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Abstract

Due to the complex morphology and characteristic of retinal vessels, it remains

challenging for most of the existing algorithms to accurately detect them. This paper

proposes a supervised retinal vessels extraction scheme using constrained-based

nonnegative matrix factorization (NMF) and three dimensional (3D) modified attention

U-Net architecture. The proposed method detects the retinal vessels by three major

steps. First, we perform Gaussian filter and gamma correction on the green channel of

retinal images to suppress background noise and adjust the contrast of images. Then,

the study develops a new within-class and between-class constrained NMF algorithm

to extract neighborhood feature information of every pixel and reduce feature data

dimension. By using these constraints, the method can effectively gather similar

features within-class and discriminate features between-class to improve feature

description ability for each pixel. Next, this study formulates segmentation task as a

classification problem and solves it with a more contributing 3D modified attention

U-Net as a two-label classifier for reducing computational cost. This proposed network

contains an upsampling to raise image resolution before encoding and revert image to

its original size with a downsampling after three max-pooling layers. Besides, the

attention gate (AG) set in these layers contributes to more accurate segmentation by

maintaining details while suppressing noises. Finally, the experimental results on three

publicly available datasets DRIVE, STARE, and HRF demonstrate better performance

than most existing methods.

Keywords: Nonnegative matrix factorization, Retinal vessel segmentation,

Within-class and between-class constrained, 3 Dimension, Attention U-Net

1 Introduction

The retina is the only part of the human body that allows direct non-invasive visualization

of its anatomical components. There is a close relationship between retinal vascular sys-

tem and many diseases such as diabetic retinopathy, stroke, and cardiovascular disease.

Manual labeling of blood vessels in fundus images is accepted by the medical commu-

nity, but it is a long and time-consuming task, which requires medical specialists to be
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competent. Therefore, the automatic detection of blood vessels instead of using only

manual depiction is the most critical step for computer-aided diagnosis systems.

In this paper, a hierarchical classification framework for retinal vessel extraction is

developed by using within-class and between-class constraint nonnegative matrix factor-

ization (NMF) and three-dimensional (3D) modified attention U-Net architecture. The

proposed framework performs on full green channel (G-channel) images directly and

contains three major steps: (i) before feature extraction and classifier training, the input

retinal images are pre-processed by Gaussian filtering, gamma correction, and region

processing, respectively. This step is to reduce noise and outlier and adjust image con-

trast for better detection process of retinal vessel; (ii) this study considers the spatial

relationship for each pixel by generating a vector ranking its neighboring 9 × 9 pixels.

By placing each element of this vector as the row and the numbers of pixels as the col-

umn, thus, a nonnegative data matrix is formed. Then, we incorporate within-class and

between-class constraints into the standard NMF objective function to obtain the non-

negative low-dimensional representation of the neighborhood information of each pixel.

The within-class and between-class constraints are applied respectively into objective

function of classical NMF to better discriminate features between different classes. This

could be achieved by assimilating same classes eigenvectors with within-class constraint

and differentiating different classes’ eigenvectors by between-class constraint. By applying

NMF, the coefficient matrix at lower dimension with 20 channels containing meaningful

neighboring information is ready for final retinal vessel segmentation using network; (iii)

we present a modified attention U-Net structure aim more precisely on extracting vessels

by limited computation. This proposed networkmodel is a symmetric U-shaped structure

with attention mechanism so that the contraction path and expansion path can highlight

salient feature useful for segmentation task. Unlike the conventional U-Net [1] that a large

number of parameters would be trained in several input feature channels, we design a

modified U-shape structure aim more precisely on extracting vessels. More specifically,

we add an upsampling layer before the U-Net structure and encode information with

only three max-pooling layers based on the feature maps with higher resolution obtained

from upsampling layer. Similarly, three upsampling layers in the decoder path following

by one max-pooling layer is built symmetrically to achieve end-to-end classifier. At the

same time, an attention gate (AG) at each layer is set to record and convey detail informa-

tion to decode path so that a more accurate identification of all vessels would be achieved

in general. Being quantitatively and qualitatively verified on three public datasets DRIVE,

STARE, and HRF, the proposed approach achieves better performance over other related

algorithms.

The rest of the paper is organized as follows: Section 2 introduces some related works.

Section 3 presents details of the proposed framework. All experiments and corresponding

analyses are displayed in Section 4. At last, Section 5 outlines the concluding remarks and

future research directions.

2 Related works

Existing segmentation approaches of retinal vessels could be divided into two categories:

supervised and unsupervised by the use of manual labeled ground truth or not.

