

lesions in a fundus image. A neural network was used to detect the vessels exclusively, and 

the remaining objects were labeled as microaneurysms.

Niemeijer et al. [84] presented a hybrid scheme that used both the top-hat based method as 

well as a supervised pixel classification based method to detect the microaneurysm 

candidates in color fundus photographs. This method allowed for the detection of larger red 

lesions (i.e., hemorrhages) in addition to the microaneurysms using the same system. A large 

set of additional features, including color, was added to those described in [82] and [86]. 

Using the features in a supervised classifier distinguished between real and spurious 

candidate lesions. These algorithms can usually deal with overlapping microaneurysms 

because they give multiple candidate responses.

Other recent algorithms only detect microaneurysms and forego a phase of detecting normal 

retinal structures like the optic disc, fovea and retinal vessels, which can act as confounders 

for abnormal lesions. Instead, the recent approaches find the microaneurysms directly [89] 

using template matching in wavelet-subbands. In this approach, the optimal adapted wavelet 

transform is found using a lifting scheme framework. By applying a threshold on the 

matching result of the wavelet template, the microaneurysms are labeled. This approach has 

meanwhile been extended to explicitly account for false negatives and false positives [69]. 

Because it avoids detection of the normal structures, such algorithms can be very fast, on the 

order of less than a second per image.

2) Detection of Bright Lesions—Often, bright lesions, defined as lesions brighter than 

the retinal background, can be found in the presence of retinal and systemic disease. Drusen 

are the hallmark of age-related macular degeneration, cotton wool spots are typical for 
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diabetic retinopathy and hypertensive retinopathy, while lipoprotein exudates are most 

frequently seen in diabetic retinopathy, but also in Coats’ disease and other retinal disorders. 

To complicate the analysis, flash artifacts can be present as false positives for bright lesions. 

If the lipoprotein exudates would only appear in combination with red lesions, they would 

only be useful for grading diabetic retinopathy. The exudates can, however, in some cases 

appear as isolated signs of diabetic retinopathy in the absence of any other lesion. Therefore, 

their importance is strengthened and several computer-based systems to detect exudates have 

been proposed [80], [85], [87], [88], [90].

Because the different types of bright lesions have different diagnostic importance and patient 

management implications, algorithms should be capable not only of detecting bright lesions, 

but also of differentiating among the bright lesion types. One example algorithm capable of 

detection and differentiation of bright lesions was reported in [85]. The algorithm is based 

on an earlier red lesion algorithm [84] and includes the following main steps.

1. Classification—resulting in a lesion probability map that indicates the likelihood 

of each pixel to be part of a bright lesion.

2. Lesion candidate cluster detection—clustering pixels into highly probable lesion 

regions.

3. True bright lesion detection—classifying each candidate cluster as true lesion, 

based on cluster features such as surface area, length of major axis, mean 

gradient, standard deviation of pixel values, pixel contrast, Gaussian derivative 

responses, and local vesselness (as derived from a vessel segmentation map).

4. Differentiation of lesions into drusen, exudates and cotton-wool spots—a third 

classifier uses the features for classifying true bright lesions as well the number 

of red and true bright lesions in the image to determine the likelihood for the true 

bright lesion of specific types.

Fig. 10 illustrates these steps. Compared to retinal experts, the algorithm performed with an 

area under the ROC curve of Az = 0.95 for detecting bright lesions. The performance Az = 

0.94, 0.85, 0.88 of was achieved for the detection and differentiation of exudates, cotton-

wool spots, and drusen, respectively.

3) Detection of Rare, or Irregular, Lesions and Abnormalities—Performance of a 

system that has been developed for screening should not be evaluated based solely on its 

sensitivity and specificity for detection of that disease. Such metrics do not accurately reflect 

the complete performance in a screening setup. Rare, irregular, or atypical lesions often do 

not occur frequently enough in standard datasets to affect sensitivity and specificity but can 

have huge health and safety implications. To maximize screening relevance, the system must 

therefore have a mechanism to detect rare, atypical, or irregular abnormalities, for example 

in DR detection algorithms [70]. For proper performance assessment, the types of potential 

false negatives—lesions that can be expected or shown to be incorrectly missed by the 

automated system—must be determined. While detection of red lesions and bright lesions is 

widely covered in the literature, detection of rare or irregular lesions, such as hemorrhages, 

neovascularizations, geographic atrophy, scars and ocular neoplasms has received much less 
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attention, despite the fact that they all can occur in combination with diabetic retinopathy 

and other retinal diseases as well as in isolation. For example, presence of such lesions in 

isolated forms and without any co-occurrence of small red lesions are rare in DR [59] and 

thus missing these does not affect standard metrics of performance such as ROC curves to a 

measurable degree, except if these are properly weighted as corresponding to serious lesions.

One suitable approach for detecting such lesions is to use a retinal atlas, where the image is 

routinely compared to a generic normal retina (Section IV-C). After building a retinal atlas 

by registering the fundus images according to a disc, fovea and a vessel-based coordinate 

system, image properties at each atlas location from a previously unseen image can be 

compared to the atlas-based image properties. Consequently, locations can be identified as 

abnormal if groups of pixels have values outside the normal atlas range.

C. Retinal Atlas

Compared to other anatomic structures (e.g., the brain, heart, or lungs), the retina has a 

relatively small number of key anatomic structures (landmarks) visible using fundus camera 

imaging. Additionally, the expected shape, size, and color variations across a population is 

expected to be high. While there have been a few reports [91] on estimating retinal anatomic 

structure using a single retinal image, we are not aware of any published work demonstrating 

the construction of a statistical retinal atlas using data from a large number of subjects.

The choice of atlas landmarks in retinal images may vary depending on the view of interest. 

Regardless, the atlas should represent most retinal image properties in a concise and intuitive 

way. Three landmarks can be used as the retinal atlas key features; the optic disc center, the 

fovea, and the main vessel arch defined as the location of the largest vein–artery pairs. The 

disc and fovea provide landmark points, while the arch is a more complicated two-part 

curved structure that can be represented by its central axis. The atlas coordinate system then 

defines an intrinsic, anatomically meaningful framework within which anatomic size, shape, 

color, and other characteristics can be objectively measured and compared.

Choosing either the disc center or fovea alone to define the atlas coordinate system would 

allow each image from the population to be translated so a pinpoint alignment can be 

achieved. Choosing both disc and fovea allows corrections for translation, scale, and 

rotational differences across the population. However, nonlinear shape variations across the 

population would not be considered—which can be accomplished when the vascular arch 

information is utilized. The end of the arches can be defined as the first major bifurcations of 

the arch branches. The arch shape and orientation vary from individual to individual and 

influence the structure of the remaining vessel network. Establishing an atlas coordinate 

system that incorporates the disc, fovea and arches allows for translation, rotation, scaling, 

and nonlinear shape variations to be accommodated across a population.

An isotropic coordinate system for the atlas is desirable so images can refer to the atlas 

independent of spatial pixel location by a linear one-to-one mapping. The radial-distortion-

correction (RADIC) model [92] attempts to register images in a distortion-free coordinate 

system using a planar-to-spherical transformation, so the registered image is isotropic under 

a perfect registration, or quasi-isotropic allowing low registration error. As shown in Fig. 11, 
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the fundus curvature can be represented in the registration result using the quadratic model, 

while the RADIC-based registration unfolds the curvature to put the registered image in an 

isotropic coordinate system. An isotropic atlas makes it independent of spatial location to 

map correspondences between the atlas and test image. The intensities in overlapping area 

are determined by a distance-weighted blending scheme [93].

1) Landmark Statistics—Retinal images in clinical practice are acquired under diverse 

fundus camera settings subjected to saccadic eye movement; and with variable focal center, 

zooming, tilting, etc. Thus, atlas landmarks from training data need to be aligned to derive 

any meaningful statistical properties from the atlas. Since the projective distortion within an 

image is corrected during the pairwise registration, the inter-image variations in the 

registered images appear as the difference in the rigid coordinate transformation parameters 

of translation, scale and rotation.

For each pair of landmarks pdi and pfi, where i = 0, 1, …, N − 1 and N = 500, pinning all pdi 

landmarks to an arbitrary point (μd) clears the translation. The centroid of the point cloud 

formed by pfi landmarks is evaluated to get the fovea atlas location (μf) so every pfi can be 

aligned to μf using the similarity transformation to remove the inter-image variations in scale 

and rotation. The steps of rigid coordinate alignment for each parameter are illustrated in 

Fig. 12. Consequently, an aligned pixel position p′ is determined using p as

(4)

where si, θi, and Ti are the differences in scale, rotation and translation measured between 

point pairs of and (pdi, pfi), and (μd, μf), the rotation matrix ℛ(θ) is defined as [cos(thetas;) 

sin(thetas;); − sin(thetas;) cos(thetas;)].

2) Coordinate Mapping—The atlas landmarks serve as the reference set so each color 

fundus image can be mapped to the coordinate system defined by the landmarks. As the last 

step of atlas generation, color fundus images are warped to the atlas coordinate system so 

that the arch of each image is aligned to the atlas vascular arch. A thin-plate-spline (TPS) 

[94] is used in this method for mapping retinal images to the atlas coordinate system. Rigid 

coordinate alignment as described above is done for each fundus images to register the disc 

center and the fovea. The seven control points required for TPS are determined by sampling 

points from equidistant locations in radial directions centered at the disc center. 

Consequently, 16 (1 at disc center, 1 at fovea, and 2 × 7 on vascular arch) control points are 

used to calculate the TPS. Usually, the sampling uses smoothed trace lines utilizing third 

order polynomial curve fitting because naive traces of vascular arch lines could have locally 

high tortuosity, which may cause large geometric distortions by TPS. Fig. 13 illustrates 

retinal image mapping process by TPS—the vessel main arch that runs along the naive trace 

(yellow line) is mapped onto the atlas vessel arch (green) line.

3) Using Retinal Atlas to Detect Grossly Abnormal Retina—By creating a retinal 

atlas using this method, the atlas can be used as a reference to quantitatively assess the level 
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of deviation from normality. An analyzed image can be compared with the retinal atlas 

directly in the atlas coordinate space. The normality can thus be defined in several ways 

depending on the application purpose—using local or global chromatic distribution, degree 

of vessel tortuosity, presence of pathological features, presence of artifacts, etc. Fig. 14 

shows an example application driven by a retinal atlas, the region where imaging artifacts 

are present are highlighted. The atlas was created from 1000 color fundus images (two fields 

per left eye, from 500 subjects without retinal parthology or imaging artifacts).

Other uses for a retinal atlas include image quality detection and disease severity 

assessment. Retinal atlases can also be employed in content-based image retrieval leading to 

abnormality detection in retinal images [95].

D. Assessing Performance of Fundus Image Analysis Algorithms

Fundus lesion detection algorithms are primarily intended to perform automatically and 

autonomously. In other words, some retinal images may never be seen by a human expert. 

