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ABSTRACT

Automated analysis of retinal images usually requires es-
timating the positions of blood vessels, which contain impor-
tant features for image alignment and abnormality detection.
Matched filtering can produce the best results but is difficult
to implement because the vessel orientations and widths are
unknown beforehand. Many researchers use Hessian filtering,
which provides an estimate for vessel orientation through the
use of three orientation templates. We propose a novel filter-
ing approach, called self-matched filtering, which is based on
the 180◦ rotated version of the noisy vessel signal in the local
neighborhood. We show that even though the proposed filter
achieves half the signal-to-noise ratio of a matched filter, it
does not require the estimation of the vessel scale and orien-
tation, and can outperform Hessian filtering by up to a factor
of two in terms of miss detection error.

Index Terms— Medical image processing, Medical sig-
nal detection, Hessian matrices, Matched filters,

1. INTRODUCTION

Detecting temporal retinal changes can assist in diagnosis of
various eye diseases, such as diabetic retinopathy and age-
related macular degeneration [1]. Prior to the change detec-
tion, the images need to be aligned to compensate for possible
eye motion. The features for such an alignment usually come
from the locations of retinal blood vessels [2]. Hence a sub-
stantial amount of recent work on both blood vessel detection
(vessel tracing) [3, 4] and blood vessel segmentation [5].

Detecting vessel locations is similar to detecting a signal
in the presence of noise and hence can be optimally solved
by using a matched filter [5], yielding responses with the best
signal-to-noise ratio (SNR) [6]. However, matched filtering
requires precise knowledge of the blood vessel shape parame-
ters (thickness,orientation, shape profile), which substantially
vary across the image. Trying all possibilities is computation-
ally too demanding and several approaches have been pro-
posed to reduce the complexity. For example, the search for
the vessel orientation can be sped up through the use of steer-
able filtering [7], which allows computation of filter response
in any direction from the output of the filters at several fixed
orientations. The most popular steerable filter used in ves-
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Fig. 1. A retinal image and the responses of Hessian filtering.
(a) Retinal image sample (b) Small scale filtering (c) Large
scale filtering

sel detection is Hessian filter, which approximates the vessel
shape via three second derivatives of Gaussian [4, 8, 9].

A simple solution to the unknown thickness problem is to
choose some effective scale that works sufficiently well for
all vessel widths. However, in this case small-scale filters
might yield two large responses around wide vessel edges and
low response for vessel centerline location, see Figure 1(b).
On the other hand, large-scale filters perform poorly on nar-
row vessels, as shown in Figure 1(c). In addition, the narrow
vessels typically have a lower contrast compared to the wide
vessels. Hence using large-scale filters to detect them makes
their detection even more difficult. Some researchers pro-
posed using multiscale Hessian filtering to improve the per-
formance [4, 9]. However, the downsides of this approach
include possible overfitting to noise and the computational
overhead due to repeated filtering for several scales.

Another challenge to vessel detection comes from a va-
riety of distracting structures often present in retinal images,
such as the field-of-view boundary, optic disc, discolorations,
etc., as shown in Figure 1(a). These structures could cause
large filtering responses and hence a wrong classification as
vessels [see Figures 1(b) and 1(c)]. Removal of such false de-
tections often requires further post-processing, such as quadra-
ture filtering [7] or verification of two opposite-sign step edges
in the vicinity of the vessel center [4], which could be com-
putationally expensive.

We propose to improve and simplify the detection of reti-
nal vessels by using a novel filter we call the “self-matched
filter”. A self-matched filter is a location-dependent template
that is obtained by 180◦ rotation of the noisy vessel signal
in the local neighborhood. Since a vessel is locally similar
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to a straight line, it is rotationally symmetric around any of
its centerline points. Hence the so-obtained template will ap-
proximately coincide with the original signal regardless of the
vessel width, orientation, and even shape profile, making it
an excellent approximation to the ideal matched filter. How-
ever, due to the presence of noise, the SNR performance of
such a filter is reduced by a factor of two compared with the
ideal matched filter, as we shall show in Section 2. Neverthe-
less, the proposed filter yields a more favorable overall per-
formance compared to fixed-scale Hessian filter, as detailed
in Section 4. Moreover, the self-matched filter gives a neg-
ative response around step edges, preventing the appearance
of field-of-view boundary, optic disc and discolorations in the
resultant segmentation (Section 2).