Unsupervised algorithms are designed according to inherent features of the reti-

nal vessels without relying on artificial labeled images. Recent proposed unsupervised
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approaches can be roughly divided into matching filter methods [2], vascular tracing

methods [3], level set methods [4], model-based methods [5], hierarchical image matting

models [6], etc. Generally, although unsupervised algorithms improve segmentation per-

formance, thin vessels which affect the whole performance considerably is difficult to be

detected [7].

Supervised algorithms require samples of vessels and non-vessels pixels from train-

ing databases with help of ophthalmologists to classify pixels for vessel detection. The

algorithm usually uses extracted feature vector to train the classifier and to identify

whether pixels belong to vascular or non-vascular. For example, Zhu et al. [8] designed a

multi-dimensional discriminative feature vector extracting local features for vessel detec-

tion. Other supervised segmentation approaches include using Gaussian mixture model

(GMM) [5], support vector machine (SVM) [9], random forest [10], various clustering

strategies [11], etc. Supervised methods rely on hand-design feature extraction schemes

predefined with prior knowledge. Features must be carefully defined in advance before

entering the classifier, while features needed to be redesigned as dataset changes. Some

other algorithms combined several types of features into one feature vector, while dimen-

sionality problem may emerge [12]. Soares et al. [13] proposed a feature-based Bayesian

extractor that build a 7-D feature vector for every pixel by Gabor wavelet transform.

Lupascu et al. [14] adopted another 41-D feature vector for classification. Therefore, NMF

[15], a linear dimensionality reduction technique commonly used for extracting basic and

latent features from high-dimensional data matrices, is wildly adopted. However, latent

semantic structure within data set may not be discovered well by the basis vectors in

classical NMF while high-dimensional data are represented by low-dimensional vectors

[16]. In addition, since features are extracted from similar images, some inherent rela-

tions should have existed in these features whereas sometimes failed to. To overcome

these problems, some local-based feature representation NMF algorithms by integrating

sparseness constraints and graph constraints were presented [17, 18].

Recently, deep learning-based schemes have shown enormous success on pixel-wise

classification problems due to its good performance in feature learning [19]. Carefully

designed convolution neural network (CNN) could well serve instead of manual selec-

tion of features on vessel detection task. For example, Szkulmowski et al. [20] trained

a CNN for vessel detection using augmented retinal vessel data. Soomro et al. [7] pro-

posed a strided-CNN model that is very effective for thin vessel detection. This model is

an encoder and decoder architecture where the pooling layers are replaced with strided

convolutional layers. Another deeply supervised neural network with short connections

to transfer semantic information between side-output layers [21]. In [22], Guo et al. for-

mulated retinal vessel extraction task as a classification problem and solve it using CNN

as a two labels classifier. Although CNN-based architectures can automatically learn fea-

tures by convolution layers and pooling operations without prior knowledge, one of the

main drawbacks of these methods is large number of training data required. Recently, a

symmetric encoder and decoder structure U-Net was introduced and was approved to

segmentation tasks with a small amount of data [1].Wang et al. [23] introduced amodified

U-Net architecture to capture more semantic information of fundus images by designing

two encoders: spatial path and context path. Bhatkalkar et al. [24] integrated attention

module in skip-connections between encoders and decoders of U-Net to highlight salient

features. Recently, attention block is widely applied to emphasize targets and reduce the
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effect of noise. In [25], Zhang et al. introduced an attention guided network (AG-Net)

to achieve the retinal blood map. Li et al. [26] designed a mini-UNets architecture per-

formed based on the output of classical U-Net that further achieved the obscured detail

of vessel.

3 Methodology

The entire process of the proposed approach for extracting retinal vessels from fundus

image consists of three main phases: (i) pre-processing of fundus images, (ii) reduce

dimension using constrained NMF, and (iii) segmentation via 3D modified attention

U-Net. Figure 1 shows the block diagram of this proposed approach.

3.1 Image preprocessing

The main purpose of image pre-processing is to suppress background noise in images

through Gaussian filter, and to equalize illumination of the optic disc and the fovea via

Gamma correction. At last, the vascular features are emphasized by using region process-

ing operator. In this paper, the G-channel of the retinal image is applied since it reflects

the highest contrast, as shown in Fig. 2.

The first stage is to reduce background noise with Gaussian filter, which is a highly

effective measure dealing with random noise. The filter function of this filter is written as

follows

Gσ (x, y) =
1

√
2πσ 2

e
− x2+y2

2σ2 (1)

where σ denotes the standard deviation. The value for σ is about 0.8 in this paper.