Consequently, high demands must be placed on the fundus lesion detection system since the 

performed diagnostic decisions may have vision-threatening consequences. Lesion detection 

systems are most commonly employed for diabetic retinopathy screening. In all such 

systems, a high level of confidence in the agreement between the system and expert human 

readers is required. In reality, the agreement between an automatic system and an expert 

reader may be affected by many influences—system performance may become impaired due 

to the algorithmic limitations, the imaging protocol, properties of the camera used to acquire 

the fundus images, and a number of other causes. For example, an imaging protocol that 

does not allow small lesions to be depicted and thus detected will lead to an artificially 

overestimated system performance if such small lesions might have been detected with an 

improved camera or better imaging protocol. Such a system then appears to perform better 

than it truly does if human experts and the algorithm both overlook true lesions.

The performance of a lesion detection system can be measured by its sensitivity, a number 

between 0 and 1, which is the number of true positives divided by the sum of the total 

number of (incorrectly missed) false negatives plus the number of (correctly identified) true 

positives [77]. System specificity, also a number between 0 and 1, is determined as the 

number of true negatives divided by the sum of the total number of false positives 

(incorrectly identified as disease) and true negatives. Sensitivity and specificity assessment 

both require ground truth, which is represented by location-specific discrete values (0 or 1) 

of disease present/absent for each subject in the evaluation set.

The location-specific output of an algorithm can also be represented by a discrete number (0 

or 1). However, the output of the assessment algorithm is often a continuous value 

determining the likelihood p of local disease presence, with an associated probability value 

between 0 and 1. Consequently, the algorithm can be made more specific or more sensitive 

by setting an operating threshold on this probability value p. The resulting sensitivity/

specificity pairs are plotted in a graph, yielding a receiver operator characteristics (ROC) 

curve [77], [96]. The area under the ROC curve (AUC, represented by its value Az) is 

determined by setting a number of different thresholds for p. Sensitivity and specificity pairs 

of the algorithm are obtained at each of these thresholds. The ground truth is of course kept 

Abràmoff et al. Page 22

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2011 July 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



unchanged. The algorithm behavior represented by this ROC curve can thus be reduced to a 

single number. The maximum value of AUC is 1, denoting a perfect diagnostic performance, 

with both the sensitivity and specificity being 1 (100% performance). While the AUC 

assessment of performance is highly relevant and covers the most important aspects of lesion 

detection behavior, this approach has a number of limitations, including its dependence on 

the quality of annotated datasets [69], [70] and on the underestimation of missing rare, but 

sight- or life-threatening abnormalities, as discussed in Section IV-B3.

1) Performance Comparison of Diabetic Retinopathy Detection Systems to 

That of Retinal Specialists—Several groups have studied the performance of detection 

algorithms in a real world setting, i.e., when the systems are used on populations of patients 

with diabetes, not previously known to have diabetic retinopathy. The main goal of such a 

system is to decide whether the patient should be evaluated by a human expert or can return 

for followup, only involving automated analysis of retinal images [70], [71]. As mentioned 

previously, performance of the algorithm that placed first at the 2009 Retinopathy Online 

Challenge competition [97] was compared to that of a large computer-aided early DR 

detection project EyeCheck [59]. In this comparison, fundus photographic sets from 17 877 

patient visits of 17 877 people with diabetes who had not previously been diagnosed with 

DR consisting of two fundus images from each eye were used for performance comparison. 

The fundus photographic set from each visit was analyzed by a single retinal expert and 792 

of the 17 877 sets were classified as containing more than minimal DR (threshold for patient 

referral). The two algorithmic lesion detectors were applied separately to the dataset and 

compared by standard statistical measures. The area under the ROC curve was the main 

performance characteristic. The results showed that the agreement between the two 

computerized lesion detectors was high. Retinal exams containing more than minimal DR 

were detected with an AUC of Az = 0.84 by the Eyecheck algorithm and an AUC of Az = 

0.82 for the ROC-2009 winner. This difference in AUC was not statistically significant (z-

score of 1.91). If the detection output of these two algorithms were combined (at least one 

detection constituted a hit), the detection AUC increased to Az = 0.86, a value identical to 

the theoretically expected maximum [69]. At 90% sensitivity, the specificity of the 

EyeCheck algorithm was 47.7%. The specificity of the ROC-2009 winner algorithm was 

43.6%. By comparison with interobserver variability of the employed experts, the study 

concluded that DR detection algorithms appear to be mature and further improvements in 

detection performance cannot be differentiated from the current best clinical practice 

because the performance of competitive algorithms has now reached the human intrareader 

variability limit [69]. Additional validation studies on larger, well-defined, but more diverse 

populations of patients with diabetes are urgently needed, anticipating cost-effective early 

detection of DR in millions of people with diabetes to triage those patients who need further 

care at a time when they have early rather than advanced DR, and such trials are currently 

underway in the U.S., U.K., and the Netherlands, though the results have not yet been 

disclosed.

2) Multilevel Approach to Lesion Detection: From Pixel to Patient—As outlined 

above, the retinal lesion detection algorithms operate at a broad range of levels according to 

the utilization of the detection algorithm outputs. Such a utility level is limited at one end by 
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the finite resolution of the imaging device and at the other end by the feasibility of imaging 

that can be employed over a finite time (i.e., number of repeated image acquisitions on the 

same subject). At the lowest level, algorithms classify individual pixels, followed by groups 

of pixels (possibly representing lesions), areas (organs or organ structures) in images, and at 

even higher level, complete images, multiple images may form a subject-level exam, and 

finally—at the highest level—multifaceted analyses of individual subjects are attempted. At 

each such level, the probability of abnormality detection is frequently determined while 

relying on findings at previous lower levels. At the highest level the system may be 

diagnosing a single patient based on the fused information from all the lower-level 

contributions. Clearly, answering the ultimate question how to effectively fuse all such 

information is nontrivial.

This subject was studied by Niemeijer et al. [98], and their approach involved application of 

multiple unsupervised and supervised analysis approaches that were compared in terms of 

performance at the patient level. A compound computer-aided retinal diagnostic system was 

developed that takes into account abnormalities of multiple types and at multiple levels, as 

well as the estimated confidence in individual analysis outcomes. A reliable analysis scheme 

was proposed based on a supervised fusion scheme for combining the output of the different 

components, and its performance evaluated on 60 000 images from 15 000 patients. The 

choice of the fusion system was identified as significantly influencing the overall system 

performance with simple fusion methods achieving classification performance associated 

AUC = 0.82 while the supervised fusion system reached an AUC = 0.89 [98].

3) Role of Publicly Available and Comparative Databases—To drive the 

development of progressively better fundus image analysis methods, research groups have 

established publicly available, annotated image databases in various fields. Fundus imaging 

examples are represented by the STARE [72], DRIVE [73], REVIEW [99] and MESSIDOR 

databases [100], with large numbers of annotated retinal fundus images, with expert 

annotations for vessel segmentation, vessel width measurements, and diabetic retinopathy 

detection, as well as competitions such as the Retinopathy Online Challenge [97], some of 

which will be discussed in the following. A major inspiration for these online image 

databases and online competitions was the Middlebury Stereo Vision competition [101], 

[102].

4) DRIVE—(Digital Retinal Images for Vessel Evaluation)—The DRIVE database 

was established to enable comparative studies on segmentation of retinal blood vessels in 

retinal fundus images. It contains 40 fundus images from subjects with diabetes, both with 

and without retinopathy, as well as retinal vessel segmentations performed by two human 

observers. In one of the available images, high-contrast choroidal regions were also 

segmented because these can be easily confused with retinal vessels. Starting in 2005, 

researchers have been invited to test their algorithms on this database and share their results 

with other researchers through the DRIVE website [103]. At the same web location, results 

of various methods can be found and compared. An early comparative analysis of the 

performance of vessel segmentation algorithms was reported in [73] and by now, over 100 

papers have been published using the DRIVE database as a benchmark. Currently, retinal 
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vessel segmentation research is primarily focusing on improved segmentation of small 

vessels, as well as on segmenting vessels in images with substantial abnormalities.

ROC—Retinopathy Online Challenge—The DRIVE database was a great success, 

allowing comparisons of algorithms on a comparative dataset. In retinal image analysis, it 

represented a substantial improvement over method evaluations on unknown datasets. 

However, different groups of researchers tend to use different metrics to compare the 

algorithm performance, making truly meaningful comparisons difficult or impossible. 

Additionally, even when using the same evaluation measures, implementation specifics of 

the performance metrics may influence final results. Consequently, until the advent of the 

Retinopathy Online Challenge ROC competition in 2009, comparing the performance of 

retinal image analysis algorithms was difficult [97].

A logical next step was therefore to provide publicly available annotated datasets for use in 

the context of online, standardized evaluations asynchronous competitions. In an 

asynchronous competition, a subset of images is made available with annotations, while the 

remainder of the images are available with annotations withheld. This allows researchers to 

optimize their algorithm performance on the population from which the images were drawn 

(assuming the subset with annotated images is representative of the entire population), but 

they are unable to test–retest on the evaluation images, because those annotations are 

withheld. All results are subsequently evaluated using the same evaluation software and 

research groups are allowed to submit results continuously over time. Nevertheless, some 

groups may be tempted to artificially influence the performance outcome for example by 

using human readers to assist with the performance of their algorithm, or iteratively 

improving the performance by submitting multiple results serially and using the obtained 

performance differences to tune-up their algorithms.

More recently, the concept of synchronous competitions was born, for which a deadline is 

given for submitting analysis results with competition results announced at a single moment 

in time. The most well-known example of such an approach is the Netflix competition [104]. 

These kinds of joint evaluations on a common dataset have the potential to steer future 

research by showing the failure modes of certain techniques and guide the practical 

application of techniques in the clinical practice, especially if appropriate reward 

mechanisms are available (again, the highly successful Netflix competition may serve as a 

motivational example).

The first Retinopathy Online Challenge competition [105] focused on detection of 

microaneurysms and was organized in 2009. Twenty-six groups participated in the 

competition out of which six groups submitted their results on time, as published in [97]. 

One group decided to drop out of the competition after the results were announced, and the 

remainder allowed their performance to be discussed publicly [89], [106]–[108]. The results 

from each of the methods in this competition are summarized in Table I.

ROC-2009 Datasets—A set of 100 digital color fundus photographs were selected from a 

large dataset of over 150 000 images, acquired during diabetic retinopathy screening [59]. 

The inclusion criteria were that the screening program ophthalmologist had marked the 
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image as containing microaneurysms and did not mark it as ungradable. Since multiple 

screening sites utilizing different fundus camera types were involved in the screening 

program, the images in the ROC-2009 set are quite heterogeneous. Three different sizes of 

field of view (FOV) are present in the dataset, each corresponding to different image 

resolution. The images were captured using either Topcon NW 100, Topcon NW 200, or 

Canon CR5-45NM camera, resulting in two differently shaped FOV’s. All images were 

made available in JPEG format with standard image compression levels set in the camera. 

