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ABSTRACT

In the last published concept (1986) for a Retinex computation, Edwin Land introduced a center/surround
spatial form, which was inspired by the receptive field structures of neurophysiology. With this as our starting
point we have over the years developed this concept into a full scale automatic image enhancement algorithm—
the Multi-Scale Retinex with Color Restoration (MSRCR) which combines color constancy with local con-
trast/lightness enhancement to transform digital images into renditions that approach the realism of direct
scene observation. The MSRCR algorithm has proven to be quite general purpose, and very resilient to com-
mon forms of image pre-processing such as reasonable ranges of gamma and contrast stretch transformations.
More recently we have been exploring the fundamental scientific implications of this form of image processing,
namely: (i) the visual inadequacy of the linear representation of digital images, (ii) the existence of a canonical
or statistical ideal visual image, and (iii) new measures of visual quality based upon these insights derived from
our extensive experience with MSRCR enhanced images. The lattermost serves as the basis for future schemes
for automating visual assessment—a primitive first step in bringing visual intelligence to computers.

1. INTRODUCTION

The idea of the retinex was conceived by Edwin Land1 as a model of the lightness and color perception of
human vision. Through the years, Land2, 3 evolved the concept from a random walk computation to its last
form as a center/surround spatially opponent operation3 which is related to the neurophysiological functions
of individual neurons in the primate retina, lateral geniculate nucleus, and cerebral cortex. Subsequently
Hurlbert4–6 studied the properties of this form of retinex and other lightness theories and found a common
mathematical foundation which possesses some excellent properties but cannot actually compute reflectance for
arbitrary scenes. Certain scenes violate the “gray-world” assumption which requires that the average reflectances
in the surround be equal in the three spectral color bands. For example, scenes that are dominated by one
color—“monochromes”—clearly violate this assumption and are forced to be gray by the retinex computation.
Hurlbert further studied the lightness problem as a learning problem for artificial neural networks and found
that the solution produced was a center/ surround spatial form. This suggests the possibility that the spatial
opponency of the center/surround is a general solution to estimating relative reflectances for arbitrary lighting
conditions. At the same time it is equally clear that human vision does not determine relative reflectance but
rather a context dependent relative reflectance since surfaces in shadow do not appear to be the same lightness
as the same surface when lit. Moore et al.7, 8 took up the retinex problem as a natural implementation for analog
VLSI resistive networks and found that color rendition was dependent on scene content. In each study, the
consistent theoretical viewpoint was to perform all spatial processing within each spectral band and prohibit
any interactions between spatial and spectral processing. This restriction provides very strong global color
constancy

In our research9−16 we do not use the retinex theory as a model for human vision color constancy. Rather, we
use it as a platform for synthesizing local contrast improvement, color constancy, and lightness/color rendition
as a goal for digital image enhancement. The intent is to transform the visual characteristics of the recorded
digital image so that the rendition of the transformed image approaches that of the direct observation of scenes.
Special emphasis is placed on increasing the local contrast in dark zones of the recorded image so that it would
match our perception of wide dynamic range scenes, e.g., scenes which contain objects that are partly in sunlight
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and partly in shadow. Basic study of the properties of the center/surround retinex led us in the direction of using
a Gaussian surround used by Hurlbert4–6 as opposed to the 1/r2 surround originally proposed by Land2, 3 or
the exponential surround used by Moore7, 8 for analog VLSI resistive networks. Since the width of the surround
affects the rendition of the processed image, multiple scale surrounds were found to be necessary to provide a
visually acceptable balance between dynamic range compression and graceful tonal rendition. This is discussed
in more detail in Section 2.

The final visual defect in performance was the color “graying” due to global and regional violations of the
gray-world assumption intrinsic to retinex theory. A color restoration was essential for correcting this and took
the form of a log spectral operation similar to the log spatial operation of the center/surround. This produces an
interaction between spatial and spectral processing and results in a tradeoff between strength of color constancy
and color rendition. The color restoration yields a modest relaxation in color constancy perhaps comparable to
human color vision’s perceptual performance. This is discussed in more detail in Section 3.

In the course of our experiments, we noted that the commonly accepted linear representation of a scene’s
radiometric characteristics often fails to encompass its full dynamic range, resulting in images that either have
saturated bright regions to compensate for the dark regions, or clipped dark regions in order to compensate
for the bright regions. A nonlinear representation such as the MSRCR provides th e necessary dynamic range
compression needed to encompass the full dynamic range of the scene. Section 4 lays out these ideas in more
detail.