In the second stage, the gamma correction is used to adjust the contrast of images and to

enhance local details. Besides, it can reduce the impact of local shadow and light variance

of images. According to [27], the formula based on gamma correction is defined by

Fig. 1 Block diagram of the proposed approach for retinal vessel extraction
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Fig. 2 Image preprocessing, from left to right: original images, G-channel images, Gaussian filter images,

gamma-corrected images, and region processed images

f (I) = Iγ . (2)

In the experiment section, we will discuss how to set the best value of γ , From Fig. 2,

we can observe that γ correction method provides high contrast image.

Region processing is the last stage of pre-processing, the gamma corrected images are

converted, and the background around the retina is replaced with a density level of the

same region in its mask image. The label image is binary image, where vessel area is 1 and

non-vessel area is 0. But the corrected G-channel image showed vessel areas closing to 0,

non-vessel area approaching to 1, and the mask area equals 0. Therefore, we reversed the

image first, so that vessel area approaches to 1, non-vessel area approaches to 0, similar

to the representation of label image. Mask area showing 0 is returned to zero according

to the mask image.

3.2 Within-class and between-class constraint NMF

1) Image coding: This algorithm would first extract features for every pixel by its sur-

rounding information. This algorithm constructs a 9×9 window with the observed pixels

as center, the nearest 80 pixels having its G-channel density value collected. Figure 3 dis-

plays the block diagram of the proposed encoding method. This algorithm uses a column

vector of 81 (including itself ) as the original feature vector of every pixel. After all the

original images (including training images and test images) are encoded into one matrix

X, the original feature vectors are extracted from every pixel of all images and then all

pixels are spliced to a matrix X with size of m × n by columns. In matrix X, one column

denotes neighborhood information of a pixel.

Fig. 3 Block diagram of the proposed encoding method
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2) Proposed constraint-based NMF: Given a data matrix X =[ xij]=[ x1, x2, · · · , xn]∈
R
m×n , the standard NMF aims to find two nonnegative matrices U =[uik]=

[u1,u2, · · · ,ut]∈ R
m×t and V =[ vkj]=[ v1, v2, · · · , vn]∈ R

t×n to approximate the given

matrix X using

X ≈ UV . (3)

The objective function of classical NMF can be formulated by

min
U ,V

J(U ,V ) = ||X − UV ||2F , s.t, U ,V ≥ 0, (4)

where || · ||F denotes Frobenius norm (F-norm). Lee et al. [28] proposed that local

minimum can be found by using the following multiplicative updates rules.

uik ← uik
(XVT )ik

(UVVT )ik
, vkj ← vkj

(UTX)kj

(UTUV )kj
. (5)

In this paper, we proposed a new objective function to properly obtain the optimal

solution. Let r and c represent row and column of an image I, the total number of images

in its dataset and training set isN and T̄ , respectively. Let the feature matrix of image I be

X ∈ R
m×n , where m = w × w and n = r × c × N , xi (i = 1, ..., n) represents the feature

of the ith pixel. The feature of each pixel is an m-dimensional vector, which is achieved

by using a square window at size of w × w (w = 9 in this paper) so that m is the total

number of neighboring pixels around the current pixel including itself. Thus, the spatial

relationship between neighboring pixels is taken into account.

The coefficient matrix is given as U ∈ R
m×t , and the inner dimension t is set to 20 in

this paper. The new feature matrix after reducing dimension is defined as V ∈ R
t×n . In

this case, the proposed objective function consists of the three terms could be given as

follows

min
U ,V ,G

J(U ,V ,G) = ||X − UV ||2F + α||L − UG||2F + β||G − GA||2F
(

τ ||GB||2F
)−1

, (6)

where α and β adjust the contributions of two constrained terms. In this model, we ran-

domly select T̄ images from dataset as training set. According to ground truth of these

images, we split the coefficient matrix L ∈ R
m×τ into L =[ LaLb] , where La ∈ R

m×a ,

Lb ∈ R
m×b , τ = r × c × T̄ , τ = a + b . The first La column of the matrix L repre-

sents that all of these training images have a pixels belonging to blood vessels, and b pixels

belong to the background. After NMF decomposition,G ∈ R
t×τ is a t× τ matrix with the

first a column denoting the features of pixels which belong to blood vessels. The aim of

the second regularized term on the right-hand side of (6) is to find the two nonnegative

matrixesG andU in order to maintain the data space structure of original selecting train-

ing images on low-dimensional data space obtained from the matrix factorization. The

first few columns of this matrix G represent the pixels that belong to vessels. The goal of

the third regularized term of (6) is to take the within-class and between-class distances as

additional constraint on the proposed objective function. Let matrix A being
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The constrained term ||G − GA||2F is designed in such a way that within-class distance

between the feature vector of each pixel and the mean value is expected to approach zero.

