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Abstract: Automated measurements of the retinal nerve fiber layer

thickness on circular OCT B-Scans provide physicians additional param-

eters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer

segmentation algorithm for frequency domain data that can be applied on

scans from both normal healthy subjects, as well as glaucoma patients,

using the same set of parameters. In addition, the algorithm remains almost

unaffected by image quality. The main part of the segmentation process is

based on the minimization of an energy function consisting of gradient and

local smoothing terms. A quantitative evaluation comparing the automated

segmentation results to manually corrected segmentations from three

reviewers is performed. A total of 72 scans from glaucoma patients and

132 scans from normal subjects, all from different persons, composed the

database for the evaluation of the segmentation algorithm. A mean absolute

error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6

µm on healthy eyes. The mean absolute segmentation error over all A-Scans

lies below 10 µm on 95.1% of the images. Thus our approach provides

a reliable tool for extracting diagnostic relevant parameters from OCT

B-Scans for glaucoma diagnosis.
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1. Introduction

Ophthalmology has been one of the main application areas of Optical Coherence Tomography

(OCT) [1] since its invention in 1991. OCT allows a direct visualization of the retina and its

layered structure. This proved to be very beneficial for glaucoma disease research. Glaucoma is

one of the most frequent reasons for blindness in the world [2, 3]. During glaucoma progression

the supporting tissue and nerve fibers in the retina are lost. Thus a thinning of the innermost

retinal layer, the retinal nerve fiber layer (RNFL), is observed [4, 5, 6, 7]. Since the first appear-

ance of commercially available OCT systems, automated retinal layer segmentation algorithms

were presented to objectively quantify the RNFL thickness and its loss. While segmentation al-

gorithms are built into commercial systems, details of their design remain undisclosed. Below

we give a short overview of only the published research on retinal layer segmentation.

To our knowledge, Koozekanani et al. [8] presented for the first time an automated retina

segmentation algorithm on Time Domain (TD) OCT scans. This first publication on the topic

already mentioned one main challenge. The noise that corrupts OCT images is non-Gaussian,

multiplicative and neighborhood correlated (see also Schmitt et al. [9]). Thus, it can not be

easily suppressed by standard software denoising methods. Besides this observation one key

element of subsequent algorithms was already included in this early paper: An edge detection

approach was introduced which also takes the leading sign of the derivative into account so as to

differentiate between rising and falling contrast along a depth profile [8]. This method outper-

formes simple thresholding algorithms, as they tend to fail due to the high variance of intensity



values on OCT images. Their evaluation considered only healthy normal subjects. Ishikawa

et al. [10] included glaucoma patients in their performance analysis. To our knowledge, this

was the first RNFL segmentation algorithm published and the only group that evaluates the

algorithm on both glaucoma patients and normal subjects. In a subsequent paper five different

layers were segmented [11]. For the evaluation the quality of the images was measured with

the quality index of Stein et al. [12]. It was stated that the automated segmentation fails on

more than half of the low quality images. According to Ishikawa et al. a good quality scan is

harder to achieve on diseased eyes, which makes the automated segmentation challenging. Ad-

ditionally, a visualization of the RNFL thickness in 2D interpolated out of multiple radial scans

was shown. While Ishikava et al. used an integrity check to connect neighboring 1D depth pro-

file segmentations, Shahidi et al. [13] just averaged thickness profiles in transversal direction.

This lead to thickness profiles of much coarser resolution. Fernandez et al. [14] proposed com-

plex diffusion (see Gilboa et al. [15]) instead of the typical median filtering as a preprocessing

step for the segmentation. Seven retinal layers including the inner/outer nuclear layer and in-

ner/outer plexiform layer were segmented. It is stated that pathologies may violate assumptions

made in the algorithm and thus parameters have to be adjusted. In the same year Mujat et al.

[16] presented an algorithm to segment the RNFL on Frequency Domain (FD) OCT Volume

data. The segmentation was done frame-by-frame in 2D. While results were shown only from

two volumes of healthy normal subjects and no evaluation was performed, the number of steps

included in the algorithm leads to the assumption that FD data, although of higher resolution

and with fewer motion artifacts, presents more challenges to segmentation developers. Somfai

et al. [17] investigated how decreased image quality caused by operator errors affects segmen-

tation results.

Baroni et al. [18] formulated an edge-likelihood function consisting of a gradient and a

smoothness term to segment TD-OCT images. The most recent work still concentrating on

the segmentation of TD-OCT images was published by Tan et al. [19]. A segmentation based

on progressive edge detection was presented that regularizes the segmentation result by av-

eraging fewer A-Scans in each segmentation refinement step. The algorithm itself was not

evaluated, since the scope of the work was not on the algorithm development, but on the in-

vestigation of parameters generated from the segmentations for glaucoma diagnosis. Images

with segmentation errors were discarded from the presented study. Later Tan et al. investigated

further glaucoma diagnostic parameters on 3D FD-OCT volume scans [20].

The first method that really made use of 3D information is the retina segmentation from

Haecker et al. [21] which was further developed to a multilayer segmentation by Garvin et al.

[22]. Here six radial linear TD-OCT 2D scans were combined to a volume. A 3D-Graph search

to minimize a cost function for each layer (for up to five layers) was performed to segment

the volume. For each boundary, assumptions in the cost function were made that could include

e.g. a signed edge, summation of pixel intensities in limited regions and summation of pixel

intensities from already segmented borders. The algorithm was evaluated on data from subjects

with unilateral chronic anterior ischemic optic neuropathy. No glaucoma patients were included

in the evaluation. The approach was further extended to all 10 retinal layers in Quellec et al.

[23]. In this work, the focus shifted from the actual segmentation of the retinal layers to an

application of the segmentation results. Thickness measurements, together with texture features

from image data within the layer boundaries, are used to build up a model for the detection of

pathologic retina abnormalities like fluid filled regions.

Recently, multiple sophisticated methods known from computer science and optimization

theory were applied and modified for OCT-Data. Tolliver et al. [24] uses spectral rounding to

detect the RNFL on FD-OCT data of normal subjects and patients. Mishra et. al. [25] uses a

two step optimization scheme solved with dynamic programing to segment all retinal layers.



It was applied on scans of rat eyes, not on data from humans. The same holds for the work of

Yazdanpanah et al. [26], who uses active contours. An enery functional that includes a shape

prior is minimized. Such prior information can be either formulated out of heuristic considera-

tions, or computed from training data. Kajić et al. [27] use the latter in their appearance shape

model based approach. The evaluation shows that the algorithm is very robust and insensitive

to noise. However the results were only generated from data of normal eyes. The evaluation

from Chiu et al. [28] is also performed only on data of normal subjects, but visual examples in

the paper show that plausible segmentations even in severe pathologic cases can be generated

by the method. It is based on graph theory and dynamic programming. Vermeer et al. [29] also

avoid heuristics in their approach. A support vector machine is trained to classify every pixel

of a volume for its position above or below certain boundaries. The resulting segmentation is

regularized by a level set method. The classifier was trained on data of normal subjects. An

evaluation was performed on volume scans of 10 normal subjects and 8 glaucomatous patient,

but only one or two B-Scans per volume scan were taken into account for the evaluation. The

segmentation algorithm showed decreased performance on the pathological data.