Four retinal experts annotated all microaneurysms as well as all “don’t care” lesions in the 

100 images. For the training set, a logical OR was used to combine the lesion locations 

annotated by the four experts—thus ensuring that the reference dataset was highly sensitive 

to lesions, as it required only one retinal expert to identify a lesion. The annotations were 

exported as a file in XML format that contained the center locations for all microaneurysms 

and all “don’t care” lesions in each image of the set.

E. Optic Nerve Head Analysis From Fundus Images

Glaucoma is the third leading cause of blindness in the U.S., characterized by gradual 

damage to the optic nerve and resultant visual field loss. Early diagnosis and optimal 

treatment have been shown to minimize the risk of visual loss due to glaucoma. The 

hallmark of glaucomatous progression is cupping of the optic nerve head. One way of 

determining the amount of cupping is planimetry by experienced glaucoma specialists from 

stereo color photographs of the optic nerve head. Pixel feature classification is an attractive 

technique to detect the cup and rim in stereo color photographs, as shown in the following 

paragraphs.

1) Pattern Recognition Approach to ONH Segmentation—Stereo photographs of 

the optic disc (cropped from 4096 × 4096 pixel resolution to 512 × 512, centered at the optic 

nerve head) were used to form a reference standard via manual planimetry of the stereo 

pairs, labeling each image pixel as one of cup, rim, and background in a majority-win 

manner according to the labeling of three expert glaucoma specialists (Fig. 15). In the case 

of a draw, the pixel was assigned to the background class [110].

As mentioned in Section IV-A, pixel intensity and simple edge operators can be used to 

generate local image features. Considering spatial context, a Gaussian filter bank can be 

used to generate a large number of (sometimes correlated) features, from which an optimal 

feature combination can be identified using a formal feature selection process. Gaussian 

filter bank features are designed to be sensitive to edges and textures at different scales and 

orientations and are usually applied to gray-level image data (Fig. 16). To incorporate the 

color information that is inherently present in the fundus photographs, additional color-

sensitive features can result from a Gaussian steerable filter bank applied to the hue, 

saturation, and brightness image representations together with assessing signal variance in 

the R, G, and B channels in small neighborhoods. Such features are obviously different from 

the color opponency model of primate color vision. Color opponency intensities, for dark-

bright, red-green and blue-yellow opponency, that are substantially closer to primate color 

vision color opponency processing can be computed from each color image as follows 

[111]:
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(5)

(6)

(7)

where Lr, Lg, Lb are the red, green and blue channels of the analyzed image of the stereo 

pair. Ldb, Lrg, Lby are then each convolved with the respective Gaussian derivatives to obtain 

the Gaussian derivative-related features in the opponency space.

When employing the above-described Gaussian steerable filter bank in dark-bright, red-

green, and blue-yellow center-surround color opponency images, a performance 

improvement was achieved [110].

After feature selection and training, the selected image features were classified by k-NN and 

support-vector machine classifiers, yielding probability maps of pixel labeling of cup, rim, 

or background. The approach that was presented in detail in [110] achieved three-class 

segmentation (labeling) correctness of 88%. Fig. 17 shows how the gradings by glaucoma 

specialists, glaucoma fellows, and the algorithm visually compare to each other. Correlations 

of the calculated cup to disc ratios with the reference standard was r = 0.93 (95% CI, 0.89–

0.96, n = 58).

The ONH segmentation performance clearly indicated that pixel feature classification with 

biologically inspired features derived from color fundus images is a good starting point for 

the classification of the optic nerve head and likely also other 3-D structures of the retina. 

Importantly, it was shown that features benefiting from the understanding to the physiologic 

vision process outperform standard pixel features when segmenting the optic nerve head.

2) Three-Dimensional Reconstruction of ONH Shape From Stereo Color 

Fundus Photographs—Clinicians have used stereo color fundus images of the optic disc 

for many decades. Three-dimensional shape of the optic nerve head provides the visible 

manifestation of optic nerve damage. To allow objective and quantitative analysis of the 

ONH, several groups have developed techniques to estimate its 3-D shape using stereo 

fundus images [112]. Estimation of 3-D shape from stereo images has been performed for 

decades [113]. By measuring the relative position differences or disparity of one or more 

corresponding patches or regions in the two stereo images, the underlying shape can be 

estimated [114].

The problem of identification of correspondences is usually solved by making a number of 

assumptions, such as that of the Lambertian reflectance, which assumes that image 
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intensities of the same 3-D point are identical regardless of the view angle variations. 

Another commonly used assumption is that the 3-D surface is fronto-parallel to both image 

planes within a local neighborhood. Problems arise when these assumptions are violated. 

Consequently, the same 3-D point or patch may not have the exact same appearance due to 

depth variation relative to its surroundings and due to the different view angles. Repetitive 

patterns or lack of distinct features produce matching ambiguities.

In contrast to computational processes deriving shape from stereo images of natural scenes, 

images of the eye often have low contrast and high noise caused by safety-based limitations 

on the amount of illumination that can be used. The images thus consist of low contrast 

regions without clear boundaries. Large imaging apertures can gather more light but 

simultaneously suffer from a small depth of focus. As a consequence, depth variations may 

cause different degrees of blur due to de-focusing of the camera. Similarly, an increase of 

exposure time may incur blur due to the motion of the eye.

The shape estimate of the optic disc is formed from two sets of densely corresponding pixels 

(x1, y1) and (x2, y2) from the stereo fundus images I1 and I2, taken from two different view 

angles while simultaneously imaging the same eye (Fig. 18). The two image planes are 

horizontally displaced in a typical camera configuration. The horizontal disparity of a pair of 

correspondences d = x2 − x1 is inversely proportional to the depth of the associated 3-D 

point. Given the correspondences between the image point pairs, the disparity map D = d(x, 

y) is defined as a 2-D matrix satisfying

(8)

where image I1 is usually referred to as the reference image I2 and image the matching 

image. The disparity map D contains depth information about the observed structure. If the 

disparity map D(x, y) of a pair of fundus images is found by dense-matching and plotted as a 

3-D surface, the shape of the optic disc is recovered.

For stereo fundus images with slowly varying texture, it is easier to associate a pair of 

globally matching regions since more prominent landmarks can be utilized, such as blood 

vessels and the optic disc. On the other hand, given a limited number of candidate 

correspondences and the deformations in order to achieve correct matches between such 

landmarks, detailed local information is frequently sufficient and more reliable to discern 

subtle differences among these candidates. This motivates a scale-space-based framework 

described as follows.

Scale space consists of x − y image evolutions with the scale s representing a third 

dimension. Given a pair of images I1(x, y, sk) and I2(x, y, sk), a disparity map D(x, y, sk) is 

estimated at scale sk and then upscaled to D0(x, y, sk−1), which matches the stereo pair I1(x, 

y, sk−1) and I2(x, y, sk−1)at the higher scale sk−1. With constraints imposed by D0(x, y, sk−1), 

the disparity map evolves to the finer scale D(x, y, sk−1) while at each scale, certain features 

are selected as the salient ones.
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The scale-space-based representation of the image structure is intended to provide globally 

coherent solutions for the correspondence problem. Stereo images at different scales provide 

hierarchical features for correspondence identification while disparity maps along the scale 

dimension provide structure description in terms of point evolution paths and act as the 

regularization component. Constraints enforced by landmarks at a certain scale guide finer 

searches toward correct directions along those paths while the small additive noise is filtered 

out by a 2-D adaptive noise-removing Wiener filter, which can preserve depth edges during 

disparity evolution.

The matching process involves assigning one label (disparity value) to each pixel in the 

reference image within a rather large disparity range. The scale-space-based approach 

essentially distributes this task to different scales so that at each scale the matching 

ambiguity is reduced significantly. This is important for noisy stereo fundus pairs with low 

texture density. The formulation is consistent with the perceptual grouping performed by the 

human visual system.

The described approach to reconstruct ONH surface shape was evaluated on 30 pairs of 

stereo fundus images in comparison with ONH surface shapes derived from 3-D OCT 

imaging of the same subjects—OCT analysis was performed as described in Section V-D. 

The accuracy of each disparity map was measured by the root of mean squared (RMS) 

differences ERMS between the estimate d(x, y) derived from stereo fundus photographs and 

the depth information d*(x, y) obtained from OCT scans as

(9)

where N is the total number of pixels. Both depth maps (stereo-fundus and OCT derived) 

were normalized to the same scale according to the depth of the cup and the OCT-derived 

surface served as the independent standard. In this relative manner, the average RMS error of 

the stereo-fundus surface reconstruction was 15.9 ± 8.8% of the cup depth when assessed 

over all 30 analyzed stereo fundus pairs (Fig. 19).

F. Active Areas of Research in Fundus Image Analysis

Major progress has been accomplished in many fundus image analysis tasks mentioned 

above. Current challenges, on which multiple research groups worldwide are actively 

working, include the following areas:

1. Retinal blood vessels:

a. vessel segmentation for smaller vessels only a few pixels in diameter;

b. vessel segmentation in images with substantial pathology;

c. differentiating arteries from veins;

d. assessing accurate vessel diameter;
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e. assessing vessel tortuosity;

f. vessel tree analysis including tree branching patterns.

2. Retinal lesions:

a. detection of irregularly shaped hemorrhages;

b. detection of rare but major pathology such as neoplasms and scarring;

c. detection of lesion distribution patterns, for example drusen;

d. segmentation of atrophy, including geographic atrophy;

e. fast analysis allowing real time feedback.

3. Content-based image retrieval for abnormality detection;

4. Change over time detection for abnormality assessment;

5. Integration of fundus image-based quantification with other metrics of disease 

risk, such as serum glucose level, patient history, etc.

V. OCT Image Analysis

Because of OCT’s relatively new presence in ophthalmic care compared to fundus 

photography, the use of image analysis techniques for the use of image analysis for 

processing OCT images has a shorter history. Nevertheless, it is a rapidly growing and 

important area, especially as spectral-domain OCT technology has enabled true 3-D 

volumetric scans of the retina to be acquired (see Fig. 20 for example scanning locations). 

With this ever-increasing wealth of image information, the importance of developing 

advanced image analysis techniques to maximize the clinically relevant information to be 

extracted is especially important. Nevertheless, the development of such advanced 

techniques can be challenging as OCT images are inherently noisy, thus often requiring the 

utilization of 3-D contextual information (Fig. 22). Furthermore, the structure of the retina 

can drastically change during disease (as illustrated in Figs. 27, 29, and 30). Here, we review 

some of the important image analysis areas for processing OCT images. We start with the 

segmentation of retinal layers (Section V-A1), one of the earliest, yet still extremely 

important, OCT image analysis areas. We then discuss techniques for flattening OCT images 

in order to correct scanning artifacts (Section V-A2). Building upon the ability to extract 

layers, we discuss use of thickness information in Section V-A3 and use of texture 

information in Section V-A4. This is followed by the segmentation of retinal vessels 

(Section V-B), which currently has its technical basis in many of the techniques used for 

segmenting vessels in fundus photography, but is beginning to take advantage of the 3-D 

information only available in SD-OCT. Utilizing both layer-based and texture-based 

properties to detect the locations of retinal lesions is described in Sections V-C and V-C1, 

with a 3-D-based approach for segmenting the boundaries of such lesions being described in 

Section V-C2. The ability to segment layers in the presence of lesions is described in Section 

V-C3. We finally describe approaches for segmenting structures of the optic nerve head in 

SD-OCT in Section V-D.
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A. Retinal Layer Analysis From 3-D OCT

1) Retinal Layer Detection—The segmentation of retinal layers in OCT scans has been 

an important goal since OCT’s availability to the ophthalmic community [36] as thickness 

changes in the layers are one indication of disease status (Section V-A3). An example of the 

visible layers in one slice from a spectral-domain OCT macular volume is given in Fig. 21. 