The study also considers the F-norm as a constraint on matrix GB to take between-class

scatter distance into consideration in our model. To do is, we define the vector B ∈ R
τ×1

B =
[

1
a · · · 1

a − 1
b · · · − 1

b

]T
. (8)

In our method, two constrained terms ||G−GA||2F and ||GB||2F are negatively correlated.
Specially, the ideal situation is that the within-class distance ||G − GA||2F decreases while

between-class distance ||GB||2F increases. The constraint term ||GB||2F is multiplied by the

coefficient τ to balance its weight values and ||G − GA||2F .

For convenience of calculations, α in (6) is set to one, and β is defined τ (α = 1,β =
τ ). Thus, the right-hand side of the third term of (6) becomes ||G − GA||2F ||GB||−2

F . In

order to avoid the initial value of this matrix at the beginning of the iteration being zero

while considering that ||GB||2F >> 1 , this paper rewrites the objective function (6) as

follows

min
U ,V ,G

J(U ,V ,G) = ||X − UV ||2F + ||L − UG||2F + ||G − GA||2F
(

||GB||2F + 1
)−1

. (9)

The following expression is obtained by taking partial derivatives of J with respect to

coefficient matrix U and feature matrix V.

∂J

∂U
= −XVT + UVVT − LGT + UGGT , (10)

∂J

∂V
= −UTX + UTUV . (11)

Taking a derivative of J with respect to G, we have

∂J

∂G
= −UTL + UTUG

+
(

G − GA − GAT + GAAT
) (

||GB||2F + 1
)

− GBBT ||G − GA||2F
(

||GB||2F + 1
)2

.
(12)

According to Karush-Kuhn-Tucker (KKT) conditions [29] ψikuik = 0 and φkjvkj = 0 ,

we have the following formulas for uik and vkj .

(

2UVVT + 2UGGT
)

ik
uik −

(

2XVT − 2LGT
)

ik
uik = 0, (13)

(

2UTUV
)

kj
vkj −

(

2UTX
)

kj
vkj = 0. (14)
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Similarly, ϕklgkl = 0 leads to the following expression.
(

2
(

G − GA − GAT + GAAT
)

(

||GB||2F + 1
)

−
2GBBT ||G − GA||2F

(||GB||2F + 1)
2

)

kl

gkl

+
(

−2UTL
)

kl
gkl +

(

2UTUG
)

kl
gkl = 0.

(15)

Then, the updating rules of U and V can be deduced from the above equations as

follows.

uik ← uik

(

XVT + LGT
)

ik
(

UVVT + UGGT
)

ik

, vkj ← vkj

(

UTX
)

kj
(

UTUV
)

kj

. (16)

Using similar strategy, the multiplicative update of matrix G would be

gkl ← gkl

(

UTL
(

||GB||2F + 1
)2 +

(

GA + GAT
) (

||GB||2F + 1
)

+ GBBT ||G − GA||2F
)

kl
(

UTUG
(

||GB||2F + 1
)2 +

(

G + GAAT
) (

||GB||2F + 1
)

)

kl

.

(17)

Because matrix A is a symmetric positive definite matrix, that is GAT = GA, GAAT =
GA , thus, (17) can be rewritten as follows

gkl ← gkl

(

UTL
(

||GB||2F + 1
)2 + 2GA

(

||GB||2F + 1
)

+ GBBT ||G − GA||2F
)

kl
(

UTUG
(

||GB||2F + 1
)2 + (G + GA)

(

||GB||2F + 1
)

)

kl

. (18)

The optimizing scheme of this proposed constrained-based NMF is summarized in

Algorithm 1.

Algorithm 1 The optimizing scheme of constrained-based NMF

Input: X, L;

Output: V ;

1: Initial: U by using the random initialization, V and G with one. Construct matrices

A and B;

2: Repeat:

Update U according to (16);

Update V using (16);

Update G by using (18);

3: Until the objective function (9) convergence;

4: Return V ;

3)Image regeneration: After final generation of a more contributing feature matrix V

where columns represent neighborhood information of n pixels , only 20 (t = 20 in this

paper) rows remained for feature description. For further utilization of this contributing

low dimension feature description method, we convert matrix V back to images with

every pixel of the same encoding sequence. Thus, every pixel of the processed image with

neighborhood feature information of 20 dimensions would be conveyed to proposed 3D

segmentation networks for further vessel classification. Figure 4 shows the block diagram

of image set regeneration.
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Fig. 4 Process of image sets regeneration

3.3 Proposed 3Dmodified attention U-Net

Computer vision-based blood vessel detection requires algorithms with high accuracy

and relatively convenient computation. By comprehensively describing neighborhood

information using our constrained-based NMF, this study designs an end-to-end 3D

modified attention U-Net architecture as a trainable classifier for vessel extraction. The

architecture of this proposed network is shown in Fig. 5. Considering that current

attention U-Net [24] plays only basic function in classification, the proposed 3D mod-

ified attention U-Net aims at reducing computational complexity with limited resource

devoting to region of intense classification need.