The work of Götzinger et al. [30] used the additional information of a polarization sensi-

tive OCT system provides for segmenting the retinal pigment epithelium with two different

methods. Patient data was shown, but a quantitative evaluation was not performed.

Contrary to the aforementioned boundary search approaches, Fuller et al. [31] proposed a

half-manual region-based classification to segment layers. Out of manually marked regions on

sample frames, a SVM classifier was trained for segmenting the whole FD-volume scan. A

similar classifier-based half-manual approach was followed by Szulmowski et al. [32]. Joeres

et al. [33] and Sadda et al. [34] presented a completely manual segmentation tool for TD-OCT

Scans. In pathologies like age related macula degeneration, or pigment epithelial detachment

automated algorithms will most likely fail due to heavy abnormalities in the data. They showed

that a manual segmentation provides reliable and reproducible results in these cases.

In this paper we present a completely automated segmentation of the RNFL. To our knowl-

edge this is the most important layer for glaucoma diagnosis and is thus the focus of our work.

The segmentation is a 2D approach working on circular FD-OCT scans, but can be easily ap-

plied on 3D volume data, as will be shown. The goal during the development of the algorithm

was to make as few assumptions on the layer borders as possible. The employed assumptions

should also be very general. Reliable application on pathological cases should be possible with-

out changing any parameter. In Section 2 our method is presented. Qualitative visual examples

and quantitative evaluation results are shown in Section 3. Section 4 includes a summary, con-

clusions, as well as further ideas.

2. Method

We use two datasets that are described in the following subsection (2.1). The processing steps

to segment the RNFL on circular B-Scans are covered in the subsequent two subsections. First

the inner and outer retinal borders are detected (2.2). Particularly, the inner border of the retina

is detected at the inner border of the RNFL, or internal limiting membrane (ILM). The outer

retinal border is detected at the the outer retinal pigment epithelium boundary (RPE). The al-

gorithm for finding the position of the outer nerve fiber layer boundary (ONFL) is described

in (2.3). The method is then extended to 3D (2.4). The final subsection presents our evaluation

methodology (2.5).

2.1. Data

Circular B-Scans were acquired from 204 subjects with a Spectralis HRA+OCT (Heidelberg

Engineering, Heidelberg, Germany). This OCT device is referred to as Spectralis for the re-



(a) (b)

Fig. 1. Example circular B-Scan of a left eye with coordinate system denominations. Right

eye denominations and scan pattern are equivalent and follow the common rules for the

mapping between left and right eye. (a) OCT B-Scan. The retinal layers relevant for this

work are marked: The retinal nerve fiber layer (RNFL) and retinal pigment epithelium

(RPE). (b) SLO image captured by the Spectralis HRA+OCT during the same scanning

process. The circular scan pattern position and its direction corresponding to the R-direction

in the images is marked. The quadrant borders on the SLO image scan position and on the

OCT scan are shown with green lines. The quadrants are: Temporal (T), Superior (S), Nasal

(N), Inferior (I).

mainder of the paper. The scans were centered at the optic disk and had a diameter of 3.4mm.

The B-Scans consisted of 512 or 768 A-Scans. Each A-Scan consists of 496 pixels. The axial

resolution of the Spectralis is 7µm in tissue, although the pixel length is 3.87µm. The images

are thus oversampled in the axial direction. The raw data was exported using the VOL file for-

mat of Heidelberg Engineering. The pixel intensity value range in the VOL files is [0;1], saved

as 32 bit floating point values. All computations were performed in the same data format.

To clarify denominations in this work: A-Scan and depth profile are used interchangeably.

B-Scan, OCT image and 2D frame are also used as synonyms. OCT volumes are also referred

as 3D data. In the description of the algorithm the axial direction is Z. To simplify formulas, the

transversal direction in a circular Scan, giving the position of an A-Scan in the resulting image,

is denominated only by R. The transversal directions in a volume are X and Y . The Z direction

as well as the Y direction have their origins in the upper left corner of the corresponding images.

Figure 1 illustrates these notations. Unless stated otherwise, the intensity values of the VOL-

File are double square routed for display reasons as proposed by Heidelberg Engineering. All

abbreviations and symbols are shown in Table 5.

The recorded data has a wide range of subjectively perceived quality. Unfortunately, at the

time the data was recorded the Spectralis software had no built-in quality index. Therefore

we chose the following quality measure that, by visual inspection, correlates well with the

subjectively perceived quality.

QI = 1−
#NI(z,r)=0

#N
; (1)

QI is the quality index (QI). I(z,r) denotes the image intensity at position z in Z-direction and

r in R-Direction. #NI(z,r)=0 is the number of pixels on the scan with intensity value 0. This is

normalized by #N, the complete number of pixels on the scan. The quality index is motivated as

follows: The scans result from an averaging of multiple single scans. Fewer scans yield a higher
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Fig. 2. Quality index (QI) distribution of all 204 circular B-Scans in our dataset. A high QI

value denotes a good quality image. 93.6% of the images have a QI above 0.6.

noise level. We observed that on the Spectralis images with high noise level some pixels have

0 intensity even inside the tissue. This is even more pronounced in the dark regions outside the

retina. By averaging more images this effect diminishes, as the number of randomly distributed

zero intensities significantly decreases. Because it is not possible to read out the number of

single captures out of the VOL files in the present software version, our simple QI is presumed

to be an objective measurement of the quality of an image. Subtracting the fraction from 1 yields

an ascending index. High QI values correspond to a high quality image. The QI is not necessary

in complete agreement with with a subjective assessment, but it provides a rough estimate for

evaluation and data description. The distribution of QI in our circular B-Scan evaluation data

set can be seen in Fig. 2. No image of the dataset was excluded due to quality reasons.

Two groups of subjects formed our circular B-Scan dataset: Glaucoma patients (72 subjects,

age 62.1± 9.4, mean defect 5.5± 6.2) and healthy normal subjects (132 subjects, age 49.8±
16.3, mean defect 0.5± 0.6). All patients were members of the ’Erlangen Glaucoma Registry’

with annual visits to our glaucoma service. The inclusion/exclusion criteria and the type of

examinations are defined in a protocol which was approved by the Local Ethics committee. The

study is registered at www.clinicaltrials.gov (NCT00494923). The study followed the tenets of

the declaration of Helsinki for research involving human subjects and informed consent was

obtained from all participants of the study.

Only one eye of each subject was taken into account for the evaluation. The subjects were

diagnosed based on an ophthalmic examination using slit lamp inspection, applanation tonom-

etry, funduscopy, gonioscopy, perimetry and papillometry. A 24 hours intraocular pressure pro-

file with 6 determinations was also obtained. A detailed review of the employed diagnostic

routine can be found in Baleanu et al. [35] and Horn et al. [7] and is not within the scope of this



Fig. 3. Algorithm overview. Input and output data are marked in red. The retina detection is

colored in blue, the outer nerve fiber layer detection in yellow. Important steps are marked

with bold rectangles.

paper.