2. SELF-MATCHED FILTER

Let s̃(x) = s(x) + n(x),x = [x, y]T ∈ D be a noisy local
image patch, where s(x) is the intensity of a feature (such
as a vessel) to be detected and n(x) is a zero-mean i.i.d.
noise. Let f(x) be the matched filter defined on D, then
the output of such filter at the feature (vessel) center x0 is
r(x0) =

∫
D s̃(x + x0)f(x)dx. Without loss of generality

we assume
∫
D s(x + x0)dx = 0. (If this is not originally the

case, the property can be approximately satisfied by subtract-
ing

∫
D s̃(x + x0)dx from s̃(x + x0), ∀x ∈ D.) It follows

that the optimal matched filter has the same shape as s(x):

f(x) = s(x + x0), ∀x ∈ D (1)

Let ξ2(x0) =
∫
D s2(x + x0)dx and σ2

n = E
{
n2(x)

}
. The

matched filter achieves the best possible SNR given as

SNRopt(x0)=

[∫
D s2(x + x0)dx

]2
E

{[∫
D s(x + x0)n(x + x0)dx

]2}=
ξ2(x0)

σ2
n

(2)
However, the optimal matched filter is often unattainable,

as we can only observe s̃(x) and not s(x). Using an approx-
imation f(x) = ŝ(x + x0) will lead to an SNR smaller than
(2); the exact reduction depends on the approximation and
hence is difficult to predict.

Consider a pseudo-matched filter whose shape is the same
as the noisy version of the signal, s̃(x):

f(x) = s̃(x + x0), ∀x ∈ D (3)

According to the following lemma, when the noise is not very
large (compared to the signal energy), such a ‘naive’ filter can
achieve a quarter of the best possible SNR.

Lemma 1 If σ2
s � σ2

n, the SNR of the pseudo-matched filter-
ing (3) is

SNRpseudo =
1
4
SNRopt (4)

x0 x0

s(x +x)0 s(x -x)0

Fig. 2. The self-matched filter by rotating.

Proof: The response of the pseudo-matched filter is

r(x0) =
∫
D

s2(x + x0)dx + 2
∫
D

s(x + x0)n(x + x0)dx

+
∫
D

n2(x + x0)dx

Assuming σ2
s =

∫
D s2(x + x0)dx � σ2

n we obtain

E

{[∫
D

n2(x + x0)dx

]2
}
∼ σ4

n � σ2
sσ2

n

E

{[∫
D

s(x + x0)n(x + x0)dx

]2
}

= σ2
sσ2

n

Hence the term
∫
D n2(x + x0)dx can be neglected and the

resultant SNR becomes

SNRp =
E

{[∫
D s2(x + x0)dx

]2}
E

{[
2

∫
D s(x + x0)n(x + x0)dx

]2} =
1
4
SNRopt

�

Main shortcoming of pseudo-matched filtering is low dis-
criminative power. Essentially, this filter computes a local
signal variance, yielding large responses at all locally varying
signals, such as edges, ridges, and corners. To overcome this
problem we propose to exploit the rotational symmetry of the
target features: vessels. As shown in Figure 2, rotating s(x)
by 180◦ around x0 does not change the signal, i.e.,

s(x0 − x) = s(x + x0) (5)

Hence, we define a self-matched filter as follows

f(x) = s̃(x0 − x), ∀x ∈ D (6)

According to the following lemma, the SNR of such a filter
is half of that of the ideal matched filter and twice as large as
the SNR of pseudo-matched filter.

Lemma 2 If σ2
s � σ2

n, the SNR achieved by self-matched
filtering (6) is

SNRself =
1
2
SNRopt (7)
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Proof: The proof is similar to that of Lemma 1. The response
of the self-matched filter is

r(x0) =
∫
D

s2(x + x0)dx +
∫
D

n(x + x0)n(x0 − x)dx

+
∫
D

s(x + x0) [n(x + x0) + n(x0 − x)] dx

The second term can be ignored due to σ2
s � σ2

n. Further-
more, the miss-alignment of noise values in the last term re-
duces the noise energy by a factor of two, namely

E

{{∫
D

s(x + x0) [n(x + x0) + n(x0 − x)] dx

}2
}

=2σ2
sσ2

n

which yields (7). �
In addition to achieving twice the SNR of pseudo-matched

filtering, self-matched filtering has better discrimination for
line features. When the signal in the local neighborhood is
not symmetric, such as a corner, rotating it results in a very
different signal and the self-matched filter produces a weak
response. When the signal in the local neighborhood pos-
sesses a reflectional symmetry, such as a step edge, the self-
matched filter produces a large but negative response. Only
when the signal possesses a 180◦ rotational symmetry, such as
a blood vessel, the response will be large and positive. Hence
comparing the filter response with a positive threshold allows
us to discriminate rotationally symmetric (by 180◦) features
from other structures.

In the next section we show how to modify self-matched
filter to discriminate light and dark vessels.

3. DISTINGUISHING LIGHT AND DARK VESSELS

The response of a Hessian filter is negative for light vessels
and positive for dark ones, allowing one to distinguish them.
Since self-matched filtering doesn’t have this property (the
response is always positive), we propose a simple solution
that can help distinguish these types of vessels.

In a noiseless case, the center of a light vessel has a higher
intensity than the mean intensity over its local neighborhood;
the opposite is true for a dark vessel. Hence classification
between dark and light vessels can be done by comparing the
intensity of the center pixel with the mean intensity s̄.{

Light s̄ < s(x0)
Dark s̄ > s(x0)

(8)

To reduce the effect of noise we can average intensity of sev-
eral neighboring center pixels (instead of one).