Specifically, input data obtaining from N images where one image would be saved as

r × c with 20 channels representing neighborhood features. These data would be firstly

divided into patches at size 32 × 32 × 20 and conveyed into the whole network. This

network set an upsampling layer raising patch size by doubling the original input size

before conventional maxpooling layers. Besides, only three maxpooling layers remain in

our network compared to original four in U-Net compressing patch size. Symmetrically,

three upsampling layers followed by a maxpooling recovering patch size is set in concert

with encode path. This new design achieves comprehensive result among networks in

terms of computational cost and segmentation accuracy.

Fig. 5 Architecture of the proposed 3D modified Attention U-Net
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Fig. 6 The structure of the Attention Gate

Considering that retinal vessel segmentation is a highly specific task on few image

regions with intense meaningful information, three AGs conveying contributing informa-

tion are inserted as shown in Fig. 6. Here, x signal conveying attention maps maintaining

fine-grained details adding with g signal from former layers would generate a y output

multiplying with former feature maps. In this way, more focus on salient features would

be distributed on more detailed feature maps, and vessel areas would gain more learning

resources, where large area of non-vessel retina would be suppressed.

4 Results and discussions

In this section, we first describe the datasets and metrics used in the experiment, and

then detail the experimental results and performance analysis of the proposed method on

some publicly used benchmark datasets.

4.1 Benchmark datasets

The framework will be evaluated based on high-resolution images from three publicly

available datasets: DRIVE1 [30], START2 [31], and HRF3.

The DRIVE contains 40 fundus images which the size of each image is 565×584 pixels

with 8 bits per color channel. All of the images have been segmentedmanually as a ground

truth and their field of view (FOV) binary masks are also provided. The DRIVE dataset

used in this paper contains 40 fundus images, in which training set is consisted of 35 color

retinal images, and the other 5 images are adopted for testing.

The START contains 20 fundus images with resolution 700×605 pixels and 8 bits per

color channel, in which 10 with pathologies and 10 without any pathologies. All images

in this dataset are manually segmented by two observers. The results of the first observer

are regarded as the ground truth. In the experiment, we randomly selects 16 images with

hand labeled results for training and left 4 images for testing.

The HRF database [32] consists of 45 high-resolution eye fundus images at size

3504×2336 segmented by a group of experts working in the field of retinal image anal-

ysis and clinicians from the cooperated ophthalmology clinics. In specific, the dataset

could be divided into 15 images of healthy patients, 15 images of patients with diabetic

retinopathy and 15 images of glaucomatous patients. One ground truth image and a mask

determinate field of view (FOV) is attached for each image. In this paper, we randomly

select 41 images for training and the remaining 4 images for test. Testing images contain

1http://www.isi.uu.nl/Research/Databases/DRIVE/
2http://cecas.clemson.edu/~ahoover/stare/
3https://www5.cs.fau.de/research/data/fundus-images/

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://cecas.clemson.edu/~ahoover/stare/
https://www5.cs.fau.de/research/data/fundus-images/
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one healthy patient image (No.02_h) and three glaucomatous patient images (No.05_g,

No.09_g, No.10_g).

4.2 Experimental environment and evaluation metrics

This subsection is to evaluate the segmentation performance on DRIVE and START

datasets and compares the proposed method with state-of-the-art algorithms. All exper-

iments are run on a small server with Intel (R) Core (TM) i7-9700KF CPU (4.8 GHz)

with NVIDIA GeForce RTX 2080 Ti GPU. Our architecture was built based on a publicly

available Python 3.7 platform and was implemented on Tensorflow backend Keras deep

learning library.

The performance of the vessel segmentation is measured using sensitivity (SE),

specificity (SP), accuracy (ACC), precision, and recall. They are defined as follows:

SE =
TP

TP + FN
, SP =

TN

FP + TN
, (19)

ACC =
TP + TN

TP + FP + FN + TN
, (20)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (21)

where TP and TN denote the number of pixels correctly classified as vessel pixels and

non-vessel, respectively. FN represents the number of vessel pixels incorrectly labeled as

non-vessel. FP is the number of non-vessel pixels incorrectly labeled as vessels. Precision

and Recall measure the exactness and completeness of model performance. In addition,

the performances have been examined in terms of standard indexes, such as AUC (area

under the curve) and ROC (receiver operating characteristic curve) [33]. The AUC value

is calculated using the trapezoidal rule. The closer the AUC value is to 1, the better the

performance of the corresponding blood vessel segmentation algorithm. The ROC curve

is a plot of SE versus 1-SP by varying the threshold on probability map.