In addition to the circular B-Scans volume scans were acquired centered on the optic nerve

head. The number of pixels are 512 in the X-direction, 97 in the Y -direction and 496 in the

Z-direction. The pixel spacing in the X-direction is 11.55µm, in the Y -direction 61.51µm and

3.87µm in the Z-direction. One volume scan from a glaucoma patient and one volume scan

from a healthy normal subject are discussed in Section 3 as exemplary cases.

2.2. Detecting the retinal boundaries

All algorithm parameters were adapted by visually inspecting random sets of images from

the database. The processing steps of the algorithm are shown in Fig. 3 with visual examples

provided in Fig. 4. A scan from a glaucoma patient was chosen as an example. It shows a nearly

complete loss of the RNFL in the transition between the inferior and temporal quadrant, while

the other regions still have relative high RNFL thickness.

To limit the search space for the retinal boundaries, first a separating line located inside the

outer nuclear layer is identified. It splits the image content into the the inner segment (ISG)

and the outer segment (OSG) of the retina. The image is blurred with a wide Gaussian filter

(standard deviation σ = 22pixels). The separating line is the lowest intensity value inbetween

the two maximas with the highest intensity value (see Fig. 4 (a) and Fig. 5(a)). The intensities

of each A-Scan were scaled to [0;1] in the ISG and OSG separately. For a rough speckle noise

removal, a 2D median filter of size 5 in the Z- and 7 in the R-direction is applied twice, as

proposed by Ishikawa et al. [11]. The ILM is then set to the greatest contrast rise in the ISG,

while the RPE is set to the greatest contrast drop in the OSG. Both lines are smoothed. Smooth-

ing includes an outlier detection by fitting a polynomial of degree 5 and removing distant line



(a)

(b)

(c)

(d)

(e)

Fig. 4. Processing steps of the nerve fiber layer segmentation shown on an example scan

of a glaucomatous eye (QI = 0.74) with local nerve fiber layer loss. (a) Separating line in

the outer nuclear layer detected. Inner and outer segment of the retina are separately [0 : 1]
scaled. ISG: Inner segment of the retina. OSG: Outer segment of the retina. (b) Inner nerve

fiber layer boundary and retinal pigment epithelium detected. A-Scans aligned so that the

retinal pigment epithelium forms a constant even line. The image intensities are changed

back to the original ones. (c) Image denoised by complex diffusion. A maximum of four

greatest contrast drops in the inner segment of the retina is detected. (d) Initial segmenta-

tion of the outer nerve fiber layer boundary formed by heuristic decisions. (e) Result after

energy-minimization segmentation described in Section 2.3. The resulting mean RNFL

thickness is 73.5µm.
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Fig. 5. (a) Intensity plot along an A-Scan and (b) its corresponding derivative. The A-scan

# 315 of the denoised example image in Fig. 4 (c) is shown. It is cropped to the retina

region. The intensity rise at the ILM, as well as the intensity drops at the ONFL, at the

inner plexiform layer (IPL)/inner nuclear layer (INL) border and the outer plexiform layer

(OPL)/outer nuclear layer (ONL) border are marked. The separation line between the inner

and outer segment of the retina, as used in this work, is also shown.



segments afterwards. Short disconnected segments are also removed, a median filter and Gaus-

sian smoothing are applied. Gaps are closed by linear interpolation. After the smoothing, the

A-Scans of the original unprocessed image are aligned so that the RPE forms a constant even

line (see Fig. 4 (b)). This image becomes the basis for the following ONFL segmentation.

2.3. Detecting the outer nerve fiber layer boundary

Our empirical analysis of the OCT data showed that a simple edge detection for the ONFL,

even if the retina boundaries are known, will not give promising results. This holds especially

true for a general low image quality, glaucoma patients having a complete local loss of the

RNFL and normal subjects with a very thick RNFL. For the last two cases, a state-of-the-art

preprocessing with sophisticated denoising as proposed by Fernandez et al. [14] and Mujat et al

[16] is also insufficient. A neighborhood integrity check as mentioned in [11] might not be able

to cope with a jump of the segmented border in a whole region to a higher contrast outer layer

border. Assumptions on the layers, as Garvin et al. [22] made, may be violated in pathological

cases, or parameters have to be adapted for either normal subjects, or glaucoma patients. Our

approach is the following: The image is denoised with complex diffusion (see Gilboa et al. [15])

as proposed by Fernandez et al. [14]. Our implementation is not based on the traditional time-

marching implementation but uses lagged diffusivity [36, 37]. The code of the algorithm can be

downloaded from the homepage of our work group (http://www5.informatik.uni-erlangen.de)

on the personal page of the first author. The timestep parameter was set to 13, while the σCD

parameter that controls which gradients are detected as edges, is directly estimated from the

image:

σCD =
1

3
std(I− Imed f ilt); (2)

I denotes the original image matrix, Imed f ilt is the original image on which every A-Scan is

filtered with a median filter of width 7. The 1
3

is a heuristic weighting factor. The computation

of the standard deviation of all pixels is abreviated by std(...). The noise estimate does not

correspond to a physically meaningful noise measurement on the OCT data, but it has by visual

inspection proven to adapt to the different noise levels and qualities of the OCT B-Scans. After

denoising the image, along the A-Scans the four greatest contrast drops are detected in the ISG

(see Fig. 4 (c)) and Fig. 5(b)). Actually, only three layer borders with falling contrast should

lie in the ISG beneath the ILM, namely: the ONFL; the border between the inner plexiform

layer and the inner nuclear layer; the border between the outer plexiform layer and the outer

nuclear layer. To derive an initial segmentation from the detected four minima, the following

measurement is used:

PS(r) = ∑
z∈ISG

I(z,r)/ ∑
z∈OSG

I(z,r) (3)

The part sum ratio PS yields for every column position r on the B-Scan the ratio of the summed

intensities in the ISG and OSG region. The heuristic rule to form an initial segmentation is:

If PS is high (PS > 0.7), the second contrast drop beneath the ILM is chosen. This can be

motivated by the idea, that a high PS indicates a thick RNFL. Thus, the first contrast drop is

most likely speckle noise. In the other cases (PS ≤ 0.7) the first contrast drop beneath the ILM

is used. This does not hold if fewer than three contrast drops are detected in an A-Scan. A

complete loss of the RNFL can be assumed in that case. The initial segmentation is set to the

IFNL. This heuristic method delivers a good estimate of the segmentation (see Fig. 4 (d)), but

can be further enhanced.