With the previous-generation time-domain scanning systems (such as the Stratus OCT by 

Carl Zeiss Meditec, Inc.), commercial systems offered the ability to segment and provide 

thickness measurements for one layer of the retina. In particular, the retinal nerve fiber layer 

(RNFL) thickness measurements of peripapillary circular scans were frequently used for the 

disease status/progression/regression assessment in glaucoma patients, while the total retinal 

thickness measurements were often used in the assessment of patients with macular edema, 

choroidal neovascularization and macular hole. While the proprietary details of commercial 

approaches are not known, it can be assumed that they utilized an inherently 2-D approach 

(i.e., if multiple 2-D slices are available in a particular scanning sequence they are 

segmented independently).

Similarly, most of the early approaches reported in the literature [115]–[121] for the 

segmentation of time-domain scans were two dimensions in nature; however, some of the 

approaches did move towards segmenting additional layers of the retina. While variations to 

each of the early 2-D approaches exist for the segmentation of retinal boundaries, a typical 

2-D approach proceeds as follows.

1. Preprocess the image (e.g., with a median filter as in [115]–[118] or anisotropic 

diffusion filter as in [120]).

2. Perform a 1-D peak detection algorithm on each A-scan (column) of the 

processed image to find points on each border of interest.

3. (For only a few approaches) Process the points further to correct for possible 

discontinuities in the 1-D border detection approaches (e.g., use Markov 

modeling to connect smaller segments to the largest continuous segment 

followed by spline-fit as in [115], [116]).

Other 2-D time-domain approaches included the use of 2-D dynamic programming by 

Baroni et al. [122] and manually initialized deformable models for the segmentation of 

fluid-filled regions by Cabrera Fernández [119]. These segmentation approaches have 

attempted to find different numbers of boundaries of the retina. In particular, Koozekanani et 

al. [115], [116] found two boundaries, Baroni et al. [122] found three, Shahidi et al. found 

four [121], Ishikawa et al. [117], [118] found five, and Cabrera Fernández found seven 

retinal layer boundaries [120].

Haeker/Garvin et al. [123]–[126] reported the first true 3-D segmentation approach for the 

segmentation of retinal layers on OCT scans, thus taking advantage of 3-D contextual 

information. In addition to segmenting the layers in three dimensions, their approach was 

unique in that the layers could be segmented simultaneously [127]. The approach involved 

the construction of a graph such that the minimum-cost closed set of this graph would 

correspond to a set of optimal feasible surfaces. Feasibility was defined by smoothness 
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constraints (i.e., not allowing neighboring surface points to be too far apart) and surface 

interaction constraints (i.e., requiring the distances between surfaces to be in a particular 

range). Their initially reported approaches utilized edge-based cost functions and constant 

feasibility constraints [123], [126], but they later extended the graph-based approach to 

allow for true regional information [125] and varying feasibility constraints [124]. For time-

domain macular scans, they segmented six to seven surfaces (five to six layers), obtaining an 

accuracy and reproducibility similar to that of retinal specialists.

This work was then extended to work with spectral-domain OCT volumes [128], making the 

utilization of 3-D contextual information more advantageous. The importance of 3-D 

contextual information is illustrated in Fig. 22. The originally published method was 

validated on repeated scans from macula-centered SD-OCT volumes of normal subjects and 

did suffer from relatively long processing times of hours per volume. The processing time 

has substantially decreased by employing a multiscale approach to a few minutes while 

segmenting additional layers (Fig. 21) [129]. A similar approach for segmenting the 

intraretinal layers in ONH-centered SD-OCT volumes was reported with an accuracy similar 

to that of the inter-observer variability of two human experts [130]. Based on their graph-

theoretic approach, a preliminary layer thickness atlas was built from a small set of normal 

subjects [131] and unique layer changes were demonstrated in diabetes subjects [132], 

[133].

Other reported approaches for the segmentation of spectral-domain OCT volumes or slices 

include an interactive 3-D approach by Fuller et al. [134], the 2-D segmentation of slices 

from rodent images using an active contour approach by Yazdanpanah et al. [135], and the 

2-D segmentation of slices from rodent images using a dynamic programming method [136] 

by Mishra et al. [137].

2) OCT Image Flattening—SD-OCT volumes frequently demonstrate motion artifacts in 

the slow-scanning direction causing a high-frequency ripple in this direction. Furthermore, 

other artifacts may be present, such as the tilting due to an off-axis placement of the pupil. 

Thus, various approaches have been reported in an attempt to correct these artifacts. 

Common approaches for reducing these artifacts include 1-D and 2-D methods that use 

cross-correlation of either A-scans [117] or B-scans [134], [138], [139]. In some cases, a 

complete flattening of the volume is desired based on a surface segmentation to ensure a 

consistent shape for segmentation (to aid in learning shape constraints) and visualization 

purposes. In addition, flattening the volumes makes it possible to truncate the image 

substantially in the axial direction (z-direction), thereby reducing the memory and time-

requirements of an intraretinal layer segmentation approach. For example, in the approach 

by Garvin et al. [128], flattening an image involved first segmenting the retinal pigment 

epithelial surface in a lower resolution, fitting a (regularized) thin-plate spline [140] to this 

surface, and then vertically realigning the columns of the volume to make this surface 

completely flat. However, in order to avoid a strong dependence on the surface 

segmentation, a relatively large regularization constraint was used. This had the side effect 

of not completely removing many of the ripples observed in the slow-scanning direction. In 

an effort to better reduce the ripples observed in the slow-scanning direction, Antony et al. 

Abràmoff et al. Page 32

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2011 July 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



proposed a modification of this approach [141] to separately address the distortions in each 

direction using a two-stage flattening approach.

3) Retinal Layer Thickness Analysis—Once the layers are segmented and flattened, 

the properties of the macular tissues in each of these layers can be extracted and analyzed. 

Currently, the most common property analyzed is layer thickness, although more recent 

work has been proposed for analyzing textural properties as well (Section V-A4). For 

example, in glaucoma, one can observe a thinning of the retinal nerve fiber layer and 

ganglion cell layer [142]. In other ocular diseases, thickening of specific layers can be 

important (e.g., macular edema) [143]. Typically, it is useful to compare the obtained 

thickness values to a normative database or atlas, as is available in commercial machines for 

the total macular thickness and the retinal nerve fiber layer. However, a normative atlas for 

all the layers in three dimensions currently only exists within individual research groups 

[131]. Nevertheless, work has been done to demonstrate previously unknown changes in the 

layers in other diseases such as diabetes [132], [133].

4) Retinal Texture Analysis—In addition to assessing layer thickness and its variations, 

texture is well suited to characterize tissue properties and tissue differences. For example, 

textural properties may be important for assessing changes in the structural or tissue 

composition of layers that cannot be measured by changes in thickness alone. Using texture 

can also be helpful for detecting and segmenting structures involving changes in texture, 

such as retinal lesions (Section V-C). Texture can be determined in each of the identified 

layers either globally or regionally. To capture the 3-D character of the retinal tissue layers, 

3-D texture analysis may include features describing intensity level distribution, run length 

indices, co-occurrence matrix measures, and wavelet analysis measures [144]–[146]. Three-

dimensional formulations of these texture descriptors were previously developed for 

pulmonary parenchymal analysis [147] and can be directly employed for OCT texture 

analysis [148].

The intensity level distribution measures may contain the mean, variance, skewness, 

kurtosis, and gray level (intensity) entropy and are used to describe the occurrence 

frequencies of all intensity levels in a subvolume of interest. The run length measures may 

include the short run emphasis, long run emphasis, gray level nonuniformity, run length 

nonuniformity, and/or run percentage and describe the heterogeneity and tonal distributions 

of the intensity levels in a subvolume of interest. Frequently utilized for texture 

characterization, co-occurrence matrix measures like the angular second moment, 

correlation, contrast, entropy, inertia, and inverse difference moment describe the overall 

spatial relationships that the intensity tones have to each other, again calculated in a 

subvolume of interest. Run length and co-occurrence analyses both require quantifying 

voxel intensities in the OCT images. That is obvious for run length measures because the 

concept of uniform intensity sequences is ill-defined without quantification in the presence 

of noise, in particular the laser speckle. The gray-level intensities are typically quantified in 

equally populated bins [148].

The wavelet transform has been widely used in OCT images for denoising and despeckling 

[149]–[151] as well as for texture analysis [152]. Early work on 3-D wavelet analysis of 
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OCT images was reported in [148] and was based on a computationally efficient yet flexible 

non-separable lifting scheme in arbitrary dimensions [153]. An adaptive implementation of 

this wavelet transform has previously been applied to 2-D texture retrieval [146].

For some of the textural features described above (run length, co-occurrence matrix and 

wavelet indices), features are computed along all main directions. In order to reduce the 

cardinality of the textural characterization, these values are often averaged to form 

directionless scalar features [145]. Additional (not strictly texture-based but still useful) 

features can be computed, e.g., the averages and standard deviations of layer thicknesses, 

globally or regionally.

When assessing regional texture features, texture analysis can be performed in individual 

(flattened) layer-specific sub-volumes, for example with a square base domain of Sx × Sy 

centered at an (x, y) location. Texture characteristics can be computed for each segmented 

layer, several adjacent layers, or in layer combinations. Fig. 23 shows a schematic view of 

calculating regional texture indices.

B. Detection of Retinal Vessels From 3-D OCT

While perhaps not obvious from observing a single 2-D slice (B-scan), it is possible to 

segment the retinal vasculature in 3-D SD-OCT volumes [154]–[156], which, among other 

uses, helps to enable the OCT-to-fundus and OCT-to-OCT image registration (Section VI). 

The absorption of light by the blood vessel walls causes vessel silhouettes to appear below 

the position of vessels, which thus causes the projected vessel positions to appear dark on 

either a full projection image of the entire volume [156] or a projection image from a 

segmented layer for which the contrast between the vascular silhouettes and background is 

highest as proposed by Niemeijer et al. [154], [155]. In particular, the work by Niemeijer et 

al. used the layer near the retinal pigment epithelium (RPE) to create the projection image, 

as illustrated in Fig. 24(a) and (b). Vessels were segmented using a k-NN pixel classification 

approach using Gaussian filter banks to compute features [see Fig. 24(c) and (d)]. The 

performance of their automated method was evaluated for both optic nerve head (ONH) 

centered as well as macula-centered scans. The retinal vessels were successfully identified in 

a set of 16 3-D OCT volumes (eight ONH and eight macula centered) with high sensitivity 

and specificity as determined using ROC analysis, Az = 0.96.