Fig. 7 Euclidean distance curve against parameter γ in gamma correction
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Fig. 8 The loss values of proposed network for vessel segmentation during 150 epochs. a STARE dataset. b

DRIVE dataset

4.3 Selection of parameter

This subsection discusses which value of γ from the gamma correction phase is most

appropriate for the proposed approach. Thus, the pre-processing performances on ten

images randomly selected from DRIVE dataset and compares the enhanced images with

the ground truth in terms of Euclidean distance. Figure 7 shows the effect of varying value

of γ in gamma correction on Euclidean distance. It is experimentally found that there is

an obvious bottom point of the Euclidean distance while parameter γ increases, and the

Fig. 9 Segmentation results of the proposed methodology, from up to down is original retinal images,

ground truth, and the corresponding predications, respectively
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Table 1 Performance of proposed method on different datasets

STARE dataset Predicted condition

Prediction positive Prediction negative

True condition Condition positive TP=87800 FN=11064

Condition negative FP=16627 TN=817366

DRIVE dataset Predicted condition

Prediction positive Prediction negative

True condition Condition positive TP=85926 FN=15948

Condition negative FP=17268 TN=789017

minimum is achieved at γ = 0.14. Based on this parameter study, we adopt γ = 0.14 in

the following experiments as our method can produce the best results in this case.

4.4 Experiment on retinal vessel extraction

The training processing is summarized as follows: After the network model generated,

some processes are implemented before training. Reading the feature matrix, mask, and

ground truth images of the original training set respectively, pixels outside the mask

regarded as the region of interesting (ROI) could be gathered into a label set. Through

this measure, useless information could be abandoned before training. We train and test

the proposed network model on both STARE and DRIVE datasets and fine-tuned our

network with a learning rate of 5e − 5, a weight decay of 1e − 6. A dropout rate of 0.2

was used between two convolutional layers. Batch size was set to 32, and 150 epochs were

used to ensure convergence. In the training phase, we used the Adam optimizer [34]. The

loss values verse epochs obtained in the process of model training are given in Fig. 8.

During the image prediction phase, a similar data process as the training model,

including pre-processing and constrained-based NMF, is carried out as well. Reading the

information of each pixel and locating them in mask images of the original testing set,

pixels which do not fall in the mask areas are conveyed into the proposed network model

for testing. After a new label set (segmentation result) is outputted by the predicting

process implemented by our model, pixels in the label set are filled back into the image

with the order they are picked. Figure 9 shows some examples generated by the proposed

methodology on DRIVE dataset, from which we can observed that our method is avail-

able to extract abundant vascular branches at different thickness. To prove the validity

of the proposed, we evaluate quantitatively the retinal vessel segmentation results on test

sets of both DRIVE and STARE by comparing the average values of the predictions with

ground truth. Four different evaluation metrics ACC, SE, SP, and precision are applied,

where all of them are computed fromTP, FN, FP, and TN. Tables 1 and 2 list the evaluation

results obtained by using the proposed framework on different datasets. The ROC curves

of two databases are measured to quantify the proposed predication results and are pro-

vided in Fig. 10. As can be observed, our method performs better in detecting vessels on

STARE than DRIVE. Our model also generates high AUC on two test tasks, at 0.9909 for

Table 2 Performance of proposed method on different datasets

Datasets Accuracy Sensitivity Specificity Precision

STARE 0.9703 0.8881 0.9801 0.8408

DRIVE 0.9634 0.8434 0.9786 0.8626



Yu and Zhu EURASIP Journal on Image and Video Processing          (2021) 2021:6 Page 14 of 21

Fig. 10 ROC curve and precision-recall curve, up: STARE dataset, down: DRIVE dataset

STARE, and 0.9839 for DRIVE. These values demonstrate the validation of our proposed

framework on predicting retinal vessels.

4.5 Comparison with other network models

To test the effectiveness of the proposed framework, we compared the output of our

approach with several advanced algorithms U-Net4 [1], AG-UNet5 [35], IterNet6 [26],

DenseNet7 [36], and V-GAN8 [37] on STARE and DRIVE. Their segmentation results are

obtained by running publicly available codes.

