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Abstract—We present a method for automated segmentation of
the vasculature in retinal images. The method produces segmenta-
tions by classifying each image pixel as vessel or nonvessel, based
on the pixel’s feature vector. Feature vectors are composed of the
pixel’s intensity and two-dimensional Gabor wavelet transform re-
sponses taken at multiple scales. The Gabor wavelet is capable
of tuning to specific frequencies, thus allowing noise filtering and
vessel enhancement in a single step. We use a Bayesian classifier
with class-conditional probability density functions (likelihoods)
described as Gaussian mixtures, yielding a fast classification, while
being able to model complex decision surfaces. The probability dis-
tributions are estimated based on a training set of labeled pixels
obtained from manual segmentations. The method’s performance
is evaluated on publicly available DRIVE (Staal et al., 2004) and
STARE (Hoover et al., 2000) databases of manually labeled images.
On the DRIVE database, it achieves an area under the receiver op-
erating characteristic curve of 0.9614, being slightly superior than
that presented by state-of-the-art approaches. We are making our
implementation available as open source MATLAB scripts for re-
searchers interested in implementation details, evaluation, or de-
velopment of methods.

Index Terms—Fundus, Gabor, pattern classification, retina,
vessel segmentation, wavelet.

I. INTRODUCTION

O
PTIC fundus [Fig. 1(a)] assessment has been widely used

by the medical community for diagnosing vascular and

nonvascular pathology. Inspection of the retinal vasculature

may reveal hypertension, diabetes, arteriosclerosis, cardiovas-

cular disease, and stroke [3]. Diabetic retinopathy is a major

cause of adult blindness due to changes in blood vessel struc-

ture and distribution such as new vessel growth (proliferative

diabetic retinopathy) and requires laborious analysis from a

specialist [4]. Endeavoring to reduce the effect of proliferative

diabetic retinopathy includes obtaining and analyzing images

of the optic fundus at regular intervals such as every six months
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Fig. 1. Fundus image preprocessing for removing undesired border effects.
(a) Inverted green channel of colored fundus image. (b) Preprocessed image
with extended border. Original image limit is indicated for illustration.

to a year. Early recognition of changes to the blood vessel

patterns can prevent major vision loss as early intervention

becomes possible [5], [6].

To provide the opportunity for initial assessment to be carried

out by community health workers, computer based analysis has

been introduced, which includes assessment of the presence of

microaneurysms and changes in the blood flow/vessel distribu-

tion due to either vessel narrowing, complete occlusions or new

vessel growth [7]–[9].

An automatic assessment for blood vessel anomalies of the

optic fundus initially requires the segmentation of the vessels

from the background, so that suitable feature extraction and pro-

cessing may be performed. Several methods have been devel-

oped for vessel segmentation, but visual inspection and evalu-

ation by receiver operating characteristic (ROC) analysis show

that there is still room for improvement: human observers are

significantly more accurate than the methods, which show flaws

around the optic disk and in detection of the smallest vessels

[10], [11]. In addition, it is important to have segmentation al-

gorithms that are fast and do not critically depend on config-

uring several parameters, so that untrained community health

workers may utilize this technology. This has motivated the

use of the supervised classification framework described here,

which only depends on manually segmented images and can be

implemented efficiently.

Many different approaches for automated vessel segmenta-

tion have been reported. The papers [12]–[18] present vessel

tracking methods to obtain the vasculature structure, along with

vessel diameters and branching points. Tracking consists of fol-

lowing vessel center lines guided by local information, usually

trying to find the path which best matches a vessel profile model.

The use of deformable models also shows promising results in

0278-0062/$20.00 © 2006 IEEE
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[19]–[22]. In [2], [23], and [24], matched filters are used to em-

phasize blood vessels. An improvement is obtained in [2] by a

region-based threshold probing of the matched filter response.

Multithreshold probing is directly applied to the images in [25].

A nonlinear filter that enhances vessels by exploiting properties

of the vessel profiles is introduced in [26]. Along this line is the

use of mathematical morphology filtering in [27] and [28], cou-

pled with curvature evaluation. In [29], multiscale curvature and

border detection are used to drive a region growing algorithm.