To improve the segmentation we formulate an energy-minimization based approach:

E(r) = G(z,r)+α N(r)+βD(r); (4)



min
z (E(r))∀r ⇒ ONFL(r). (5)

ONFL(r) gives the Z-position of the boundary at an A-Scan r. E(r) is the energy at an A-

Scan r that needs to be minimized. It consists of three terms. Two factors, α and β weight

these terms. In the current implementation they are set to 1
3000

and 2
3000

respectively. The first

term, G(z,r) is the gradient at depth z. As the ONFL is in Z-direction a contrast fall-off, the

gradient should have a negative sign with an absolute value which is as high as possible. N(r)
is a smoothing term that ensures that there are no high jumps in the border, while allowing for

some edges. It is defined as the sum of the absolute differences in height z of the border in

A-Scan r and its neighbors:

N(r) = |ONFL(r− 1)−ONFL(r)|+ |ONFL(r+ 1)−ONFL(r)|. (6)

The second smoothness term D(r) works on a more global scale. It is motivated by the obser-

vation, that when the A-Scans are aligned for an even RPE, the ONFL is partially almost even,

too. In Baroni et al. [18] the distance to a constant line along the whole B-Scan was taken as a

smoothness term. We extend this idea. The RNFL should not be as constant as possible over the

whole B-Scan but within certain regions. To avoid using arbitrary positions on the image, the

regions in between blood vessels are used. D(r) is therefore the distance to the average height

of the segmented boundary in between two blood vessels:

D(r) = ONFL(r)− ( ∑
r∈BVR

ONFL(r))/#Nr∈BVR (7)

BVR means the region in between two blood vessels, #Nr∈BVR is the number of A-Scans in

this region. The blood vessel positions are determined by adaptive thresholding. A layer of

8 pixels above the RPE is summed along Z-direction to form a RPE intensity profile. The

average of this profile is computed in a 61 pixel wide window. If the value of the profile in the

middle of the window is lower than 0.7 times the average, it is marked as a blood vessel. For

the BVR boundaries the centers of the blood vessels are computed. As the size parameter of the

average window and the threshold are fixed, some large vessels above 12 pixels in width are not

detected. This does not affect the segmentation results as typically enough blood vessel centers

are detected for splitting the image into regions. Very small blood vessels with a diameter below

4 pixels are ignored in this computation.

The energy Equation (4) is solved iteratively by moving the boundaries in the directions of

decreased energy. The initial segmentation is created out of high-contrast edges. As we want to

avoid being stuck in this first estimate in the iterative process the initial segmentation is heavily

blurred by fitting a polynomial of degree 4 trough it. This polynomial provides the initial values

for the energy minimization process. The resulting boundary solution is smoothed similar to the

RPE in Section 2.2. The result of the algorithm is shown in Fig. 4 (e).

2.4. 3D Application

The aforementioned method is applicable on 2D circular Scans. A direct application on 2D lin-

ear scans or slices from volumes leads to segmentation errors. The assumption that the ONFL

is roughly piecewise constant is violated. Furthermore obvious splitting points, like the blood

vessels, might be missing in some areas as for example the macula region. But a segmenta-

tion of 3D data can be achieved by interpolating circular B-Scans with varying diameters d out

of the volumes. Given linear scans, circular scans are created through bilinear interpolation of

the intensity information in the R-direction out of the X/Y aligned volumes. The center of the

circular scans has to be set manually. The segmentation algorithm is then applied to the interpo-

lated scans without any parameter change. A method for visualizing the results is computing a



RNFL thickness profile RNFLd(r) from the segmentation by calculating the distance between

the ILM and ONFL:

RNFLd(r) = (ONFLd(r)− ILMd(r))∗ ScaleZ (8)

where ONFLd(r) and ILMd(r) denote the border positions in pixels at an A-Scan r for a

scan circle diameter d. ScaleZ is the pixel spacing in the Z-direction in µm/pixel. ScaleZ is

3.86µm/pixel in the case of the Spectralis. These thickness profiles are then transformed back

from the radial coordinate system of the interpolated B-Scan to the cartesian coordinates of

the volume scan and color coded. As the Spectralis provides a hardware registered SLO-image

besides the OCT-scan, the resulting 2D thickness map can be translucently laid over the SLO

image to provide an instant RNFL thickness visualization. A color coding of the map enables

the differentiation between the gray scale SLO image and the RNFL thickness values. Visual

examples of the method are given in the results Section 3.

2.5. Evaluation

In order to quantitatively evaluate the algorithm we wrote a graphical user interface in Matlab

(Mathworks, Inc., Natick, Massachusetts, USA) for displaying the segmentation results. Var-

ious display modes are available. For example, the image contrast can be adjusted and layer

borders can be switched on and off. The simultaneously acquired SLO image of the Spectralis

is also displayed. Manual corrections to the automated segmentation can be made by free-hand

repainting of the segmentation borders. No region has to be selected. The method allows for the

correction of even the smallest errors. We decided not to allow the observers to draw complete

manual segmentations but rather to correct errors of the automatic segmentation. This was done

for two reasons: Firstly, offsets in the segmentation lines often appear when they are completely

manually drawn, even within one image and especially among different observers. This means

that lines or line segments are shifted in the Z-direction by a few pixels distance. The human

observers do not draw attention to this constant shift, but it prevents precise evaluation. The

second reason for the correction of errors is that a complete manual segmentation of the dataset

would be too time-consuming. The error correction alone took up to 12 hours for the entire

circular B-Scan dataset for each reviewer.

Two experts in the field (authors MM and RT) and a student individually reviewed all seg-

mented images of the circular B-Scan dataset. All automated segmentations were created with

the same parameter set. A common rule on how to treat blood vessel regions was designed

beforehand by the two experts. The segmentation boundary should follow the intensity drop at

the ONFL as long as it is visible. Throughout the shadow region the two loose ends should be

connected with a straight line. The student was trained on example images for the task.

To evaluate the automated segmentation three manual corrections were therefore available.

To generate one segmentation per A-Scan that holds as a gold standard (GS) for the evaluation,

the median border was selected from the three manual corrections. Thus, outlier corrections

are not taken into account. The resulting gold standard is not an average, but lies exactly on a

position where at least one observer set it. B-Scans consisting of less than 768 A-Scans were

interpolated to 768 A-Scans before the evaluation computations. The differences between the

segmentations were not calculated at the specific boundaries, but by looking at the resulting

RNFL thickness at each position r. The RNFL thickness was calculated similar to Eq. (8).

For the evaluation of observer differences, an agreement between the observers is given.

Agreement in our case defines the percentage of images were the mean absolute observer dif-

ference (MAODi) over all 768 A-Scans lies below a certain threshold. The MAODi for a single



image with number i in the dataset is computed by:

MAODi =
1

768

768

∑
r=1

1

3
(|RNFLObs1,i(r)−RNFLObs2,i(r)|

+|RNFLObs2,i(r)−RNFLObs3,i(r)|

+|RNFLObs1,i(r)−RNFLObs3,i(r)|) (9)

RNFLObs1,i(r) denotes the RNFL thickness profile of image number i computed out of the

manually corrected ILM and ONFL (see Eq. 8) of observer 1. RNFLObs2,i(r) and RNFLObs3,i(r)
are defined accordingly. MAOD without the subscript i denotes an average of the MAODi over

a part or the complete image data set. This convention holds also for similar B-Scan related

measurements. The agreement is then:

Agreement =
#ImgMAODi<t

#Img
(10)

The number of images is given by #Img, the number of images with the MAODi below a certain

threshold t is given by #ImgMAODi<t . If the averaging in the MAODi formula is carried out over

the image data set instead of the A-Scans of one image, we obtain the mean absolute observer

difference for each A-Scan position (MAOD(r)):

MAOD(r) =
1

#Img

#Img

∑
i=1

1

3
(|RNFLObs1,i(r)−RNFLObs2,i(r)|

+|RNFLObs2,i(r)−RNFLObs3,i(r)|

+|RNFLObs1,i(r)−RNFLObs3,i(r)|) (11)

The difference of the automated segmentation to the gold standard (Di f fi(r)) for a single

image with number i in the dataset is computed by:

Di f fi(r) = RNFLGS,i(r)−RNFLautom,i(r) (12)

where RNFLGS,i(r) denotes the thickness profile according to the gold standard and

RNFLautom,i(r) the thickness profile generated by the automated segmentation. We consider

thickness profile differences below 8µm as negligible. If an A-Scan has less than 8µm thick-

ness difference, we set it to 0µm for further evaluation. All subsequent numbers and graphs are

calculated from these thresholded data. We use this threshold because it lies in the range of the

resolution limit of the Spectralis in tissue. It roughly equals a 2 pixel distance on the image. No

other exceptions are made, no image is excluded due to algorithm failure reasons.