All these deep convolution network-based algorithms are able to extract most of these

vessels, while the proposedmethod performs well on most images, even when image con-

trast is low. Four images demonstrating retinal vessel segmentation algorithms results

and ground truth from DRIVE dataset are shown in Fig. 11. Figure 12 shows the enlarged

images of six models by bilinear interpolation to the size of 200 × 200 pixels on three

images from STARE dataset. It could be observed that crossing vessel branches and thick

vessels are two most significant factors for misclassification, which a different level is

presented under different algorithms. U-Net and AG-UNet achieve similar segmentation

while the inserted AG presents slightly better preservation of vessel details. However, thin

vessels still remain broken or blur. In contrast, DenseNet and V-GAN almost capture

all suspicious vein compared to the other four methods. But all predicted vascular net-

works seem to be exaggerated so that distinction of vessel thickness are not significant,

4 https://github.com/ternaus/robot-surgery-segmentation
5https://github.com/ztzhao6/Liver-Segmentation-with-AttentionUNet
6https://github.com/conscienceli/IterNet
7https://github.com/DeepTrial/Retina-VesselNet
8https://github.com/jaeminSon/V-GAN

https://github.com/ternaus/robot-surgery-segmentation
https://github.com/ztzhao6/Liver-Segmentation-with-AttentionUNet
https://github.com/conscienceli/IterNet
https://github.com/DeepTrial/Retina-VesselNet
https://github.com/jaeminSon/V-GAN


Yu and Zhu EURASIP Journal on Image and Video Processing          (2021) 2021:6 Page 15 of 21

Fig. 11 Comparison of vessel segmentation results of existing algorithms with the proposed method on

DRIVE dataset, from up to down is input images, ground truth, U-Net, AG-UNet, IterNet, DenseNet, V-GAN,

and ours, respectively
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Fig. 12 Vessel segmentation results and magnified regions on STARE dataset, from left to right is input

images, ground truth, U-Net, AG-UNet, IterNet, DenseNet, V-GAN, and ours, respectively

and some vessels are excessive detected. IterNet, however, presents both problems of the

above methods where detected areas are all of similar thickness, and details are detected

less manifest. Comparing with all these methods, our model results could avoid detecting

either too coarse or blurred. Interrupting strips are also less likely to be falsely captured,

whereas inapparent blood vessels could be identified more approximate the ground truth.

For more visually convenient comparison, we list six methods in a reasonable sequence

as shown in Fig. 12.

For more validation of the proposed method, we calculate the evaluation metrics of

vessels of resulted images using their corresponding ground truth. After that, we calcu-

late the SE, SP, ACC, and precision of vessels of DRIVE and STARE datasets as shown

in Tables 3 and 4. Higher sensitivity assures all potential vessel areas being detected, and

higher specificity assure correctness among detected area. Consistent with our visual

analysis, the SP value of U-Net and AG-UNet is higher on both datasets at about 0.97.

This indicates that the identification is relatively conservative and basic so that uncertain

areas such as thin and blur vessels maybe missed. But the SE of V-GAN are higher than

other network at about 0.95 on STARE and 0.85 on DRIVE. This means the classification

are relatively coarse and suspicious areas are of high likelihood to be identified as vessels.

The results of IterNet also consists with former evaluations, where the SEs are smaller

than DenseNet and V-GAN but larger than U-Net and AG-UNet. Also, the SPs are either

similar with methods from both trends or staying at a moderate level. However, it could

be observed that these methods have their own characteristics, while neither being too

specific nor too sensitive meet the requirement of efficient real-world application. Our

method shows a good tradeoff between both metrics, while qualified results are reached

compared to all methods. If we look at ACC and precision, which higher figure means

Table 3 Performance analysis of all algorithms on STARE databases with respect to the measuring

metrics

Methods Accuracy Specificity Sensitivity Precision

U-Net [1] 0.9561 0.9765 0.7758 0.7885

AG-UNet [35] 0.9636 0.9778 0.8437 0.8188

IterNet [26] 0.9517 0.9575 0.9027 0.7157

DenseNet [36] 0.9495 0.9503 0.9424 0.6925

V-GAN [37] 0.9482 0.9475 0.9540 0.6832

Ours 0.9703 0.9801 0.8881 0.8408
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Table 4 Performance analysis of all algorithms on DRIVE databases with respect to the measuring

metrics

Methods Accuracy Specificity Sensitivity Precision

U-Net [1] 0.9491 0.9796 0.7071 0.8148

AG-UNet [35] 0.9599 0.9775 0.8201 0.8221

IterNet [26] 0.9574 0.9831 0.7791 0.8691

DenseNet [36] 0.9604 0.9750 0.8449 0.8106

V-GAN [37] 0.9560 0.9689 0.8541 0.7763

Ours 0.9634 0.9786 0.8434 0.8626

better precise of a network, U-Net and AG-UNet present generally higher values than the

other three methods. Nonetheless, our method achieves the highest ACC at 0.9703 and

0.9634, and the highest precision at 0.8726 and 0.8408.