2. THE MULTI-SCALE RETINEX

The basic form of the Multi-scale retinex (MSR) is given by

Ri(x1, x2) =
K
∑

k=1

Wk (log Ii(x1, x2) − log [Fk(x1, x2) ∗ Ii(x1, x2)]) i = 1, · · · , N (1)

where the sub-index i represents the ith spectral band, N is the number of spectral bands—N = 1 for grayscale
images and N = 3 for typical color images. In the latter case, i ∈ R, G, B—I is the input image, R is the output
of the MSR process, Fk represents the kth surround function, Wk are the weights associated with Fk, K is the
number of surround functions, or scales, and ∗ represents the convolution operator. The surround functions, Fk

are given as:
Fk(x1, x2) = κ exp[−(x2

1 + x2
2)/σ2

k
],

where σk are the scales that control the extent of the surround—smaller values of σk lead to narrower surrounds—
and κ = 1/

(
∑

x1

∑

x2
F (x1, x2)

)

.

As mentioned in Section 1, we found that multiple surrounds were necessary in order to achieve a graceful
balance between dynamic range compression and tonal rendition. The number of scales used for the MSR
is, of course, application dependent. We have found empirically, however, that a combination of three scales
representing narrow, medium, and wide surrounds is sufficient to provide both dynamic range compression and
tonal rendition. Figure 1 shows the input image, the output of the MSR and the outputs when the different
surround functions are applied to the original image. These are obtained by setting k = 1 and Wk = 1.0 in
Equation 1. As is evident from Figure 1, none of the individual scales attains the goal that we are trying to
achieve: visual realism. The narrow and medium surround cases are self-explanatory. The wide-surround case
deserves some discussion because it is a “nice” output image. However, the lack of dynamic range obscures the
features that were visible to the observer, hence it fails the test. The MSR processed image uses features from
all three scales to provide simultaneous dynamic range and tonal rendition.

3. MSR WITH COLOR RESTORATION

The general effect of retinex processing on images with regional or global gray-world violations is a “graying
out” of the image either in specific regions or globally. This desaturation of color can, in some cases, be severe
therefore we can consider the desired color computation as a color restoration, which should produce good color



Figure 1. (a) The original input (b) Narrow surround (c) Medium surround (d) Wide surround (e) MSR output.
The narrow-surround acts as a high-pass filter, capturing all the fine details in the image but at a severe loss of tonal
information. The wide-surround captures all the fine tonal information but at the cost of dynamic range. The medium-
surround captures both dynamic range and tonal information. The MSR is the average of the three renditions.

rendition for images with any degree of graying. In addition we would like for the correction to preserve a
reasonable degree of color constancy since that is one of the basic motivations for the retinex. Color constancy
is known to be imperfect in human visual perception, so some level of illuminant color dependency is acceptable
provided it is much lower than the physical spectrophotometric variations. Ultimately this is a matter of image
quality and color dependency is tolerable to the extent that the visual defect is not visually too strong.

We consider the foundations of colorimetry17 even though it is often considered to be in direct opposition
to color constancy models and is felt to describe only the so-called “aperture mode” of color perception, i.e.
restricted to the perception of color lights rather than color surfaces.18 The reason for this choice is simply that
it serves as a foundation for creating a relative color space and in doing this uses ratios that are less dependent
on illuminant spectral distributions than raw spectrophotometry. We compute a color restoration factor, α
based on the following transform:

αi(x1, x2) = f

(

Ii(x1, x2)/
N
∑

n=1

In(x1, x2)

)

, (2)

where αi(x1, x2) is the color restoration coefficient in the ith spectral band, N is the number of spectral bands,
Ii is the ith spectral band in the input image, and f( ) is some mapping function. In a purely empirical fashion
this was tested on several retinexed images to gain a sense of the visual impact. This proved to restore color
rendition, encompassing both saturated and less saturated colors. Adding this to equation 1, the Multiscale
Retinex With Color Restoration (MSRCR) is given by:

Ri(x1, x2) = αi(x1, x2)
K
∑

k=1

Wk (log Ii(x1, x2) − log [Fk(x1, x2) ∗ Ii(x1, x2)]) . (3)

The results of applying this transformation to the “monochrome” images are shown in Figure 2.