The mean RNFL thickness(mRNFLi) is a parameter used for glaucoma diagnosis. It is com-

puted by

mRNFLi =
1

768

768

∑
r=1

RNFLi(r) (13)

The difference of the mRNFLi between the GS and the automatic segmentation (mean differ-

ence to the gold standard - MDG) is thus

MDGi =
1

768

768

∑
r=1

Di f fi(r) (14)

The averaging may cancel out positive and negative difference values. The mean absolute dif-

ference to the gold standard (MADGi) is an additional error measurement and better represents



(a)

(b)

(c)

(d)

Fig. 6. Example results. (a) Normal eye. QI = 0.65. Automatically measured mean reti-

nal nerve fiber layer thickness (mRNFLi) = 111.47 µm (b) Glaucomatous eye. QI = 0.70.

mRNFLi = 62.55 µm (c) Glaucomatous eye. QI = 0.67. mRNFLi = 42.16 µm (d) Nor-

mal eye. Very low image quality. QI = 0.54. mRNFLi = 111.90 µm. White arrows indicate

segmentation errors.

the total quantitative segmentation error:

MADGi =
1

768

768

∑
r=1

|Di f fi(r)| (15)

This evaluation measurement can be, similar to the MAOD(r), computed for each A-Scan and

over the entire data set instead of on a single image:

MADG(r) =
1

#Img

#Img

∑
i=1

|Di f fi(r)| (16)

Replacing the MAODi in Eq. (10) by the MADGi yields an agreement value between the GS

and the automatic segmentation.

The evaluation results presented in Section 3 were generated after all algorithm parameters

had been fixed. No parameter was changed during the evaluation procedure. All scans of normal

subjects and glaucoma patients were processed with the same parameter set.

3. Results and Discussion

Fig. 6 shows visual examples of the segmentation results. Figure 6 (a) displays segmentation

results of an image of a normal eye and (b) and (c) of glaucomatous eyes. The RNFL boundaries



Fig. 7. Manually corrected segmentation from one reviewer (blue). The red and yellow

lines indicate a differing correction from the other two reviewers.

are detected without severe errors in all these example cases, independent of the actual thickness

of the RNFL.The significant variation of the RNFL thickness throughout the image is also

captured. This is shown in Fig. 4 (e) and 6 (b). Figure 6 (d) shows a segmentation result of an

image with very low quality. Here disruptions in the boundaries, as well as minor segmentation

errors, can be observed and are marked with arrows. Note that, on the left and right side of the

image clear boundaries can not be observed at all. The varying image quality that is best in

the nasal quadrant is due to the signal fall-off of FD-OCT systems. The imaging range of an

FD-OCT is limited by this signal fall-off. This is caused by the attenuation of the OCT signal

due to the washout of the interferogram fringe visibility with increasing path-length difference

of the interferometer [38]. The nasal quadrant of the example image in Fig. 6 (d) was placed

on the upper side of the original image before aligning it to the RPE and thus has the shortest

path-length difference.

The average runtime of the algorithm was measured on the complete circular B-Scan dataset

using a MacBook Pro, Intel Core 2 Duo, 2,66 GHz with 4GB main memory. The code was

written in Matlab (Mathworks, Inc.). Only one processor core was utilized. The average runtime

was 20.5s. It did not differ substantially from normal subjects to glaucoma patients, or between

images of good or bad quality. Included in the average runtime are the loading of the data from

the hard disc and storing of the results. The biggest part of the running time (in average 73.5%)

was used for the complex diffusion filter. Diffusion filters can be considerably optimized for

speed by using multigrid technologies. Other parts of the algorithm can also be accelerated by

implementing them in a more efficient language, for example C++. However, algorithm speed

is not the focus of this paper. Therefore we did not optimize for computational efficiency.

Table 1. Agreement between the three manual corrections. Agreement in this work denotes

the percentage of images where the mean absolute difference over all A-Scans lies below a

certain threshold (see Section 2.5).

Threshold Agr. 1-2 (%) Agr. 1-3 (%) Agr. 2-3 (%) Average Agr.
5 µm 91.1 93.6 94.6 93.1

10 µm 97.5 99.0 98.5 98.4

We first quantitatively review the inter observer deviations. In Table 1 the agreements of the

three observers are shown. There is a high degree of inter-observer agreement with an average

93.7% for a 5µm threshold and 98.2% for a 10µm treshold. On the other hand, these numbers

show that the match is not perfect.

To localize the mismatch, in Fig. 8 the mean absolute observer difference for each A-Scan

position (MAOD(r)) is plotted in addition with the blood vessel densitiy (BVD(r)) and the mean

GS RNFL thickness (mRNFLGS(r)). The BVD(r) denotes the percentage of images, where a
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Fig. 8. Mean absolute observer difference (MAOD(r): blue) at A-Scan position r. Mean

gold standard retina thickness (mRNFLGS(r): green), scaled by a factor of 1
20 . Blood ves-

sel distribution (BV D(r): red). Herefore values are given on the right side and correspond to

the percentage of images where a blood vessel is detected at the A-Scan position r. Correla-

tion between MAOD(r) and BV D(r): 0.86, correlation between BV D(r) and mRNFLGS(r):
0.87, correlation between mRNFLGS(r) and MAOD(r): 0.84.

blood vessel is detected by the automatic algorithm at an A-Scan position r. All 3 curves are

computed over the entire circular B-Scan dataset. It can be seen that the main peaks of all curves

lie in the same positions. The correlation in between them is also high. Between MAOD(r) and

BVD(r) it is 0.86, between the BVD(r) and the mRNFLGS(r) 0.87 and between mRNFLGS(r)
and MAOD(r) 0.84. The observer differences are located mainly around blood vessel regions.

This shows that, despite the fact that a rule was formulated for the treatment of blood vessel

regions, there are still perceptual differences between the observers. The correlation of high

RNFL thickness and high blood vessel density is due to the fact, that the OCT scans are taken

on a circle of 3.4mm. Using this diameter, the nerve fibers and the main blood vessels are con-

centrated on the same positions. This does not necessarily hold for other scan circle diameters.

After localizing the inter-observer deviations, a second point of interest is whether normal

and glaucomatous eyes were treated differently. The MAOD averaged over a) the 72 glaucoma

patients and b) the 132 normal subjects separately is given in Table 2. It is higher for glaucoma

patients (2.6µm) than for normal subjects (1.9µm). The difference becomes more evident when

examining the mean difference measurements in relation to the mean RNFL thickness for each

B-Scan. The relative mean absolute difference is more than twice as high for glaucoma patients

(4.7%) compared to normal subjects (1.9%).