4.6 Comparison of segmentation results on high-resolution dataset

Since high resolution images are becoming common in clinical use, we evaluate our

method on HRF dataset (image size 3504×2336 pixels) in this experiment. We compare

the proposed approach with several state-of-the-art methods and retinal vessel segmenta-

tion results are displayed in Fig. 13. Among these methods, Soares et al. [13] is a standard

segmentation algorithm while the others are all based on CNN. Some competitive meth-

ods proposed recently [37, 38] are also engaged in comparative experiment. It could be

seen from Fig. 13 that traditional segmentation method [13] shows a relatively blur vessel

outlines than CNN-based approaches. U-Net and AG-UNet still seem to miss thin ves-

sels, and DenseNet and V-GAN depict relatively thick blood vessels for any suspicious

area. Different from segmentation results on STARE and DRIVE, IterNet fails to capture

vessels around the optic discs on images from HRF dataset. M-GAN and our approach

both achieve competitive results on these high-resolution images, where our approach is

slightly more sensitive to thin vessels. It could be observed from Table 5 that traditional

segmentation method [13] show less satisfied results in terms of precision and sensitivity,

although test time is noticeably less than other CNN-basedmethods. All methods achieve

similar level of specificity where M-GAN is 0.003 slightly higher than ours. Different

from previous results, AG-UNet is slightly more sensitive than other approaches under

HRF database while sensitivity of V-GAN dropped to 0.8196, second only to AG-UNet.

Our approach and M-GAN both achieve competitive results where M-GAN achieves the

highest accuracy at 0.97 and our approach arrives at the highest precision at 0.8947. Nev-

ertheless, our approach trains for 89 seconds per epoch and tests for 17 s per image which

is relatively quicker than M-GAN. In general, all experimental results keep the same level

of figures as on previous datasets. Our approach shows advantage on high-resolution

database in terms of specificity and precision.

The advantage of our method is mainly due to the proposed 3D modified Attention

U-Net architecture and the use of constrained-based NMF, which not only offers highly

discriminative features that help us to classify small segments from non-vessel pixels, but

also improves global spatial consistency of the results. It can be seen from the experi-

ences that our method outperforms these competitive methods in terms of reasonable

and accurate vessels detecting for application purpose.
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Fig. 13 Vessel segmentation results on HRF dataset, from up to down is input images, ground truth, Soares

et al. [13], U-Net, AG-UNet, IterNet, DenseNet, V-GAN, M-GAN, and ours, respectively
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Table 5 Performance analysis of all algorithms on HRF databases with respect to the measuring

metrics, as well as training time per epoch and prediction time on one image (in second)

Methods Accuracy Specificity Sensitivity Precision Training Prediction

Soares et al. [13] 0.9373 0.9671 0.6253 0.6444 – 6

U-Net [1] 0.9577 0.9701 0.6577 0.7308 12 10

AG-UNet [35] 0.9600 0.9875 0.8297 0.8268 29 13

IterNet [26] 0.9623 0.9743 0.7524 0.7284 428 53

DenseNet [36] 0.9639 0.9812 0.7610 0.7747 67 22

V-GAN [37] 0.9617 0.9858 0.8196 0.8213 107 32

M-GAN [38] 0.9700 0.9931 0.6948 0.8800 112 36

Ours 0.9688 0.9903 0.7451 0.8947 89 17

5 Conclusions

In this paper, we proposed a 3D modified attention U-Net architecture along with

constrained-based NMF to extract retinal vessels accurately especially for thin vessels.

The pre-processing steps include gamma correction and region processing to achieve well

contrast images for subsequent calculation. Next, we proposed an novel NMF algorithm

with within-class and between-class constraints to encode and extract neighborhood fea-

ture information of each pixel, while image dimension reducing. Our constrained-based

NMF approach also provide a new choice for computer vision research while compress-

ing dimension is necessary. Next, a 3D modified attention U-Net with an upsampling

beforehand and a downsampling after the three max-pooling layer is proposed. At the

same time, the AGs used in the skip connection highlight useful feature information and

suppress irrelevant content. Finally, to measure the effectiveness of the proposed frame-

work, we tested the proposed model on three datasets DRIVE, STARE, and HRF. The

obtained results and related comparisons shown that the performances of this proposed

scheme were better than most of the exist. The proposed retinal vessel extraction scheme

can be extended to other similar vessel segmentation focused tasks such as cardiovascular

extraction.
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