Supervised methods for pixel classification have been shown

in [1], [30], and [31]. In [30], feature vectors are formed by

gray-scale values from a window centered on the pixel being

classified. A window of values is also used in [31], but the fea-

tures used are a principal component transformation of RGB

values and edge strength. In [1], ridge detection is used to form

line elements and partition the image into patches belonging to

each line element. Pixel features are then generated based on

this representation. Many features are presented and a feature

selection scheme is used to select those which provide the best

class separability.

Previously, we have shown promising preliminary results

using the wavelet transform [32], [33] and integration of multi-

scale information through supervised classification [32]–[36].1

Here, we improve on those methods using a Bayesian classifier

with Gaussian mixture models as class likelihoods and evaluate

performances with ROC analysis. ROC analysis has been used

for evaluation of segmentation methods in [1], [2], [25], and

comparison of some of the cited methods in [10] and [11].

In our approach, each pixel is represented by a feature vector

including measurements at different scales taken from the

two-dimensional (2-D) Gabor wavelet transform. The resulting

feature space is used to classify each pixel as either a vessel or

nonvessel pixel. This is done using a Bayesian classifier with

class-conditional probability density functions (likelihoods)

described as Gaussian mixtures, yielding a fast classification,

while being able to model complex decision surfaces. The

original contributions of this work are the following:

• the use of Gabor wavelets applied to the detection of retinal

blood vessels, using responses from different scales as fea-

tures, in order to account for vessels of different widths;

• the use of the Bayesian classifier with Gaussian mixtures

as class likelihoods to perform vessel segmentation;

• results and ROC analysis of our methods on two public

databases of retinal images, thus corroborating its

performance.

Originally devised for suitably analyzing nonstationary and

inhomogeneous signals, the time-scale analysis took place to

accomplish unsolvable problems within the Fourier framework,

based on the wavelet transform. The wavelet transform is a pow-

erful and versatile tool that has been applied to many different

image processing problems, such as image coding [37], [38],

texture analysis [39], shape analysis [40], and functional mag-

netic resonance imaging (fMRI) brain activity detection [41].

This success is largely due to the fact that wavelets are especially

suitable for detecting singularities (e.g., edges and other visual

features) in images [42], extracting instantaneous frequencies

1Previous partial descriptions of the developed research have appeared as con-
ference papers.

[43], and performing fractal and multifractal analysis. Further-

more, the wavelet transform using the Gabor wavelet, also often

referred to as Morlet wavelet, has played a central role in in-

creasing our understanding of visual processing in different con-

texts from feature detection to face tracking [44]. The Gabor

wavelet is directional and capable of tuning to specific frequen-

cies, thus allowing it to be adjusted for vessel enhancement and

noise filtering in a single step, having been shown to outper-

form other oriented feature detectors [45]. These nice charac-

teristics motivate the adoption of the Gabor wavelet in our pro-

posed framework.

This work is organized as follows. The databases used for

tests are described in Section II-A. Section II-B presents our

segmentation framework based on supervised pixel classifica-

tion. In Section II-C, the feature generation process is described,

including the 2-D wavelet transform and Gabor wavelet. Our

use of supervised classification and the classifier tested are pre-

sented in Section II-D. ROC analysis for performance evalu-

ation is described in Section II-E and results are presented in

Section III. Discussion and conclusion are in Section IV.

II. MATERIALS AND METHODS

A. Materials

There are different ways of obtaining ocular fundus images,

such as with color cameras, or through angiograms using flu-

orescein as a tracer [5]. We have tested our methods on an-

giogram gray-level images and colored images [32], [34]. Here,

our methods are tested and evaluated on two publicly available

databases of colored images and corresponding manual segmen-

tations: the DRIVE [1] and STARE [2] databases.