Surprisingly, the same solution helps to address another
potential problem. As shown in Figure 3(b), the self-matched
filter produces a large output in between two parallel closely
spaced vessels. This happens because the signal between the
light vessels can be seen as a dark vessel, producing a large,
positive response. Using (8) solves the problem (Figure 3(c)).

(a) (b) (c)

Fig. 3. The false vessel between parallel ones and its removal.
(a) Parallel vessels (b) Self-matched filtering (c) Removing
dark vessels

4. EVALUATION

To evaluate the performance of the proposed self-matched fil-
ter and compare it with the existing Hessian filter, we con-
struct a simple post-processing chain that converts the fil-
tering outputs into binary segmentation of vessel centerlines.
Our pipeline 1 consists of hysteresis thresholding followed by
morphological thinning to obtain a vessel centerline map. We
use thinning because non-maximum suppression requires the
local vessel orientation and cannot be applied to self-matched
filtering results. For hysteresis thresholding the lower thresh-
old was set as 0.4 times the upper threshold, which is a default
value for the MATLAB function used.

We applied self-matched filtering to actual retinal images
from DRIVE dataset [10], containing 40 images together with
manually obtained ground truth vessel segmentation. We con-
verted segmentation to vessel centerlines using morphologi-
cal thinning. The window size of the self-matched filter was
chosen to be 9×9, which is slightly larger than the maximum
vessel width of 8 pixels 2. For the Hessian filter based on

Gaussian kernel e−
x2

t2 , we used t = 3.5 and t = 5.5, which
were chosen to slightly favor either thin or thick vessels.

Figure 4 shows the responses of the Hessian and self-
matched filters on one of the retinal images. Visual inspec-
tion shows that compared to Hessian filter, the proposed self-
matched filter yields stronger vessels and also is better at re-
moving the distracting structures such as the field-of-view
boundary3, optic disc boundary and discolorations, but tends
to produce more “holes” in the vessels.

Superiority in the visual sense translates into better de-
tection results, as shown in Table 1 and Figure 6. The self-
matched filter can reduce the area above the ROC curve (AAC)
by up to a factor of 1.5, compared to Hessian filter. Note that,
unlike in simulated images, in these experiment smaller scale

1More advance post-processing pipelines proposed were not considered
since the emphasis of the paper is on the filtering step

2To estimate the vessel widths, we applied binary thinning operation, us-
ing 3 × 3 all-1 matrix as structure element, on all ground true vessel maps.
If a vessel disappeared just after n’th thinning processes, its width was con-
sidered as 2n.

3Note that the field-of-view boundary can be easily located and removed,
and hence it has been excluded from all experimental results
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Fig. 4. The retinal image and the response of Hessian and
self-matched filtering. (a) Retinal image (b) Hessian filtering
(c) Self-matched filtering

Table 1. Detection performance (AAC) of Hessian and self-
matched filtering
Retinal Hessian Self- Retinal Hessian Self-
Images t = 3.5 t = 5.5 matched Images t = 3.5 t = 5.5 matched

1 0.136 0.255 0.156 11 0.326 0.447 0.246
2 0.190 0.278 0.175 12 0.275 0.365 0.191
3 0.284 0.364 0.248 13 0.285 0.394 0.208
4 0.318 0.419 0.253 14 0.224 0.329 0.180
5 0.313 0.401 0.247 15 0.267 0.390 0.208
6 0.297 0.392 0.250 16 0.261 0.367 0.149
7 0.341 0.451 0.268 17 0.306 0.382 0.253
8 0.336 0.453 0.267 18 0.271 0.391 0.178
9 0.317 0.422 0.231 19 0.210 0.304 0.136

10 0.294 0.398 0.235 20 0.267 0.366 0.180

Average 0.276 0.378 0.213

Hessian filter (t = 3.5) performed better than the larger scale
filter (t = 5.5) as shown in Figure 5. This can be explained by
relatively few thick vessels present in these images. Another
reason is the proximity of vessels which can cause miss de-
tection when using large-scale Hessian filters. We have also
tried widths t = 3 and t = 4, but have found them to perform
slightly worse than t = 3.5.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Self−matched filtering
Hessian filtering, t = 3.5
Hessian filtering, t = 5.5

Fig. 5. ROC curves on test image 18 of DRIVE dataset.

5. CONCLUSION

We have proposed a novel filtering approach, called self-matched
filtering, to improve the detection of blood vessels in retinal
images. The proposed filter is a 180◦ rotated version of the
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Fig. 6. Retinal image and its vessel maps detected by the
Hessian and self-matched filters. (a) Ground true, (b) Hessian
filter, (c) Self-matched filter

signal in the local neighborhood, and has shown to achieve
half the SNR of the optimal matched filter under normal con-
ditions. However, since such a filtering does not require es-
timation of vessel orientations and widths, it yields favorable
performance (both in quality and speed) compared with the
alternative approach based on Hessian filtering. Moreover,
the self-matched filtering can discriminate line features (ves-
sels) from step edges, corners, and other distracting structures
that might appear in the retinal images.
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