Xu et al. reported an approach for segmenting the projected locations of the vasculature by 

utilizing pixel classification of A-scans [156]. The features used in the pixel classification 

are based on a projection image of the entire volume in combination with features of the 

individual A-scans.

Both of these reported prior approaches focused on segmenting the vessels in the region 

outside the optic disc region because of difficulties in the segmentation inside this region. 

For example, the projected neural canal opening (NCO) can often share similar features with 

vessels, thus causing false positives. Thus, Hu et al. [157] proposed a modified 2-D pixel 

classification algorithm to segment the blood vessels in SD-OCT volumes centered at the 

ONH, with a special focus on better identifying vessels near the NCO. They approached this 

task by incorporating presegmented NCO location (Section V-D2) information into the 
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classification process, achieving a significant improvement over the approach previously 

reported by Niemeijer et al. in the NCO region.

Given an initial 2-D segmentation of the projected vasculature, Lee et al. presented an 

approach for segmenting the 3-D vasculature in the volumetric scans [158] by utilizing a 

graph-theoretic approach (Fig. 25). However, one of current limitations of that approach is 

the inability to properly resolve the depth information of crossing vessels.

C. Detection of Retinal Lesions

Calculated texture and layer-based properties as described in Section V-A4 can be used to 

detect retinal lesions either as a 2-D footprint [148] or in three dimensions (Section V-C2). 

Out of many kinds of possible retinal lesions, symptomatic exudate-associated derangements 

(SEADs) are of utmost interest in assessing severity of age-related macular degeneration, 

diabetic macular edema, and other diseases. Detection of drusen, cottonwool spots, areas of 

pigment epithelial atrophy, pockets of fluid under epiretinal membranes, etc., may be 

attempted in a similar fashion.

In all such applications, it is very useful to determine the normal appearance of maculae so 

that comparison of tissue properties with proper consideration of age, ethnicity, gender, etc., 

can be performed. Such a normative texture atlas can be derived from a set of N OCT 

volumes from normal eyes. The distribution of each texture or other layer-based feature f 

across these N volumes, in the neighborhood of an (x, y) line (i.e., a vertical column) within 

the lth layer, may be defined by the average μf, x, y, l and the standard deviation σ f, x, y, l of 

the N feature values (one feature value per OCT volume). This representation is convenient 

since the local deviation d (x, y, l) between the feature value f (x, y, l) computed for a new 

sample and the normality can be expressed in terms of z-score

(10)

Because the local distribution of a feature in one layer of the macula is defined by only two 

parameters (mean, standard deviation), the normal appearance of maculae as defined above 

can be derived from a relatively small set of images. More comprehensive atlases may 

include feature histograms and histogram-based statistical distances, but these require larger 

datasets to be built. Examples of calculated texture indices and their distributions over 

macula in 13 normal subjects—thus forming a normative pilot atlas of macular texture 

properties—are given in Fig. 26. These “normal atlas” values can be used for abnormality 

detection as described in the following.

Deviations From Normal Atlas of Texture Appearance—A straightforward solution 

to detect retinal image abnormalities may be based on computing the local deviations from 

the normal appearance of maculae at each location (x, y) in each layer l and selecting the 

areas where the absolute deviation is greater than a predefined cutoff (e.g., d (x, y, l) ≥ 1.98 

considering the 95% confidence level) for at least one feature. More generally, in order to 
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build an abnormality-specific detector, a classifier can be trained, the inputs of which may be 

the z-scores computed for relevant features [see (10)]. The comprehensive z-scores are 

appropriate since an abnormality may affect several layers in the neighborhood of a given 

location (x, y). The classifier-determined label associated with each column may reflect the 

percentage of the patch covered by the target abnormality with relevant features selected by 

one of the many available cross-validation and/or feature selection methods [159]–[161], 

effectively forming a probabilistic abnormality map.

A crisp binary footprint for macular lesions (say, SEADs) can thus be obtained directly from 

a probability map, e.g., by simple probability thresholding, yielding lesion footprints. Of 

course, training can result in more sophisticated ways to classify abnormalities. For 

example, the threshold can be determined so that it minimizes the L1 distance between the 

expert-defined independent standard for lesion footprints and the thresholded probability 

maps among all the images in the training dataset.

1) SEAD Footprint Detection—In age-related macular degeneration, in diabetic macular 

edema, and in other retinal diseases, SEAD lesions are reflective of disease status and their 

changes of disease progression or regression. With the availability of anti-vascular 

endothelial growth factor (VEGF) therapy, assessment of the extent and morphology of 

individual SEADs is expected to contribute to patient-specific therapy.

While SEADs are inherently 3-D, determining their 2-D retinal footprint (SEAD projection 

onto a coronal retinal plane) is highly relevant. Following the above-described analysis 

building blocks, SEAD footprint detection can be built on generalization of properties 

derived from expert-defined SEAD examples. Utilizing the differences between normal 

regional appearance of retinal layers as described by texture descriptors and other 

morphologic indices, a classifier can be trained to identify abnormal retinal appearance. As 

described in detail in [148], the SEAD detection starts with 3-D OCT layer segmentation 

(Section V-A1) resulting in ten intraretinal layers plus an additional artificial layer below the 

deepest intraretinal layer so that subretinal abnormalities can also be detected.

Texture-based and morphologic descriptors are calculated regionally in rectangular 

subvolumes, the most discriminative descriptors are identified, and these descriptors are 

used for training a probabilistic classifier. The performance of a (set of) feature(s) is 

assessed by calculating the area under the receiver-operating characteristic curve of the 

SEAD classifier. The parameter of the ROC curve is the SEAD probability measured for 

OCT columns with an S × S square base from the inner validation set (per-patch AUC). 

Using the identified set of best features evaluated in OCT columns with an S × S square base 

from the inner validation set (per-patch AUC), a forward feature selection procedure is 

performed, in which features are sequentially selected until the AUC stops increasing. At 

each step, the feature maximizing the AUC increase is selected. All the feature vectors 

extracted from nonoverlapping S × S patches in the inner training set are used as reference 

samples by the k-NN classifier; their labels are derived from the expert standard. 

Overlapping S × S patches from the OCT volumes in the validation eye are then classified 

and the SEAD probability in each pixel (x, y) is defined as the average probability of all the 

Abràmoff et al. Page 36

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2011 July 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



patches containing (x, y) [84]. The cross-validation training/testing procedure is repeated for 

several patch sizes: S ∈ {10, 15, 20}.

Once the probabilistic classifier is trained, SEAD-related probability is determined for each 

retinal location. In order to obtain a binary footprint for SEADs in an image input to the 

system, the probability map is thresholded and the footprint of the SEADs in this image 

defined as the set of all pixels with a probability greater than a threshold (Fig. 27). The 

threshold that minimizes the L1 distance between the expert standard for SEAD footprints 

and the thresholded probability maps among all the images in the reference dataset is 

selected (as outlined above).

This approach was applied to determine SEAD footprints in 78 SD-OCT volumes from 23 

repeatedly imaged patients with choroidal neovascularization, intra-, and sub-retinal fluid 

and pigment epithelial detachment (Fig. 28) [148]. The automated SEAD footprint detection 

method was validated against an independent standard obtained using an interactive 3-D 

SEAD segmentation approach. An area under the ROC curve of 0.961 ± 0.012 was obtained 

for the classification of vertical, cross-layer, macular columns. A study performed on 12 

pairs of OCT volumes obtained from the same eye on the same day showed that the 

repeatability of the automated method was comparable to that of the human experts, 

demonstrating that useful 3-D textural information can be extracted from SD-OCT scans and

—together with an anatomical atlas of normal retinas—can be used for clinically important 

applications.

2) SEAD Segmentation in Three Dimensions—Complete volumetric segmentation of 

SEADs from 3-D OCT is more difficult with no fully tested and robust methods existing at 

this time. A promising approach is based on identification of a seed point in the OCT dataset 

that is “inside” of a SEAD and a point “outside” of a SEAD. These seed points can be 

identified automatically from using a 3-D variant of the probabilistic classification approach 

outlined in the previous paragraphs. Once these two seed points are identified, an automated 

segmentation procedure that is based on regional graph-cut method [162], [163] may be 

employed to detect the SEAD volumetric region. The cost function utilized in a preliminary 

study was designed to identify darkish 3-D regions with somewhat homogeneous 

appearance. The desired properties of the SEAD region are automatically learned from the 

vicinity of the identified SEAD-region seed point. This adaptive behavior allows the same 

graph-cut segmentation method driven by the same cost function to reliably segment SEADs 

of different appearance. Fig. 29 gives an example of 3-D SEAD segmentations obtained 

using this approach. Note that the figure depicts the same locations in the 3-D data sets 

imaged several times in the course of anti-VEGF treatment. The surfaces of the segmented 

SEADs are represented by a 3-D mesh, which can be interactively edited to maximize 

SEAD segmentation accuracy in difficult or ambiguous cases.

3) Intraretinal Layer Segmentation in Presence of Retinal Lesions—To consider 

layer abnormalities and interruptions when segmenting multiple intraretinal layers in retinal 

OCT images in the presence of lesions (say, SEADs), a two-step approach is necessary in 

which layers are initially segmented not considering the lesion presence, then SEADs are 

segmented as described in Section V-C2, and the segmented SEADs are used in the 
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subsequent step to constrain the second stage of layer segmentation. This process yields 

well-segmented retinal layers (Fig. 30) when SEADs occupy a single intra-retinal layer as 

well as in situations when the SEAD resides in several adjacent retinal layers.

D. Optic Nerve Head Analysis Using 3-D OCT

As mentioned previously (Section IV-E), the optic nerve head is an important structure in the 

assessment of ophthalmic diseases, such as glaucoma. While stereo fundus photography 

provides the ability to extract some 3-D shape information of the optic nerve head (Section 

IV-E2), SD-OCT provides true 3-D information. Nevertheless, what 3-D structural 

information to be extracted from these 3-D volumes of the optic nerve head is still an active 

area of research. Thus, most current approaches have their basis in known 2-D parameters, 

such as the optic disc and cup as can be visualized/segmented from stereo fundus 

photography. In the following paragraphs, we describe two approaches for segmenting the 

disc/cup in optic-nerve head 3-D OCT image data: 1) a pixel classification approach applied 

to depth-columns of OCT voxels in which the reference standard is defined by manual 

planimetry from stereo fundus photographs [164]–[166], and 2) direct segmentation of 

structures (neural canal opening and cup) from 3-D OCT images using a graph-theoretic 

approach [167]–[170].