The DRIVE database consists of 40 images (seven of which

present pathology), along with manual segmentations of the ves-

sels. The images are captured in digital form from a Canon CR5

nonmydriatic 3CCD camera at 45 field of view (FOV). The im-

ages are of size 768 584 pixels, eight bits per color channel

and have a FOV of approximately 540 pixels in diameter. The

images are in compressed JPEG format, which is unfortunate for

image processing but is commonly used in screening practice.

The 40 images have been divided into a training and test

set, each containing 20 images (the training set has three im-

ages with pathology). They have been manually segmented by

three observers trained by an ophthalmologist. The images in the

training set were segmented once, while images in the test set

were segmented twice, resulting in sets A and B. The observers

of sets A and B produced similar segmentations. In set A, 12.7%

of pixels where marked as vessel, against 12.3% vessel for set

B. Performance is measured on the test set using the segmenta-

tions of set A as ground truth. The segmentations of set B are

tested against those of A, serving as a human observer reference

for performance comparison.

The STARE database consists of 20 digitized slides captured

by a TopCon TRV-50 fundus camera at 35 FOV. The slides

were digitized to 700 605 pixels, eight bits per color channel.

The FOV in the images are approximately 650 550 pixels in

diameter. Ten of the images contain pathology. Two observers

manually segmented all images. The first observer segmented

10.4% of pixels as vessel, against 14.9% vessels for the second
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observer. The segmentations of the two observers are fairly dif-

ferent in that the second observer segmented much more of the

thinner vessels than the first one. Performance is computed with

the segmentations of the first observer as ground truth.

B. General Framework

The image pixels of a fundus image are viewed as objects rep-

resented by feature vectors, so that we may apply statistical clas-

sifiers in order to segment the image. In this case, two classes

are considered, i.e., vessel and nonvessel pixels. The training

set for the classifier is derived using manual segmentations of

training images, i.e., pixels segmented by hand are labeled as

vessel while the remaining pixels are labeled as nonvessel. This

approach allows us to integrate information from wavelet re-

sponses at multiple scales, accounting for vessels of different

widths, in order to distinguish pixels from each class.

C. Pixel Features

When the RGB components of the colored images are visu-

alized separately, the green channel shows the best vessel/back-

ground contrast [Fig. 1(a)], whereas the red and blue channels

show low contrast and are very noisy [27]. Therefore, the green

channel was selected to be processed by the wavelet, as well as

to compose the feature vector itself, i.e., the green channel in-

tensity of each pixel is taken as one of its features.

1) Preprocessing: In order to reduce false detection of the

border of the camera’s aperture by the wavelet transform, an

iterative algorithm has been developed. Our intent is to remove

the strong contrast between the retinal fundus and the region

outside the aperture (see Fig. 1).

The preprocessing algorithm starts with a region of interest

(ROI) determined by the camera’s aperture and iteratively grows

this ROI. Each step of the algorithm consists in the following.

First, the set of pixels of the exterior border of the ROI is de-

termined, i.e., pixels that are outside the ROI and are neighbors

(using four-neighborhood) to pixels inside it. Then, each pixel

value of this set is replaced with the mean value of its neighbors

(this time using eight-neighborhood) inside the ROI. Finally, the

ROI is expanded by inclusion of this altered set of pixels. This

process is repeated and can be seen as artificially increasing the

ROI, as shown in Fig. 1(b).

The green channel is inverted before the application of the

wavelet transform to it, so that the vessels appear brighter than

the background.

2) Wavelet Transform Features: The notation and definitions

in this section follow [46]. The real plane is denoted as

, and the vectors are represented as bold letters, e.g.,

. Let be an image represented as a square integrable

(i.e., finite energy) function defined over and be the

analyzing (or mother) wavelet. A family of wavelets

can be defined by translations, rotations and dilations (by ,

and , respectively) of the analyzing wavelet. The continuous

wavelet transform is defined in terms of the scalar

product of with the transformed wavelet

where , and denote the normalizing constant, ana-

lyzing wavelet, the displacement vector, the rotation angle, and

the dilation parameter (also known as scale), respectively.

denotes the complex conjugate of . The wavelet transform can

be easily implemented using the fast Fourier transform algo-

rithm and the equivalent Fourier definition of the wavelet trans-

form [43]

(1)

where , and the hat (i.e., and ) denotes a Fourier

transform.