The influence of the image quality on the manual segmentations can also be viewed in Table

2. The 72 images with lowest quality (QI < 0.69) were selected from the database for this

evaluation. This number was chosen so that it equals the number of images from glaucoma

patients. The correlation of the images from glaucomtous eyes and low quality images can



Table 2. Number of images (#Img) in each group and the mean absolute observer differ-

ences (MAOD), averaged over all scans in the respective group (± standard deviation). The

MAOD is also shown with respect to the gold standard RNFL thickness. The numbers are

calculated for the complete circular B-Scan dataset (All), the glaucoma patients and normal

subjects, and the images of lowest quality (QI < 0.69) and high quality (QI ≥ 0.69).

Data #Img MAOD [µm] rel. MAOD [%]
All 204 2.1 ± 2.0 2.9 ± 3.8

Glaucoma 72 2.6 ± 2.4 4.7 ± 5.7

Normal 132 1.9 ± 1.6 1.9 ± 1.5

Low QI 72 2.7 ± 2.2 3.5 ± 3.9

High QI 132 1.9 ± 1.8 2.6 ± 3.7

be computed in that way. The correlation is 0.12. We conclude that scans from both normal

subjects and glaucoma patients were recorded with low quality. The MAOD on low quality

images (2.7µm) was higher compared to that of better quality (1.9µm). This shows that, on a

good quality scan, boundaries are placed more consistently among human observers.

Table 3. Number of images (#Img) in each group and the average evaluation results (±
standard deviation). The mean RNFL thickness (mRNFL), the mean difference to the gold

standard (MDG), mean absolute difference to the GS (MADG) and the MADG in relation

to the mean RNFL thickness computed out of the GS (given in %) are shown. The numbers

are calculated for the complete circular B-Scan dataset (All), the glaucoma patients (Gl.)

and normal subjects (Nor.), and the images of lowest quality (QI < 0.69) and high quality

(QI ≥ 0.69).

Data #Img mRNFL [µm] MDG [µm] MADG [µm] MADG [%]
All 204 84.0 ± 19.1 2.4 ± 3.4 3.5 ± 3.5 4.1 ± 5.5

Glaucoma 72 65.3 ± 15.7 0.9 ± 2.8 2.9 ± 3.5 4.9 ± 8.1

Normal 132 94.1 ± 11.7 3.2 ± 3.4 3.6 ± 3.4 3.7 ± 3.3

Low QI 72 83.6 ± 21.0 2.9 ± 4.3 4.5 ± 4.5 5.7 ± 8.3

High QI 132 84.1 ± 18.1 2.1 ± 2.7 2.7 ± 2.5 3.3 ± 2.8

Nor. & Low QI 40 97.6 ± 12.6 4.3 ± 4.3 4.9 ± 4.3 4.9 ± 4.2

Nor. & High QI 92 92.6 ± 11.0 2.7 ± 2.8 3.0 ± 2.8 3.1 ± 2.8

Gl. & Low QI 32 66.1 ± 15.4 1.1 ± 3.7 3.9 ± 4.8 6.7 ± 11.6

Gl. & High QI 40 64.6 ± 16.1 0.7 ± 1.9 2.1 ± 1.4 3.5 ± 2.8

We also compared the automated segmentations to the gold standard. We first compare the

mean RNFL thickness of the GS and the automatic segmentation, as this value serves as a

glaucoma parameter in daily cinical routine. The average difference to the gold standard (MDG)

over the whole circular B-Scan dataset is 2.4 µm (see Table 3). On glaucoma patients it is 0.9

µm compared to 3.2 µm on healthy eyes. On good quality images it is 2.1 µm compared to

2.9 µm on the low quality images. Note that the average error in all groups is positive. One

can conclude that the error is systematic. If errors occur in the segmentation, there is a high

probability that the RNFL thickness is on average segmented too thinly.

Despite that, as stated in Section 2.5, averaged positive and negative errors at different A-

Scan positions may cancel each other out at least partially when using the MDG as an error



Table 4. Agreement between the gold standard (per A-Scan median of the 3 reviewers) and

the automated segmentation. Agreement in this work denominates the percentage of images

where the mean absolute difference per A-Scan lies below a certain threshold (see 2.5).

The agreement is calculated for the complete circular B-Scan dataset (All), the glaucoma

patients (72 images) and normal subjects (169 images) and the images of lowest quality

(72 images, QI < 0.69) and high quality (169 images, QI ≥ 0.69).

Data 5 µm Th. [%] 10 µm Th. [%]
All 82.3 95.1

Glaucoma 90.0 97.2

Normal 78.0 94.0

Low QI 75.0 91.7

High QI 86.3 97.0

Normal & Low QI 67.5 90.0

Normal & High QI 82.6 95.6

Glaucoma & Low QI 83.9 93.5

Glaucoma & High QI 95.1 100

measurement. Hence Table 3 also shows the mean absolute differences to the gold standard av-

eraged over all A-scans (MADG). Glaucoma patients have smaller MADG (2.9µm) than nor-

mal subjects (3.6µm). If these values again are examined in relation to the mean RNFL thick-

ness, the behavior changes. The average relative error on glaucoma patients is higher (4.9%)

than on normal subjects (3.7%). On images with low quality both the absolute and the relative

error (4.5µm− 5.7%) are higher than on images of good quality (2.7µm− 3.3%). This shows

that the algorithm results are affected by the presence of pathologies and by low image quality.

The effect adds up at the intersection of these two groups (glaucoma and low quality images)

with an error of 3.9µm− 6.7%.These numbers, however, also state that the effect is not se-

vere and lies within the standard deviations of the measurements in the respective groups. The

numbers for all other possible intersection groups are given in Table 3.

The agreement of the automated segmentation with the gold standard shown in Table 4 are

generally lower than the inter-observer agreements. If a threshold of 10µm for the MADG

is set, 95% of the images show an agreement. Suprisingly, the agreement in the glaucoma

group is higher than on scans of normal subjects. 97.2% of the glaucomatous images have an

average absolute error of at most 10µm. As it can be concluded already out of the difference

measurements, low image quality results in lowered agreement.

A point of special interest is the location of the differences. Figure 9 shows (similar to Fig.

8) the mean absolute difference to the gold standard at A-Scan position (MADG(r)) computed

over the whole circular B-Scan dataset. The blood vessel distribution is also shown. They cor-

relate with a factor of 0.84. Most differences are found in the superior quadrant and the inferior

quadrant (quadrant positions see Fig. 1). This behavior showed up in the inter observer re-

view (see Fig. 8), too. The segmentation errors concentrate in regions with a high blood vessel

density. The treatment of blood vessels in automated segmentations is still an open question,

though (see Hood et al. [39]). It can lead to segmentation differences among OCT system im-

plementations (see Hood et al. [40]). Our proposed segmentation algorithm generates a thinner

RNFL thickness than the current software of the Spectralis in normal subjects. Baleanu et al.

[35] reported a mean RNFL thickness of 97.2± 9.7µm for healthy eyes, while our algorithm

measured 94.1± 11.7µm (see Table 3).