1) Classification-Based Approach to ONH Segmentation—The classification-

based approach starts by segmenting four intraretinal surfaces in the original spectral-

domain OCT volume using a multiscale 3-D graph search-based method (Section V-A1). To 

obtain a consistent ONH shape, the retina in the original spectral-domain OCT volume is 

flattened by adjusting A-scans up and down in the z-direction using the segmented second 

intraretinal surface (Section V-A2). An OCT projection image is created by averaging in the 

z-direction the OCT subvolume between the second and fourth intraretinal surfaces. The 

flattened OCT volume and intraretinal surface segmentations, OCT projection image and 

vessel probability map from the OCT projection image (Fig. 24) [154], [155] are used as 

features for the classification of the optic disc cup and neuroretinal rim. The optic disc cup 

and neuroretinal rim are segmented by a contextual k-NN classifier incorporating 

neighboring A-scans. Finally, prior knowledge about the shapes of the optic disc cup and 

neuroretinal rim regions is incorporated through the application of convex hull-based fitting.

OCT Projection Image—An OCT projection image is necessary for creating the ONH 

independent standard. The retinal vasculature is visible in the projection image as described 

in Section V-B and [154], [155]. Feature points derived from the vasculature such as 

bifurcations can be used to register the fundus image with the OCT volume (Section VI-B). 

The projection image also serves for calculation of local features for the cup and rim 

classification of the OCT volume. The OCT projection image is created by averaging in the 

z-direction the OCT subvolume between the second and fourth intraretinal surfaces 

segmented in Section V-A1 (surfaces 2 and 4, see Fig. 31). These two surfaces define a layer 

that, due to its position in the retina and high contrast with the retinal background, contains a 

large number of high contrast vessel silhouettes [154], [155].
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Optic Disc Cup and Neuroretinal Rim Segmentation—To segment the optic disc 

cup and rim, a supervised classification method assigns one of three labels (i.e., background, 

cup, rim) to each A-scan (voxel column) in the 3-D OCT scan (Fig. 32). Classification is 

based on a set of features obtained from flattened OCT volumes and intraretinal surfaces, 

OCT projection images and vessel probability maps [154], [155] for each voxel column in 

the OCT volume.

Employed features include local morphologic properties of retinal layers surrounding the 

ONH, including depth of the optic disc cup, thickness of individual segmented layers, 

distance from the center of the optic disc cup (defined as the lowest point of the top 

segmented intraretinal surface), probability that the voxel column is part of a vessel, OCT 

projection image intensity, average intensity of all voxels in the voxel column, and average 

voxel column intensity histogram. Following feature-space normalization, a contextual 

nearest neighbor classifier [171] is used. For each voxel column, the classifier determines k 

nearest neighbors in the feature space and assigns the most common label amongst the 

nearest neighbors to the query voxel column (Fig. 33) [165].

To preserve the shapes of the optic disc cup and neuroretinal rim, a local fitting method 

using the convex hulls of the segmentation is employed to smooth the segmentation results 

for both the optic disc cup and neuroretinal rim. Figs. 33 and 34 demonstrate the 

performance of this approach. Overall, the approach reported in [165] achieved results not 

significantly different (p > 0.2) from the inter-observer variability of expert-analysis of the 

ONH cup and rim boundaries. In a leave-one-subject-out experiment on 27 optic nerve head-

centered OCT volumes (14 right eye scans and 13 left eye scans from 14 patients), the 

unsigned errors for the optic disc cup and neuroretinal rim were 2.52 ± 0.87 pixels (0.076 

± 0.026 mm) and 2.04 ± 0.86 pixels (0.061 ± 0.026 mm), respectively.

2) NCO-Approach to ONH Analysis—Using a voxel classification approach for 

automatically segmenting the clinical familiar glaucomatous parameters—the ONH rim and 

cup—directly from the SD-OCT volumes as described [164]–[166] has the ultimate 

limitation that the algorithm essentially mimics the subjective assessment of 2-D parameters 

by human experts. Since it is not based on objective, anatomical landmarks within the 3-D 

volumes, the optic disc margin does not overlap with a single constant anatomic structure in 

volumetric OCT. This is consistent with the recent comparisons of clinical and SD-OCT 

optic disc margin anatomy by Strouthidis et al. [172], [173]. They found that the varying 

combinations of the termination of Bruch’s membrane, border tissue, or the anterior scleral 

canal opening may manifest as the 2-D disc margin seen on photographs, depending upon 

the border tissue architecture and anatomy.

With the wealth of volumetric information available from SD-OCT, it is likely that better 

parameters can be obtained for measuring glaucomatous change that move beyond what is 

possible using stereo fundus photography alone. A central requirement for the detection of 

the ONH structural change is a longitudinally stable zero-reference plane. As described by 

Strouthidis et al. [172], [173], the neural canal opening (NCO)—the termination of Bruch’s 

membrane/retinal pigment epithelium (BM/RPE) complex can serve as a basis for a stable 

reference plane from which various optic nerve morphometric parameters can be derived, 
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based on the assumption that the NCO is not likely to change substantially with 

glaucomatous progression [172], [173].

Thus, new efforts are directed towards segmenting structures such as the NCO directly 

within SD-OCT volumes. For example, Hu et al. [170] recently reported a method for 

segmenting the NCO directly in SD-OCT volumes. Their approach is based on first creating 

a projection image at the level of the BM/RPE plane and then simultaneously detecting the 

NCO and cup margins at the level of this plane using a graph-theoretic approach. Using the 

disc margin as defined by three glaucoma experts on stereo fundus photography as the 

reference standard (RS), they found mean unsigned and signed border differences of 2.81 

± 1.48 pixels (0.084 ± 0.044 mm) and −0.99 ± 2.02 pixels (−0.030 ± 0.061 mm, respectively. 

The correlations of the linear cup-to-disc (NCO) area ratio, disc (NCO) area, rim area, and 

cup area of the algorithm with the RS were 0.85, 0.77, 0.69, and 0.83, respectively. However, 

it is important to note that it was not expected that the projected NCO positions would 

perfectly correspond to the optic disc margin as defined on manual planimetry, as illustrated 

in Fig. 35.

VI. Multimodality Retinal Imaging

Multimodality imaging is becoming increasingly common in ophthalmology. For image 

information from multiple modalities to be usable in mutual context, images must be 

registered so that the independent information that was acquired by different methods can be 

concatenated and form a multimodality description vector. Thus, because of its importance 

in enabling multimodal analysis, retinal image registration reflects another active area of 

research. The several clinically used methods to image the retina were introduced above and 

include fundus photography, scanning laser ophthalmoscopy, fluorescence imaging, and 

OCT. Additional retinal imaging techniques such as hyper-spectral imaging, oxymetry, and 

adaptive optics SLO will bring higher resolution.

To achieve a comprehensive description of retinal morphology and eventually function, 

diverse retinal images acquired by different or the same modalities at different time instants 

must be mutually registered to spatially combine all available local information. The 

following sections provide a brief overview of fundus photography and OCT registration 

approaches in both two and three dimensions. Registration of retinal images from other 

existing and future imaging devices can be performed in a similar or generally identical 

manner.

A. Registration of Fundus Retinal Photographs

Registration of fundus photographs taken either at different regions of the retina, or of the 

same area of the retina but at different times are useful to expand the effective field of view 

of a retinal image, determine what part of the retina is being viewed, or helps in analyzing 

changes over time [174]. We have discussed some other uses for fundus–fundus registration 

in Section IV-C devoted to retinal atlases.

To register (2-D, planar) fundus images, most existing registration approaches utilize 

identification and extraction of features derived from retinal vasculature segmented 
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separately from the individual fundus images. The choice of a specific image registration 

algorithm to align retinal images into a montage depends on the image characteristics and 

the application. Images acquired with only a small overlap may be optimally aligned using 

feature-based registration approaches, while images acquired with larger overlaps may be 

satisfactorily aligned using intensity-based approaches. Examples of feature-based 

registration are global-to-local matching [175], hierarchical model refinement [176], and 

dual-bootstrap [177]. Local intensity features [178] are particularly useful when an 

insufficient number of vascular features are available.

Following a step of vascular skeletonization, vascular branching points can be easily used as 

stable landmarks for determining image-to-image correspondence [see Fig. 36(a) and (b)]. 

As an example, the RADIC model [179] parameters are estimated during an optimization 

step that uses Powell’s method [180] and is driven by the vessel center line distance (see also 

Section IV-C). The approach presented in [181] reported registration accuracy of 1.72 ± 0.04 

pixels (25–30 μm, depending on resolution) when tested in 462 pairs of green channel 

fundus images. The registration accuracy was assessed as the vessel line error [see Fig. 

36(c)]. The method only needed two correspondence points to be reliably identified and was 

therefore applicable even to cases when only a very small overlap between the retinal image 

pairs existed. Based on the identified vascular features, the general approach can be applied 

to any retinal imaging modality for which a 2-D vessel segmentation is available. Fig. 37 

shows a wide-field of view retinal image constructed from eight individual fundus 

photographs.

In registering poor quality multimodal fundus image pairs, which may not have sufficient 

vessel-based features available, Chen et al. proposed the detection of corner points using a 

Harris detector followed by use of a partial intensity invariant feature descriptor (PIIFD) 

[182]. They reported obtaining 89.9% “acceptable” registrations (defined as registrations 

with a median error ≤ 1.5 pixels and a maximum error ≤ 10 pixels when compared with 

ground truth correspondences) when tested on 168 pairs of multimodal retinal images.

B. Registration of OCT With Fundus Retinal Photographs

Registration of 2-D fundus images with inherently 3-D OCT images requires that the 

dimensionality of OCT be reduced to two dimensions via z-axis projection. Building on the 

ability to obtain vascular segmentation from 3-D OCT projection images (Section V-B), the 

problem of fundus-OCT registration becomes virtually identical to that of fundus–fundus 

registration that was described in the previous section. Using the same general method, high-

quality OCT-fundus registration can be achieved as demonstrated in Fig. 38. Fig. 39 presents 

the main steps of the registration process and shows the achieved registration performance.

C. Mutual Registration of 3-D OCT Images

Temporal changes of retinal layers leading to assessment of disease progression or 

regression can be accessed from longitudinal OCT images. Similar to the cases discussed 

above, comparison of morphology or function over time requires that the respective OCT 

image data sets be registered. Since OCT is a 3-D imaging modality, such registration needs 

to be performed in three dimensions. For followup studies, image registration is a vital tool 
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to enable more precise, quantitative comparison of disease status. Registration of time-

domain and spectral-domain OCT images for longitudinal analysis of RNFL thickness 

measurement can be found in [183]. Another important aspect of OCT to OCT registration is 

the ability to enlarge retinal coverage by registering OCT data resulting from imaging 

different portions of the retina.