The transform conserves energy and provides a linear de-

composition of in terms of the family of analyzing wavelets

, with coefficients . Combining the condi-

tions for both the analyzing wavelet and its Fourier transform of

being well localized in the time and frequency domains plus the

requirement of having zero mean, one realizes that the wavelet

transform provides a local filtering at a constant rate , in-

dicating its great efficiency as the frequency increases, i.e., as

the scale decreases. This property is what makes the wavelet

effective for detection and analysis of localized properties and

singularities [43], such as the blood vessels in the present case.

Among several available analyzing wavelets, for instance, the

2-D Mexican hat and the optical wavelet, we chose the 2-D

Gabor wavelet for the purposes of this work, due to its direc-

tional selectiveness capability of detecting oriented features and

fine tuning to specific frequencies [43], [46]. This latter property

is especially important in filtering out the background noise of

the fundus images. The 2-D Gabor wavelet is defined as

(2)

where is a 2 2 diagonal matrix

that defines the anisotropy of the filter, i.e., its elongation in any

desired direction. The Gabor wavelet is actually a complex ex-

ponential modulated Gaussian, where is a vector that defines

the frequency of the complex exponential.

We have set the parameter to 4, making the filter elongated

and , i.e., a low-frequency complex exponential with

few significant oscillations perpendicular to the large axis of

the wavelet, as shown in Fig. 2. These two characteristics are

specially suited for the detection of directional features and have

been chosen in order to enable the transform to present stronger

responses for pixels associated with the blood vessels.

For each pixel position and considered scale value, we are

interested in the response with maximum modulus over all pos-

sible orientations, i.e.,

(3)

Thus, the Gabor wavelet transform is computed for spanning

from 0 up to 170 at steps of 10 and the maximum is taken

(this is possible because .

The maximum modulus of the wavelet transform over all angles
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Fig. 2. Different representations for the 2-D Gabor wavelet ( ) with param-
eters � = 4 and k = [0; 3]. (a) Surface representation of the real part. (b) Real
part. (c) Imaginary part.

for multiple scales are then taken as pixel features. is

shown in Fig. 3 for and pixels.

3) Feature Normalization: Given the dimensional nature of

the features forming the feature space, one must bear in mind

that this might give rise to errors in the classification process, as

the units chosen might affect the distance in the feature space.

A strategy to obtain a new random variable with zero mean

and unit standard deviations, leading to dimensionless features,

is to apply the normal transformation to the feature space. The

normal transformation is defined as [40]

(4)

where is the th feature assumed by each pixel, is the av-

erage value of the th feature, and is the associated standard

deviation.

We have applied the normal transformation separately to

each image’s feature space, i.e., every image’s feature space

is normalized by its own means and standard deviations,

Fig. 3. Maximum modulus of Gabor wavelet transform over angles,
M (b; a) (3), for scale values of a = 2 and a = 4 pixels. Remaining
parameters are fixed at � = 4 and k = [0; 3]. (a) M (b; 2). (b) M (b; 4).

helping to compensate for intrinsic variation between images

(e.g., illumination).

D. Supervised Classification for Segmentation

Supervised classification has been applied to obtain the final

segmentation, with the pixel classes defined as {vessel

pixels} and {nonvessel pixels}. Several fundus images

have been manually segmented, allowing the creation of a la-

beled training set into classes and (see Subsection II-A).

Due to the computational cost of training the classifier and the

large number of samples, we randomly select a subset of the

available samples to actually use for training.

We have achieved very good results using a Bayesian classi-

fier in which each class-conditional probability density function

(likelihood) is described as a linear combination of Gaussian

functions [47], [48]. We will call this the Gaussian mixture

model (GMM) classifier.

To obtain a decision rule based on estimates from our training

set, we use Bayes decision rule, which can be stated as

Decide if

otherwise decide (5)

where is the class-conditional probability density func-

tion, also known as likelihood, and is the prior probability

of class .