To conclude the evaluation of the automated segmentation on circular B-Scans, a compar-
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Fig. 9. Mean absolute difference to gold standard per A-Scan (MADG(r): blue) computed

over the whole circular B-Scan dataset. Blood vessel distribution (BV D(r): red). Values

herefore are given on the right side and correspond to the percentage of images where a

blood vessel is detected at the certain A-Scan position r. Correlation between MADG(r)
and BV D(r): 0.84

ison of the MADG(r) to the MAOD(r) is performed. As Fig. 10 shows, the difference of the

automated segmentation to the gold standard is higher than the inter-observer difference. But

one can also notice that it scales almost linearly. This is an indicator that the automated seg-

mentation fails mostly in regions where a definite objective decision by humans is also hard to

obtain. The correlation between the MADG(r) and MOAD(r) calculated over the whole circular

B-Scan dataset is 0.93.

The usability of the proposed segmentation algorithm for 3D Volume scans is shown exem-

plarily on two volume scans. As described in Section 2.4 circular B-Scans with varying diame-

ters were interpolated out of the volumes. As the data density in the Y -direction of the volume

is coarse, compared to the X- and Z-direction, and motion compensation is carried out by the

Spectralis, a lower image quality is expected. This assumption is supported by a visual inspec-

tion. In Fig. 11 an interpolated scan is shown compared to a circular B-scan from a glaucoma

patient. Both the interpolated and the circular scan have the same diameter. The interpolated

scan suffers from interpolation artifacts especially in the nasal and temporal quadrant. The data

density in these regions is the lowest (see arrows in Fig. 11 (b)). When looking at the transition

between the inferior and nasal quadrant it must be noted that some image features are shifted.

This shift is inherent in the data and not produced by the interpolation algorithm.

Despite the lower quality of the interpolated image and the feature shifts, the RNFL thickness

plots of the automated segmentations show a high correlation of 0.82 and low difference in

mean RNFL thickness of 2.9 µm. As the algorithm does not make assumptions on the RNFL

thickness, it is applied to the interpolated scans without changing any parameter. If now multiple



100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10

A−Scan Position r

µ 
m

Inter observer and segmentation difference

 

 

Mean abs. observer diff.

Mean abs. diff. to G.S.

Fig. 10. Mean absolute observer difference (MAOD(r): blue) compared to mean absolute

difference to gold standard per A-Scan (MADG(r): green) over the entire circular B-Scan

data set. The correlation between the plots is 0.93

(a)

(b)

Fig. 11. (a) Circular B-Scan of a glaucoma patient. (b) Circular B-Scan interpolated out of a

volume scan of the same patient. Automated segmentation results are shown. The white ar-

rows indicate regions with low image quality due to lower data density in the interpolation.

The corresponding RNFL thickness plots are shown in Fig. 12.
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Fig. 12. Retinal nerve fiber layer thickness (RNFL) from the automated segmentation. Cir-

cular B-Scan of a glaucoma patient: green, Mean thickness = 58.0 µm. Circular B-Scan

interpolated out of a volume scan of the same patient: blue, Mean thickness = 55.1 µm.

The correlation between both plots is 0.82, the thickness difference of the means is 2.9 µm.

interpolated scans with varying diameter are segmented and the resulting RNFL thickness is

color coded and mapped back to the coordinate system of the volume scan, a thickness map is

obtained. This map can be translucently laid over the SLO image acquired during the volume

scan protocol of the Spectralis. An example thickness map of the same glaucoma patient as in

Fig. 11 is shown in Fig. 13 (b). In Fig. 13 (a) a scan of a normal eye is shown in comparison.

100 circular scans with radii between 1 and 3mm are interpolated out of the volumes for these

visualizations. This visualization shows the local RNFL loss of the glaucoma patient in the

temporal quadrant. A visualization artifact is present in both scans in the nasal region due to the

boundary segmentation differences in the B-scan. This artifact does not affect the instantaneous

qualitative impression an observer can get from the thickness map.

4. Summary and Conclusion

We presented an automated algorithm for segmenting the RNFL on circular OCT B-Scans. Its

key idea is the minimization of an energy term that takes into account the gradient along an

A-Scan, as well as local and regional smoothness. The initialization segmentation provided to

the minimization procedure is found by denoising the image with complex diffusion and using

a heuristic selection of prominent edges. The algorithm makes only few general assumptions

on the position and shape of the layer borders and thus can be applied on scans of both normal

and glaucomatous eyes.

We have substantiated the applicability of the proposed algorithm by an evaluation on a

dataset of images from 132 normal subjects and 72 glaucoma patients. The images were com-
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Fig. 13. Thickness maps overlaid with SLO image. (a) Normal subject. (b) Glaucoma pa-

tient with local RNFL loss. The RNFL thickness is visualized by a pseudo color scale,

ranging from blue (220µm) over green to red (0µm). The used color scale is shown on the

right.

pared to a gold standard generated out of manual corrections to the automated segmentations of

two experts and a trained student. The mean absolute difference to the gold standard (MADGi)

lies below 10µm in 97.2% of all glaucomatous eyes and 94.0% of all normal eyes. 97.0%

of the images with high quality have an overall MADGi below 10µm compared to 91.7% of

images with low quality. The inter-observer difference is lower than the one between the au-

tomated segmentation and the gold standard, but scales nearly lineary (correlation coefficient

0.93). This leads to the conclusion, that the algorithm produces errors in positions where human

observers also do not perfectly agree on. By interpolating circular scans out of OCT volumes

the 2D algorithm is also applicable on 3D data. Using multiple scans with varying diameters, a

2D RNFL map can be generated. Relative measurement errors are slightly higher for pathologic

data and low image quality. They are mostly located in regions with high blood vessel concen-

tration. Thus, a more accurate segmentation at the position of the retinal vessels will increase

the performance of the algorithm. However, the average absolute measurement error, as well as

the average relative error, compared to the mean RNFL thickness, are very low. They are below

the standard deviation measured in the glaucoma and normal group separately.

We believe that the automated segmentation algorithm for FD-OCT data presented and eval-

uated in this work provides a reliable tool for extracting diagnostically relevant parameters

from circular B-Scans. The same algorithm applied to 3D volume data gives the physician an

immediate impression of the RNFL thickness around the optic nerve head.
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Table 5. Table of abbreviations (top) and symbols (bottom) in alphabetical order.