A fully 3-D scale-invariant feature transform (SIFT)-based approach was introduced in 

[184]. In their work, the SIFT feature extractor locates minima and maxima in the difference 

of Gaussian scale space to identify salient feature points. Using calculated histograms of 

local gradient directions around each found extremum in three dimensions, the matching 

points are found by comparing the distances between feature vectors. An application of this 

approach to rigid registration of peripapillary (ONH-centered) and macula-centered 3-D 

OCT scans of the same patient for which the macular and peripapillary OCT scans had only 

a limited overlap was reported in [184]. The work built on a number of analysis steps 

introduced earlier, including segmentation of the main retinal layers and 3-D flattening of 

each of the two volumes to be registered (Section V-A2). Three-dimensional SIFT feature 

points were subsequently determined as described in [185]–[187]. Using the terminology 

usual for image registration when one of the registered images is called source (say the 

macular image) and the other target (say the peripapillary image), the feature point detection 

is performed in both the source and target images. After feature point extraction, those 

which are in corresponding positions in both images are identified. In a typical pair of two 

OCT scans, about 70 matching pairs can be found with a high level of certainty. Considering 

the already flattened 3-D OCT image pair, the major remaining deformations that need to be 

resolved are translation and limited rotation. Consequently, simple rigid or affine transform 

is appropriate to achieve the desired image registration. The transform parameters are 

estimated from the identified correspondence points.

Fig. 40 demonstrates the functionality of such an approach to OCT-OCT registration of 

macular and peripapillary OCT scans [184], their 3-D registration achieved 3-D accuracy of 

2.0 ± 3.3 voxels, assessed as an average voxel distance error in 1572 matched locations. 

Qualitative evaluation of performance demonstrated the utility of this approach to clinical-

quality images. Temporal registration of longitudinally acquired OCT images from the same 

subjects can be obtained in an identical manner.

VII. Future of Retinal Imaging and Image Analysis

As we have seen, translation of research in imaging and image analysis has been relatively 

rapid in the past and can be expected to be rapid in the future. This is partially explained by 

the lower capital expenditure for ophthalmic imaging devices compared to radiologic 

imaging devices, which can often be 10 to 100 times more expensive. It is affected by the 

fact that ophthalmologists manage patients directly and are also directly involved in the 

ordering and interpreting of images, while radiologists typically do not directly manage 

patients. The subtle difference in the physician–patient relationship leads to a more direct 

coupling between imaging innovation and clinical impact that is so well visible in 

ophthalmic imaging and analysis.
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Given that, it can be expected that translation of fundamental research findings in 

ophthalmology will remain rapid in the future. Realizing that the most rapid pace of medical 

imaging and image analysis progress in generally is seen in two scenarios: 1) when the 

amount of data to be analyzed and interpreted by a physician is excessively large and/or 2) 

when the analysis is complex and requires quantitation and thus is not well matched to the 

generally qualitative nature of human expert interpretation. Ophthalmologic applications and 

needs fall in both of these categories and the need to computerize and automate the image 

interpretation is correspondingly high.

We expect the highest impact to be associated with the following areas.

1. Cost-effective imaging and image analysis for wide scale ophthalmic and/or 

systemic disease detection in a population screening setting—this will likely be 

accomplished by a quick retinal exam utilizing low-cost high-resolution fundus 

imaging.

We expect that the move towards the quick retinal exam—for example, through 

smart, portable, low-cost cameras which have integrated image analysis—will 

eventually make the assessment of the retina as simple, patient friendly, cost-

effective and uneventful as a blood pressure check.

2. Management of complex ophthalmic diseases utilizing image-guided treatment

—that will be heavily dependent on quantitative characteristics derived from 

fundus and OCT image data and will consider multimodality and longitudinal 

image sequences as well as linkages to systemic patient data.

We expect that image analysis and interpretation will be coupled to genetic and other 

assessment indices allowing truly personalized approaches to complex analyses of broad sets 

of patient-specific data. On the technological side, it will require and will thus lead to 

development and wide utilization of highly automated techniques for combined analysis of 

retinal image data in two, three and four dimensions (3-D+time), identification and 

quantitative assessment of temporal changes, including the assessment of local and/or 

systemic severity of the findings. On the patient-management side, it will therefore lead to 

broad utilization of semi-automated, clinician supervised management of retinal diseases, 

especially diabetic retinopathy, glaucoma, and choroidal neovascularization.

Overall, we envision that within the next decade, the utilization of retinal imaging will go far 

beyond the direct needs of ophthalmic disease management. We expect that the retinal exam 

will become broadly used in systemic disease assessment both for patient specific care and 

for population studies. The unique ability of the eye to communicate the systemic status of 

the human body will be much more broadly utilized than today, with the obvious 

applications to diabetes mellitus and cardiovascular diseases likely coming first. Diseases 

like multiple sclerosis, Huntington’s disease, and a barrage of other brain diseases and 

neuropathies will likely follow at a fast pace.

Retinal imaging and image analysis have developed rapidly over the past ten years, and 

image analysis is starting to play a crucial role in the care of patients with retinal diseases, as 

well as diseases that manifest in the retina. So far, image analysis has mostly operated 
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reactively, i.e., waiting for what the newest image devices have as output and then trying to 

find approaches to analyze and quantify the image data. We expect that imaging device 

development and image analysis research will start to operate more in concert and that this 

paradigm is ready for prime time. We expect the image acquisition and subsequent image 

analysis to become closely integrated, so that image analysis successes and difficulties can 

directly influence device developers to focus on details that will help reliably analyze the 

images and vice versa.

Ultimately, the presented overview of the ophthalmic imaging research and development in 

this field is driven by the overarching goal of preventing blindness and visual loss. We 

expect that this integrated development, in which a number of high-profile groups participate 

worldwide, will recognize the somewhat different needs of the developed as well as the 

developing world.
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Fig. 1. 

First known image of human retina as drawn by Van Trigt in 1853 [1].
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Fig. 2. 

Illustration of eye anatomy and retinal layers [2], [3]. (a) Cross-sectional view of eye and its 

major structures. Retina is a thin transparent tissue that lines the back of the eye and is 

comprised of a number of layers, as illustrated in enlarged portion. (b) Schematic drawing of 

cellular layers of retina. (a) Two-dimensional illustration of eye anatomy. (b) Schematic of 

retinal layers. Illustrations from Kolb [3] used with kind permission of Sigma Xi, The 

Scientific Research Society, Research Triangle Park, NC.
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Fig. 3. 

Early drawing of retinal vasculature including outlines of ONH and fovea published by 

Purkyne in 1823 [30].
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Fig. 4. 

Schematic diagram of OCT, with emphasis on splitting of the light, overlapping train of 

labeled bursts based on their autocorrelogram, and their interference after being reflected 

from retinal tissue as well as from the reference mirror (assuming the time delays of both 

paths are equal).
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Fig. 5. 

Automated vessel analysis. From left to right: fundus image; retinal specialist annotation; 

vesselness map from Staal algorithm [76]; vesselness map from direct pixel classification 

[73].
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Fig. 6. 

Automated analysis of fundus photographs. (a) Fundus photograph showing several lesions 

typical of diabetic retinopathy. (b) Detection of red lesions (RL)—microaneurysms and 

hemorrhages. (c) Detection of bright lesions (BL)—lipoprotein exudates. (d) Detection of 

neovascularization (NVD) of the optic disc. (e) All automatically detected lesions shown.
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Fig. 7. 

Typical steps necessary for analysis of fundus images, in this case for early diabetic 

retinopathy. Top row from left to right: original image; detection of fovea and optic disc 

superimposed as yellow circles on the vesselness map; automatically detected red lesions 

indicated in shades of green, bright lesions in shades of blue. Bottom row: details of red and 

bright lesion detection steps shown in a small region of the image including pixel 

classification identifying suspect pixels, clustering of suspect pixels, and classification of 

clusters as lesions.
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Fig. 8. 

Red lesion pixel feature classification. (a) Part of green color plane of a fundus image. 

Shown are pieces of vasculature and several red lesions. Bright lesions called exudates are 

also a symptom of DR. Circles mark location of some of the red lesions in the image. (b) 

After subtracting median filtered version of the green plane large background gradients are 

removed. (c) All pixels with a positive value are set to zero to eliminate bright lesions in the 

image. Note that exudates often partially occlude red lesions. Non-occluded parts of red 

lesions show up clearly in this image. An example of this is marked with a rectangle. (d) 

Pixel classification result produced by contrast enhancement step. Non-occluded parts of 

hemorrhages are visible together with the vasculature and a number of red lesions.
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Fig. 9. 

Red lesion detection. (a) Thresholded probability map. (b) Remaining objects after 

connected component analysis and removal of large vasculature. (c) Shape and size of 

extracted objects in panel (b) does not correspond well with actual shape and size of objects 

in original image. Final region growing procedure is used to grow back actual objects in 

original image which are shown here. In (b) and (c), the same red lesions as in Fig. 8(a) are 

indicated with a circle.
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Fig. 10. 

Bright lesion detection algorithm steps performed to detect and differentiate “bright lesions.” 

From left to right: exudates, cotton-wool spots, and drusen. From top to bottom: relevant 

regions in the retinal color image (all at same scale); a posteriori probability maps after first 

classification step; pixel clusters labeled as probable bright lesions (potential lesions); 

bottom row shows final labeling of objects as true bright lesions, overlaid on original image.
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Fig. 11. 

Registration of fundus image pair using (a) quadratic model and (b) RADIC model. Vessel 

center lines are overlaid for visual assessment of registration accuracy. This registration is 

performed to disk-centered and macula-centered images to provide an increased anatomic 

field of view.
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Fig. 12. 

Registration of anatomic structures according to increasing complexity of registration 

transform—500 retinal vessel images are overlaid and marked with one foveal point 

landmark each (red spots). Rigid coordinate alignment by (a) translation, (b) translation and 

scale, and (c) translation, scale, and rotation.
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Fig. 13. 

Atlas coordinate mapping by TPS: (a) before and (b) after mapping. Naive main arch traces 

obtained by Dijkstra’s line-detection algorithm are drawn as yellow lines that undergo 

polynomial curve fitting to result in blue lines. Atlas landmarks (disc center, fovea, and 

vascular arch) are drawn in green, and equidistant radial sampling points marked with dots.
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Fig. 14. 

Example application of employing retinal atlas to detect imaging artifacts. (a), (c) Color 

fundus images with artifacts. (b), (d) Euclidean distance maps in atlas space using atlas 

coordinate system. Note that distances are evaluated within atlas image. Consequently, field 

of view of distance map is not identical to that of fundus image.
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Fig. 15. 

Annotations of optic disc stereo pair by three expert glaucoma specialists. Note substantial 

inter-observer variability. ONH rim is shown in grayish and cup in whitish overlay on left 

image of stereo pair. Rightmost panel D shows a reference standard that was created from 

expert analyses A, B, C by majority voting with white color representing cup, gray color 

denoting rim, and black color corresponding to background.
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Fig. 16. 

Color opponency steerable Gaussian filter bank kernel examples. First row, from left to right 

shows dark-bright opponency kernels for 0th order, first-order 0° to local gradient, first-

order 90° to local gradient, second-order 0° to local gradient, second-order 60° to local 

gradient, and second-order 120° to local gradient, at a scale of 32 pixels. Second row, same 

for scale of 64 pixels, and third row for scale of 128 pixels. Next three rows show identical 

information for blue-yellow opponency kernels, and last three rows show red-green kernels. 