We estimate as , the ratio of class samples

in the training set. The class likelihoods are described as linear

combinations of Gaussian functions

(6)

where is the number of Gaussians modeling and each

is a -dimensional Gaussian distribution of weight

, with being the dimension of the feature space.

For each class , given the number of Gaussians, we can

estimate the Gaussian parameters and weights with the expec-

tation-maximization (EM) algorithm [47]. The EM algorithm is

an iterative scheme that guarantees a local maximum of the like-

lihood of the training data.

GMMs represent a halfway between purely nonparametric

and parametric models, providing a fast classification phase at
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the cost of a more expensive training algorithm. Nonparametric

methods are computationally demanding for large numbers of

training samples, though they do not impose restrictions on

the underlying probability distributions. On the other hand,

GMMs guarantee a fast classification phase that depends only

on the chosen (i.e., independent of the number of training

samples), while still allowing for modeling complex probability

distributions.

E. Experimental Evaluation

We have tested our methods on the DRIVE and STARE

databases with the following settings. The pixel features used

for classification were the inverted green channel and its max-

imum Gabor transform response over angles (3) for

scales pixels (see Section II-C). These scales were

chosen as to span the possible widths of vessels throughout the

images, so that all vessels could be detected.

For the DRIVE database, the training set was formed by pixel

samples from the 20 labeled training images. For the STARE

database, leave-one-out tests where performed, i.e., every image

is segmented using samples from the other 19 images for the

training set. Due to the large number of pixels, in all exper-

iments, one million pixel samples where randomly chosen to

train the classifier. Tests were performed varying the number

of vessel and nonvessel Gaussians modeling each

class likelihood of the GMM classifier.

To demonstrate the performance of the Gabor wavelet in en-

hancing blood vessels, we also present results of filtering using

a single wavelet scale and compare them with results of the

matched filter of Chaudhuri et al. [23]. The parameters of both

filters were chosen as to produce the best results: pixels

for wavelet filtering and pixel for the matched filter of

Chaudhuri et al.

The performances are measured using ROC curves. ROC

curves are plots of true positive fractions versus false positive

fractions for varying thresholds on the posterior probabilities.

A pair formed by a true positive fraction and a false positive

fraction is plotted on the graph for each threshold value (as

explained below), producing a curve as in Figs. 4 and 5. The

true positive fraction is determined by dividing the number

of true positives by the total number of vessel pixels in the

ground truth segmentations, while the false positive fraction

is the number of false positives divided by the total number

of nonvessel pixels in the ground truth. In our experiments,

these fractions are calculated over all test images, considering

only pixels inside the FOV. For the GMM classifier, the ROC

curve is produced by varying the threshold on the posterior

pixel probabilities, while the curves for filtering using a single

wavelet scale and the matched filter of Chaudhuri et al. are

produced varying the threshold on the filters’ responses.

We also present the values of the areas under the ROC curves

and accuracies of the methods of Jiang et al. [25] and Staal et al.

[1], though we did not perform hypothesis tests to state which

methods are better, because we do not have enough data from

previous results to analyze the variances.

Fig. 4. ROC curve for classification on the DRIVE database using the GMM
classifier with k = 20, filtering using a single Gabor wavelet scale (M (b; 4)),
and the matched filter of Chaudhuri et al. Point marked as corresponds to set
B, the second set of manual segmentations. GMM classifier has A = 0:9614.

Fig. 5. ROC curve for classification on the STARE database using the GMM
classifier with k = 20, filtering using a single Gabor wavelet scale (M (b; 4)),
and the matched filter of Chaudhuri et al. Point marked as corresponds to the
second observer’s manual segmentations. GMM classifier has A = 0:9671.

III. RESULTS

Illustrative segmentation results for a pair of images

from each database (produced by the GMM classifier with

), along with the manual segmentations, are shown in

Figs. 6 and 7.