Abbreviation/Symbol Explanation

BVD Blood Vessel Distribution

BVR Region in between two blood vessels

FD Frequency Domain

I Inferior

ILM Inner limiting membrane

INL Inner Nuclear Layer

IPL Inner Plexiform Layer

ISG Inner segment of the retina

MADG Mean Absolute Differece to the Gold Standard

MAOD Mean Absolute Observer Difference

MDG Mean Difference to Gold Standard

mRNFL Mean Retinal Nerve Fiber Layer Thickness

N Nasal

OCT Optical Coherence Tomography

ONFL Outer Nerve Fiber Layer Boundary

ONL Outer Nuclear Layer

OPL Outer Plexiform Layer

OSG Outer segment of the retina

QI Quality Index

PS Part Sum Ratio

RNFL Retinal Nerve Fiber Layer

RPE Outer Retinal Pigment Epithelium Boundary

Spectralis Spectralis HRA+OCT (Heidelberg Engineering, Heidelberg, Germany)

S Superior

SLO Scanning Laser Ophthalmoscope

SVM Support Vector Machine

TD Time Domain

T Temporal

VOL Raw data format of the Spectralis HRA+OCT

D(r) Regional smoothness term at A-Scan (r)
E(r) Energy function at A-Scan (r)
G(z,r) Gradient at image position (z,r)
I(z,r) Image intensity at image position (z,r)
MADG(r) Mean Absolute Differece to the Gold Standard at A-Scan (r)
MAOD(r) Mean Absolute Observer Difference at A-Scan (r)
N(r) Local smoothness term at A-Scan (r)
ScaleZ Pixel Spacing in Z-direction in µm/pixel

RNFL(r) Retinal Nerve Fiber Layer Thickness Profile at A-Scan r

α Weighting factor

β Weighting factor

σ Standard deviation

σCD Noise standard deviation estimate for complex diffusion

#N Number of pixels in a scan



Table 6. Overview (first part) over published research in the field of retina and retinal nerve

fiber layer (RNFL) segmentation on OCT data. Abbreviations see caption table 7.

Author Year Objective Method Data Evaluation
Koozekanani et al. [8] 2001 Retina seg. Edge detection. Regularization

by a Markov model

1450 TD-OCT B-Scans scans from

normal eyes

Quantitative evaluation with

manually corrected segmen-

tations

Ishikawa et al. [10] 2002 RNFL seg. Edge detection with integritiy

check

TD-OCT circular B-Scans: 86

scans from 21 NS, 131 scans from

32 OHP, 184 scans from 45 GP

Quantitative evaluation by

marking errors

Fernandez et al. [14] 2005 7 layers seg. Complex diffusion and coher-

ence enhanced diffusion fol-

lowed by edge detection

TD-OCT B-Scans: 72 scans from

NS, scans of 4 different pathologic

cases

Visual inspection

Ishikava et al. [11] 2005 5 layers seg. Edge detection with integritiy

check

TD-OCT circular B-Scans: 144

scans from 24 NS, 144 from 24 GS

included.

Quantitative evaluation by

marking errors. Exclusion of

bad quality images.

Mujat et al. [16] 2005 RNFL seg. Anisotropic noise suppression

and deformable splines

SD-OCT volumes of NS Visual inspection

Shahidi et al. [13] 2005 3 layer

groups seg.

Averaging A-Scans and egde

detection

TD-OCT B-Scans of 10 NS Reproducibility

Haecker et al. [21] 2006 ILM, RPE

seg.

3D geometric graph cut and a

priori contraints

TD-OCT radial scan sets: 9 scan

sets from NS, 9 from PP

Qualitative evaluation by

marking errors

Baroni et al. [18] 2007 2 layer

groups seg.

Maximization of a likelihood

function consisting of a gradi-

ent and local smoothness term

TD-OCT B-Scans: Scans of 18 NS,

scans of 16 CCMP

Parameter adaption and er-

ror judging by 2 reviewers

Fuller et al. [31] 2007 Multiple or

single layer

seg.

SVM classifier training for

each volume out of manually

drawn regions

SD-OCT volumes of NS and pa-

tients

Segmentation time evalua-

tion. Comparison to manual

seg.

Joeres et al. [33] 2007 Retina,

OPL and

subretinal

tissue seg.

Manual seg. with OCTOR

software

TD-OCT B-Scans of 60 AMD pa-

tients

Repeatablity and agreement

of two operators

Sadda et al. [34] 2007 Retina seg. Manual seg. with OCTOR

software

TD-OCT B-Scans of patients with

macular diseases

Repeatablity and agreement

of two operators

Somfai et al. [17] 2007 Effect of

operator

error on

seg.

Analysis with custom [14] and

commercial software

TD-OCT B-Scans of 8 NS and 1

DME patient. 4 scans with different

operator errors per person.

Comparison of optimal au-

tomatic seg. with seg. on im-

ages with worse quality

Szulmowski et al. [32] 2007 Group of

posteriour

layers seg.

Classifier training out of man-

ually drawn regions

SD-OCT volume data of NS and

patients

Visual inspection



Table 7. Overview (second part) over published research in the field of retina and reti-

nal nerve fiber layer (RNFL) segmentation on OCT data. Abbreviations: Segmentation

(seg.), normal subject (NS), ocular hypertension patient (OHP), glaucoma patient (GP),

papilledema patient (PP), outer photoreceptor layer (OPL), age related macula degenration

(AMD), diabetic macula edema (DME), optic neuropathy patient (ONP), perimetric glau-

coma patient (PGP), preperimetric glaucoma patient (PPGP). The table does not claim to

be complete.

Author Year Objective Method Data Evaluation
Garvin et al. [22] 2008 5 layers seg. 3D geometric graph cut and a

priori contraints

TD-OCT radial scan sets from 12

ONP. 1 diseased eye and 1 normal

from each patient

Qualitative evaluation using

manual seg. by 3 observers

Götzinger et al. [30] 2008 RPE seg. Two algorithms with different

complexity

SD-PS-OCT volumes of NS and pa-

tients

Visual inspection

Tolliver et al. [24] 2008 RNFL, RPE

seg.

Boundary detection by spec-

tral rounding

SD-OCT volumes of 2 NS and 9 pa-

tients

Quantitative evaluation us-

ing manual seg.

Tan et al. [19] 2008 5 layers seg. Progressive edge detec-

tion, each step less A-Scan

averaging

TD-OCT B-Scans of 44 NS, 73

PGP and 29 PPGP

Exclusion of scans with seg.

errors in the study

Mishra et al. [25] 2009 All (10)

intraretinal

layer seg.

Approximation and refinment

of layer positions with dy-

namic programming

SD-OCT B-Scans of healthy and

diseased rat retinas

Visual inspection

Tan et al. [20] 2009 2 layer

groups seg.

Edge detection with 3D neigh-

bor constraints and knowledge

model

SD-OCT volume scans of 65 NS,

78 PGP and 52 PPGG

Exclusion of scans with seg.

errors in the study

Yazdanpanah et al. [26] 2009 5 layers seg. Active contours: Minimization

of an energy functional with a

shape prior

20 SD-OCT B-Scans of rat eyes Quantitative evaluation with

manual segmentation

Chiu et al. [28] 2010 7 layers seg. Graph theory and dynamic

programming

SD-OCT Scans of 10 NS Quantitative evaluation with

manual seg. by 2 observers

Kajić et al. [27] 2010 9 layers seg. Model based segmentation

with shape and texture features

SD-OCT volumes of 17 normal

eyes

Quantitative evaluation with

manual seg. by 2 observers

Quellec et al. [23] 2010 10 layers

seg., ab-

normality

detection

Seg. see [22], texture and

thickness features for abnor-

mality detection

SD-OCT volumes of 13 NS Quantitative evaluation with

manual seg. by 2 observers

Vermeer et al. [29] 2010 5 layers seg. Pixelwise classification with

SVM, Level Set regularization

SD-OCT volumes of 10 NS and 8

GP

Quantitative evaluation with

manual seg. of 1-2 B-Scans

per volume