While we have called this additional color computation a “restoration” we have noticed in retrospect that
depending upon the form of f( ), this can be considered as a spectral analog to the spatial operation of the



Figure 2. (Top row) Scenes that violate the gray-world assumption; (Middle row) the MSR output; note the graying of
large areas of monochromes; (Bottom row) The MSRCR output; note that color constancy is diluted in order to achieve
correct tonal rendition.

retinex itself. If we use

αi(x1, x2) = log

(

Ii(x1, x2)/
N
∑

n=1

In(x1, x2)

)

,

then the internal form of the Retinex process and the color restoration process is essentially the same. This
mathematical and philosophical symmetry is intriguing since it suggests that there may be a unifying principle
at work. Both computations are contextual in nature and highly relative and nonlinear. We can venture the
speculation that the visual representation of wide ranging scenes must be a compressed mesh of contextual
relationships even at the stage of lightness and color representation. This sort of information representation
would certainly be expected at more abstract levels of visual processing such as form information composed of
edges, links, and the like but is surprising for a representation so closely related to the raw image. Perhaps in
some way this front-end computation can serve later stages in a presumed hierarchy of machine vision operations
that would ultimately need to be capable of such elusive goals as resilient object recognition.

4. THE MSRCR AND DIRECT VIEWING OF SCENES

Our work with the retinex12, 13 led us away from the world of color and into the world of contrast/lightness per-
ception of complex natural scenes. While the MSRCR synthesizes color constancy, dynamic range compression,
and the enhancement of contrast and lightness, the emphasis here is on the latter. We have used the MSRCR
on many tens of thousands of images and find that it brings the perception of dark zones in recorded images
up in local lightness and contrast to the degree needed to mimic direct scene viewing. Only images with very
modest dynamic ranges do not need such enhancement and for these the exposure must be very accurate to
achieve a good visual representation. Wide ranging reflectance values in a scene, and certainly, strong lighting
variations demand a rather strong enhancement to achieve anything like the visual realism of direct observation.
The dynamic range compression of the retinex computation is the basis for the contrast/lightness enhancement.
The generic character of the computation is the basis for using it as an automatic enhancement. A few examples
of retinex enhancements will serve to convey the degree to which images need to be improved and provide a
demonstration that the MSRCR does, in fact, perform this task with considerable agility (Figure 3) and without
human intervention. These examples highlight a major facet of retinex performance: intrinsically, the degree of
automatic enhancement matches the degree of visual deficit in the original acquired image.



Figure 3. Retinex examples to illustrate that the strength of the enhancement matches the degree of visual deficit in
the original image. (a) Subtle enhancements



Figure 3: Continued: (b) Moderate enhancements



Figure 3: Continued: (c) Strong enhancements



During the course of developing this computation we were led to reexamining some of the most basic ideas
about the imaging process and found that some no longer appeared tenable. Assuming that the goal of imaging is
to produce a good visual representation that is comparable to the direct observation of the scene—or to provide
good visibility for non-visual images such as those formed with thermal Infrared—we had to discard the idea that
imaging is a replication process that produces minimal distortion of measured signals or radiometry. Instead, we
had to accept the idea that imaging is a process of profound transformation that intrinsically involves nonlinear

spatial processing. This shift arises entirely from considering the image as a visual entity and the evident visual
shortcomings of the linear representation of image data (Figure 4). In general the linear representation is not a
good visual representation. This is consistent with the conclusion of a study of the data handling and processing
for color negative film scanning.19 Tuijn describes the correction for all transfer functions so that the image
data is linear, and then explains that this is often visually inadequate—weak in contrast and color. In order to
explore this further, we displayed known linear data taken with a Nikon D1 camera in linear mode on linearized
color computer monitor (gamma correction of 1.6). For a wide array of images, the displayed image is too
dark (Fig 4), and the retinex enhancement (also shown for comparison) was required to produce a good visual
representation. The linear representation can approach a good visual rendering for a very restricted class of
scenes—those with diffuse illumination and restricted ranges of reflectances (or those where white surfaces which
can be saturated). Even so, for this cooperative class a substantial degree of contrast stretching (gain/offset) is
required to achieve a good visual display/print.

While image data can be quite arbitrary in a statistical sense—the histograms of images vary widely—we
observe that the retinexed data were not. As noted in a previous paper,13 histograms of MSRCR processed
images tend toward a characteristic Gaussian-like shape. More recently we have studied regional means (visual
lightness) and standard deviations (visual contrast) and found that they tend to converge on consistent global
aggregates. This implies that a good visual representation can be associated with well-defined statistical mea-
sures for visual quality. In scientific terms, this implies the existence of a canonical visual image as a statistical
practical ideal. Such a defined ideal can then serve as the basis for the automatic assessment of visual quality.
While this work is still underway, we can show some preliminary results which are encouraging. By following
the general idea that the retinex brings regional means and standard deviations up to higher values and that
these approach an ideal goal, we have constructed tentative visual measures and performed some testing. The
measures were set empirically on a small diverse test image set and then were applied to a broad array of images
of all sorts. Figure 5(a) shows a sample of the automatic visual quality assessment by classification into one of
three classes—poor, good, excellent. The classification scheme is based upon the map shown in Figure 5(b).