For the DRIVE database, the manual segmentations from

set A are used as ground truth and the human observer per-

formance is measured using the manual segmentations from

set B, which provide only one true/false positive fraction pair,

appearing as a point in the ROC graph (Fig. 4). For the STARE

database, the first observer’s manual segmentations are used

as ground truth, and the second observer’s true/false positive
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Fig. 6. Results produced by the GMM classifier with k = 20 and manual segmentations (sets A and B) for two images from the DRIVE database. Top row results
are for the image shown in Fig. 1(a). (a) Posterior probabilities. (b) Segmentation. (c) Set A. (d) Set B.

Fig. 7. Results produced by the GMM classifier with k = 20 and manual segmentations for two images from the STARE database. Top row images originate
from a pathological case, while the bottom ones originate from a normal case. (a) Posterior probabilities. (b) Segmentation. (c) First observer. (d) Second observer.

fraction pair is plotted on the ROC graph (Fig. 5). The closer

an ROC curve approaches the top left corner, the better the

performance of the method. A system that agreed completely

with the ground truth segmentations would yield an area under

the ROC curve . However, note that the manual seg-

mentations evaluated do not produce perfect true/false positive

fractions, for they disagree on some of the pixels with the

manual segmentations used as ground truth. Thus, the variance

between observers can be estimated, helping to set a goal for

the method’s performance.

The areas under the ROC curves are used as a single

measure of the performance of each method and are shown in

Table I for the following methods: GMM classifiers of varying

; filtering using a single Gabor wavelet scale; our implementa-

tion of the matched filter of Chaudhuri et al. and the methods of

Jiang et al. and Staal et al., as published in [1]. For comparison

with the manual segmentations, we also measure the accura-

cies (fraction of correctly classified pixels) of the automatic and

manual segmentations. Note that the accuracy and values

for the GMM classifier increase with . The ROC curves for the

DRIVE and STARE databases produced using the GMM clas-

sifier with , filtering using a single Gabor wavelet scale,

the matched filter of Chaudhuri et al., as well as performances

for human observers, are shown in Figs. 4 and 5.
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TABLE I
RESULTS FOR DIFFERENT SEGMENTATION METHODS AND A SECOND HUMAN

OBSERVER. A INDICATES THE AREA UNDER THE ROC CURVE, WHILE THE

ACCURACY IS THE FRACTION OF PIXELS CORRECTLY CLASSIFIED

We note that the EM training process for the GMMs is com-

putationally more expensive as increases, but can be done off-

line, while the classification phase is fast. The process of fea-

ture generation is basically the calculation of the wavelet coeffi-

cients, which is done by a series of correlations. By using the fast

Fourier transform and the Fourier definition of the wavelet trans-

form (1), these are done in , where is the total

number of image pixels [49]. Since the dimension of the feature

space and the number of Gaussians modeling each class likeli-

hood are fixed, classification of an image’s pixel feature vectors

is also fast, taking time . We have used a straightforward

MATLAB implementation for tests. On an AMD Athlon XP

PC (2167 MHz clock) with 1-GB memory, estimation

of the GMM parameters for one million training samples and

(using a nonoptimized EM algorithm) takes up to 9 h,

though this would speed up considerably with an efficient im-

plementation. Feature generation for an image from the DRIVE

or STARE database takes about 3 min, while the classification

of its pixels with takes less than 10 s. We are making all

our results and implementation code (in the form of open source

MATLAB scripts) publicly available to researchers interested in

implementation details, evaluation or development of methods.2

IV. DISCUSSION AND CONCLUSION

The Gabor transform shows itself efficient in enhancing

vessel contrast, while filtering out noise. Information from

Gabor transforms at different scales, which allows the seg-

mentation of vessels of different diameters, are integrated

through the use of the statistical classifier presented. The GMM

classifier has a computationally demanding training phase, but

guarantees a fast classification phase and good performance.

Furthermore, the methods presented are conceptually simple

and can be implemented efficiently.

The classification framework demands the use of manual

labelings, but allows the methods to be trained for different

types of images (such as gray-level angiograms or colored

images, provided the corresponding manual segmentations

are available), possibly adjusted to specific camera or lighting

conditions and are otherwise automatic, i.e., adjustment of

2Available online at http://retina.iv.fapesp.br.