Smaller scales not shown because they are difficult to depict. These kernel images represent 

responses of each of feature detectors to an impulse function. Note that true kernel colors are 

shown.
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Fig. 17. 

Classification of stereo pairs (left two columns) by glaucoma specialists (third column), 

three glaucoma fellows (columns 4–6), and automated pixel feature classification (right-

most column). Rows from top to bottom: Small, medium, large disc excavation, and 

excavation with inferior notching.
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Fig. 18. 

Two examples of 3-D ONH surface reconstruction obtained from a stereo fundus pair and 

from 3-D OCT scan shown in two rows. From left to right (both rows): left and right fundus 

image centered at the optic disc. Shape estimate of optic nerve head surface represented as 

grayscale depth maps derived from OCT scan. Reference (left) image shown to correspond 

to OCT scan view. Shape estimate of optic nerve surface represented as grayscale depth 

maps derived from stereo fundus pair analysis. Reference (left) image shown to correspond 

to output from stereo fundus pair reconstruction.
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Fig. 19. 

Example of 3-D agreement between stereo-fundus-photography-derived (lower surface) and 

OCT-derived (upper surface, smoothed) 3-D reconstructions of ONH shape.
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Fig. 20. 

Typical scanning locations (illustrated on center fundus photograph) of spectral-domain 

OCT scanning system: Macular volumetric scans (left, in yellow) which are centered on 

macula, and peripapillary volumetric scans (right, in green) which are centered on optic 

nerve head.
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Fig. 21. 

Segmentation results of 11 retinal surfaces (ten layers). (a) X-Z image of OCT volume. (b) 

Segmentation results, nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform 

layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer 

(ONL) + inner segments (IS), outer segments (OS), and retinal pigment epithelium complex 

(RPE+). Stated anatomical labeling is based on observed relationships with histology 

although no general agreement exists among experts about precise correspondence of some 

layers, especially outermost layers. (c) Three-dimensional rendering of segmented surfaces 

(N: nasal, T: temporal).
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Fig. 22. 

Illustration of helpfulness in using 3-D contextual information in intraretinal layer 

segmentation process. (Top) Sequence of 2-D result on three adjacent slices within spectral-

domain volume obtained using a slice-by-slice 2-D graph-based approach. Note the “jump” 

in segmentation result for third and fourth surfaces in middle slice. (Bottom) Sequence of 3-

D result on same three adjacent slices using same graph-based approach, but with addition 

of 3-D contextual information. Three-dimensional contextual information prevented third 

and fourth surface segmentation from failing.

Abràmoff et al. Page 77

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2011 July 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 23. 

Geometry of textural characterization of macula. Local textural or thickness indices are 

extracted within intersection of region-defining columns (typically with a rectangular 

support domain in x − y plane) with each segmented intraretinal layer. Features computed in 

each of these intersections may be used to define an abnormality index for (x, y) line at 

center of the column when detecting macular lesions as described in Section V-C.
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Fig. 24. 

Example of spectral 3-D OCT vessel segmentation. (a) Vessel silhouettes indicate position 

of vasculature. Also indicated in red are slice intersections of two surfaces that delineate 

subvolume in which vessels are segmented (superficial retinal layers toward vitreous are at 

the bottom). (b) Two-dimensional projection image extracted from projected subvolume of 

spectral 3-D OCT volume. (c) Automatic vessel segmentation. (d) Vessel segmentation after 

postprocessing—removing disconnected pieces and connecting large segments.
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Fig. 25. 

Example 3-D vasculature segmentation result from OCT volumetric scan [158].
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Fig. 26. 

Normal appearance of three intraretinal layers (NFL, INL and OS, see Fig. 21) in feature 

space optimized for SEAD footprint detection. For each feature, a map of the average 

(standard deviation) of feature values across macula is displayed on left (right). Inertia (b) is 

correlated with thickness of layer (d). Note that standard deviations of wavelet coefficients 

(c) and entropy (e) are almost uniform (black) across macula in normal eyes. (a) Average 

intensity; (b) inertia (co-occurrence matrix); (c) standard deviation wavelet coefficients 

(level 1); (d) layer thickness; (e) entropy (co-occurrence matrix).

Abràmoff et al. Page 81

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2011 July 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 27. 

Example of SEAD footprint detection. Panel (a) presents an x − z slice running through 

SEADs in SD-OCT volume. Expert standards for footprint of these SEADs and 

automatically generated SEAD footprint probability map, in x − y plane, are presented in 

panels (b) and (c), respectively. Note probability scale in panel (c). Projection of x − z slice 

in x − y plane is represented by a vertical line in (b) and (c). Location of SEADs visible in 

panel (a) are indicated by vertical lines in each panel.
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Fig. 28. 

Repeatability study—two scans from same eye were acquired on same day at close temporal 

intervals. For each panel (a), (b), upper row shows binary SEAD footprint representing 

independent standard. Lower row shows SEAD footprints obtained by our automated 

method, gray levels represent probability of the point belonging to SEAD footprint; 

probability scale is provided in Fig. 27(c). These probabilities were thresholded to arrive at a 

binary segmentation. When varying threshold levels, obtained performance yields ROC 

curves discussed in text. (a) First scan and (b) second scan.
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Fig. 29. 

SEAD segmentation from 3-D OCT and SEAD development over time: top row: 0, 28, and 

77 days after first imaging visit. Middle row: 0 and 42 days after first imaging visit. Bottom 

row: 0, 14, and 28 days after first imaging visit. Three-dimensional visualization in right 

column shows data from week 0. Each imaging session was associated with anti-VEGF 

reinjection.
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Fig. 30. 

Automated intraretinal layer segmentation approach in presence of SEADs. (a), (b) Zeiss 

Cirrus OCT image data—two perpendicular slices from 3-D volume. (c), (d) Automated 

layer/SEAD segmentation. (e) SEAD and layers in three dimensions.
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Fig. 31. 

Intraretinal surface segmentation. (a) Original ONH-centered OCT volume. (b) Smoothed 

OCT volume. (c) Intraretinal surface segmentation result overlaid on original OCT volume. 

Search space for surfaces are constrained by previously segmented surfaces in 

multiresolution fashion. (d) Three-dimensional rendering of four segmented intraretinal 

surfaces. Regions of surfaces 2, 3, and 4 around the optic nerve head were ignored since 

intraretinal surfaces are ambiguous in these regions.
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Fig. 32. 

Acquisition of ONH ground truth of spectral-domain OCT scan. (a) One of a pair of stereo 

color photographs. (b) Optic disc ground truth of (a), which is manually segmented by 

glaucoma expert through planimetry on one (left) of the pair of stereo fundus photographs 

while viewing the pair through a stereo viewer. Optic disc cup is in white, and neuroretinal 

rim is in gray. (c) OCT projection image. (d) Fundus photograph (panel a) registered onto 

OCT projection image (panel c). (e) OCT projection image overlapped with ONH ground 

truth. Optic disc cup is in red, and neuroretinal rim is in green.
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Fig. 33. 

Example of optic disc cup and neuroretinal rim segmentation. (a) OCT projection image. (b) 

Segmentation result using contextual k-NN classifier with convex hull-based fitting. (c) OCT 

projection image overlapped with reference standard. Optic disc cup is in red, and 

neuroretinal rim is in green. (d) OCT projection image overlapped with (b).
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Fig. 34. 

Example of ONH segmentation performance [unsigned error for the optic disc cup = pixels 

(0.038 mm) and unsigned error for the neuroretinal rim = pixels (0.026 mm)]. From top to 

bottom, left stereo color photograph, X-Z image at center of OCT volume and 3-D rendering 

of top intraretinal surface mapped with left stereo color photograph. (a) Without any overlap. 

(b) Overlapped with result from contextual k-NN classifier with convex hull-based fitting. 

Optic disc cup is in red and neuroretinal rim is in green. (c) Overlapped with reference 

standard. (d) Overlapped with manual segmentation from second observer.
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Fig. 35. 

Example illustration of differences between structure-based segmentation of NCO/cup on 

OCT, glaucoma expert definition of optic disc margin and cup from manual planimetry, and 

pixel-classification-based segmentation of disc/cup on OCT. From top to bottom: raw SD-

OCT and corresponding fundus image (top), structure-based (row 2), expert (on fundus 

photography) (row 3), and pixel-classification-based (bottom) segmentations overlapping 

with raw SD-OCT and corresponding fundus image. From left to right: SD-OCT central B-

scan (left) and fundus image (right). Yellow arrows indicate position of NCO from algorithm 

(with dashed yellow line indicating projected NCO position). Blue arrows indicate clinical 

disc margin from RS. Green and red colors indicate each method’s projected rim and cup 

regions, respectively [170].
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Fig. 36. 

Example of fundus retinal image registration. (a) Detail of two fundus images with detected 

vessel centerlines. (b) Identified vessel landmarks. (c) Example registration result achieved 

on two overlapping fundus images.
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Fig. 37. 

Retinal fundus image registration. Wide-angle fundus image is constructed by mutual 

registration of eight individual fundus photographs.
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Fig. 38. 

Registration of fundus images to 2-D OCT projection data. (a) Fundus camera image. (b) 

Two-dimensional projection (through depth dimension) of 3-D OCT data. (c) Registered and 

blended fundus-OCT images via application of affine transformation model with three 

identified vascular landmarks.
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Fig. 39. 

Step-by-step process of registering fundus images to 2-D OCT projection data of the same 

subject. (a) Color fundus image. (b) Vascular segmentation in fundus image. (c) OCT 

projection image. (d) Vascular segmentation in OCT projection image. (e) ONH area and 

ONH center detected in fundus image. (f) Vascular center lines (blue) and bifurcations (red) 

in fundus image—bifurcations serve as prospective landmarks for which correspondence 

with OCT landmarks is determined in the next step. (g) ONH area and ONH center detected 

in OCT projection image. (h) Vascular centerlines (blue) and bifurcations (red) in OCT 

image—bifurcations serve as prospective landmarks for which correspondence with fundus 

landmarks is determined in the next step. (i) Highest reliability OCT-fundus corresponding 

landmarks identified in fundus image. (j) Highest reliability OCT-fundus corresponding 

landmarks identified in OCT image. (k) Registered OCT-fundus image—quality of 

registration shown in checkerboard image. (l) Registered OCT-fundus image—averaging-

based blending used to construct image.
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Fig. 40. 

Three-dimensional registration of macular and peripapillary OCT from the same subjects. Z-

axis projection images of registered volumes are shown in left column. Representative 

depth-axis slices from volumes are shown on right to demonstrate registration performance 

in three dimensions. Location of displayed slice is indicated by a black line on registered 

projection images. Overlapping areas of scans are outlined by dashed rectangles to 

demonstrate that only relatively small regions of overlap existed. Within these rectangular 

patches, image data from both OCT images are shown intermittently in a checkerboard 

pattern to illustrate agreement of resulting registration. In projection images (same as in 

fundus photography), optic nerve head can be identified as a large dark region with 

vasculature emanating from that region while fovea can be identified as a small dark region 

centrally located in nonvascular region of the registered image.
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