While more study and development is necessary, the early results do support the idea of a canonical visual
image with well defined statistical properties. Further, the investigation indicates that the MSRCR is a valuable
tool for research purposes—in this case, to define a new statistical measure of visual quality.

5. A HYPOTHETICAL DETERMINISTIC DEFINITION OF VISUAL
INFORMATION

While the retinex experience provides new avenues for the study for statistical image processing, it also sug-
gests deterministic pathways as well. The generic character of the retinex computation suggests that some
new quantitative definition of visual information may be possible. A deterministic definition would contrast
with previous statistical ones based upon information theory.20, 21 Specifically the MSRCR is approximately
performing a log of the ratio of each pixel in each spectral band to both spatial and spectral averages. The
suppression of spatial and spectral lighting variations is achieved at the expense of accepting a significant degree
of context dependency. Simply put, the MSRCR appears to mimic human perception in producing color and
lightness that are influenced by the visual setting in which they occur. The exchange of spatial and spectral
lighting dependencies for spatio-spectral context effects appears to be a very basic element of human vision and
the MSRCR computation. While we do not have a clear definition of information in a semantic sense, or visual
information as some subset of all information, the idea that information is context-relationships is appealing.
The additional factor of a log function suggests a compactness which may be leading in the direction of symbolic
representation—the symbol being the ultimate conciseness and carrier of meaning.



Figure 4: Visual inadequacy of the linear representation



Figure 5: Preliminary performance of Visual Measures for automating visual assessment (a) Global classes



Figure 5: Continued: (b) Visual map showing regional classes

The establishment of context relationships is central to at least the senses of vision and hearing. Music seems
to be based upon pitch relationships with certain ratios producing consonance or dissonance in varying degrees.
Speech recognition must contend with the difficulties of speaker variations, the interdependencies of phonemes,
and all manner of extraneous variations in loudness, temporal rates, degrees of clarity, and the like. For vision,
the awesome task of transforming the signals of vision into the sense of vision must succeed in extracting
information in the presence of all manner of extraneous variations as well as find some very concise ultimately
symbolic representation. Context must be a critical element of vision information as it is in speech and music
where isolated acoustical events become perceived as a fluid temporal mesh of meaningful words or melody,
harmony, and rhythm. Signals are not meaningful in isolation and for vision such contextual relationships as
edge connectedness, textural uniformity, and color reflectances differences seem fundamental to building a some
sort of “visual information”. Perhaps the retinex transformation moves one step in this direction by reducing
extraneous variations, increasing spatial and spectral differences, and providing a foundation for a structure of
relatedness which with subsequent processing can become symbolic.

6. CONCLUSIONS

The visual image remains an enigma full of surprises, some of which we have encountered in our experiences
with retinex image processing. Though we do not understand the intricacies which allow the human vision to
encompass very wide dynamic ranges, and provide color constancy, we have developed an approach that seems
to mimic these behaviors. Because of this, our thinking about the imaging process has changed in basic ways:

1. Imaging should be considered as a process of transformation rather than replication with minimal distor-
tion.

2. The statistical convergence of MSRCR image enhancements to a histogram which closely matches Gaussian
distributions, leads us to postulate the existence of a canonical visual image with consistent statistical
aggregate characteristics. Further, these can be used to construct entirely new visual measures which can
be the basis for the automatic assessment of visual quality of arbitrary images by the computer.

3. A new deterministic definition of visual information emerges from the computational form of the retinex—
namely that visual information is in some sense the log of spatial and spectral context relationships within
the image.

A computation like the MSRCR appears to have two very useful properties simultaneously: a diminishment in
the dependence of the appearance of the image on extraneous variables such as spatial and spectral lighting, and
the construction of compact context relationships. The former is inherently useful because it can lead to better
image classifications, and the latter because it shows very clearly that the appearance of a color is dependent
not only on the spectral characteristics of a pixel, but also its surround. Together, these properties may be able
to provide a basis for bringing more advanced levels of visual intelligence into computing.
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