Fig. 8. Results produced by training the GMM classifier with k = 20 on each
of the STARE and DRIVE databases while testing it on the other. Top row results
are from the image shown in Fig. 1(a) and Fig. 6 and the bottom ones originate
from the pathological case that is also shown in Fig. 7. Note that the thinnest
vessels of the top row image are poorly detected, whereas the bottom results
present increased false positives on noise and pathological features. (a) Posterior
probabilities. (b) Segmentation.

parameters or user interaction is not necessary. To verify the de-

pendence of the method on the training set, we have performed

experiments training the classifier with each of the STARE and

DRIVE databases while testing it on the other. The results ob-

tained are slightly worse visually and with respect to ROC anal-

ysis, as illustrated in Fig. 8. Though the databases are similar,

there is a difference in the typical vessel widths found in each

database’s images, which contributed significantly to the perfor-

mance loss. While the performance difference is not large, this

shows that even for the simple vessel structures there is a certain

dependence of the method on the training set. We are studying

the use of training sets composed of a small portion of the image

to be segmented. Using this approach, a semi-automated fundus

segmentation software may be developed, in which the operator

only has to draw a small portion of the vessels over the input

image or simply click on several pixels associated with the ves-

sels. The remaining image would then be segmented based on

the partial training set. This approach is interesting since it re-

quires a small effort from the operator, which is compensated

by the fact that image peculiarities are directly incorporated by

the classifier.

It is curious to note that, on the STARE database, the accu-

racy of the method is higher than that of the second observer

(Table I). The second observer’s manual segmentations contain

much more of the thinnest vessels than the first observer (low-

ering their accuracy), while the method, trained by the first ob-

server, is able to segment the vessels at a similar rate. However,

the ROC graph (Fig. 5) still reflects the higher precision of the

second observer, due to some difficulties found by the method,

as discussed below.
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It is possible to use only the skeleton of the segmentations for

the extraction of shape features from the vasculature. Depending

on the application, different evaluation methods become more

appropriate [50]. For example, the evaluation of the skeleton

would not take into account the width of the vessels, but could

measure other qualities such as the presence of gaps and detec-

tion of branching points. Another interesting form of evaluation

would be directly through an application, such as in detection

of neovascularization by means of analysis and classification of

the vessel structure [33]. A major difficulty in evaluating the re-

sults is the establishment of a reliable ground truth [51]. Human

observers are subjective and prone to errors, resulting in large

variability between observations. Thus, it is desirable that mul-

tiple human-generated segmentations be combined to establish

a ground truth, which was not the case in the analysis presented.

Though very good ROC results are presented, visual inspec-

tion shows some typical difficulties of the method that must

be solved by future work. The major errors are in false de-

tection of noise and other artifacts. False detection occurs in

some images for the border of the optic disc, haemorrhages and

other types of pathologies that present strong contrast. Also,

the method did not perform well for very large variations in

lighting throughout an image, but this occurred for only one

image out of the 40 tested from both databases. This could pos-

sibly be solved by including intraimage normalization in the

preprocessing phase [52]. Another difficulty is the inability to

capture some of the thinnest vessels that are barely perceived

by the human observers.

Another drawback of our approach is that it only takes into

account information local to each pixel through image filters, ig-

noring useful information from shapes and structures present in

the image. We intend to work on methods addressing this draw-

back in the near future. The results can be slightly improved

through a postprocessing of the segmentations for removal of

noise and inclusion of missing vessel pixels as in [34]. An in-

termediate result of our method is the intensity image of poste-

rior probabilities, which could possibly benefit from a threshold

probing as in [2] or region growing schemes.

Automated segmentation of fundus images provides the basis

for automated assessment by community health workers. Skele-

tonized images of the vessel pattern of the ocular fundus can

be analyzed mathematically using nonlinear methods such as

global fractal [33] and local fractal [7] analysis based on the

wavelet transform thus providing a numeric indicator of the ex-

tent of neovascularization. Our ongoing work aims at applying

the shape analysis and classification strategies described in [33]

to the segmented vessels produced by method described in this

work.
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