
Retinoic Acid Signalling and the Control of Meiotic Entry
in the Human Fetal Gonad

Andrew J. Childs1*., Gillian Cowan1., Hazel L. Kinnell1, Richard A. Anderson2, Philippa T. K. Saunders1

1Medical Research Council Human Reproductive Sciences Unit, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom, 2Division

of Reproductive and Developmental Sciences, Centre for Reproductive Biology, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United

Kingdom

Abstract

The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals
from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary
undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal
ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the
spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the
expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and
inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-
synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros
at 8–9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to
detect RA receptors RARa, b and RXRa, we find germ cells to be the predominant target of RA signalling in the fetal human
ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human
fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1.
Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-
dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear
conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis,
but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local
production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary,
mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the
human fetal testis.
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Introduction

Primordial germ cells (PGCs) are the embryonic precursors of

sperm and egg in the adult organism. Although initially

bipotential, with the capacity to adopt spermatogenic or oogeneic

fates, the developmental trajectory of PGCs is dictated by the

somatic sex of the gonad in which they find themselves following

migration [1]. PGCs which find themselves in a female (ovarian)

environment enter meiosis from embryonic day (e)13.5 in the

mouse and 11 weeks gestation in the human, whilst germ cells in

the developing testis progressively enter a state of cell cycle arrest,

resuming proliferation and differentiation only after birth [2].

The mechanism(s) by which this dimorphism in meiotic entry is

established has long been a matter of debate. Recent data have

suggested that meiosis is initiated in the fetal mouse ovary by

retinoic acid (RA) signalling, which acts on germ cells to promote

the expression of Stimulated by Retinoic Acid (Stra8) [3,4], a

protein required for pre-meiotic DNA replication [5]. Germ cells

in the fetal mouse testes are shielded from the meiosis-inducing

action of RA, first by somatic cell expression of the RA-

metabolising enzyme Cyp26b1 [3,4], then subsequently by the

action of the germ cell-expressed RNA-binding protein Nanos2,

which acts to ‘lock in’ the male germ cell differentiation program

and repress Stra8 expression in testicular germ cells following the

downregulation of Cyp26b1 [6].

RA is a potent morphogen that exerts diverse effects during

development and differentiation [7,8,9]. It is tightly regulated by a

group of RA synthesising- and metabolising-enzymes. The

retinaldehyde dehydrogenase enzymes (Aldh1a 1,2 and 3) are

responsible for the oxidation of RA precursors to produce RA

[10,11], while RA signalling is negatively regulated by three RA

degrading enzymes, Cyp26A1, Cyp26B1 and Cyp26C1, which
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metabolize RA into hydroxylated polar derivatives [12]. Although

undetectable in the fetal gonad itself, expression of the RA

synthesis enzymes Aldh1a2 and Aldh1a3 has been demonstrated in

mesonephroi of fetal mice between e11.5 and 13.5, and the

mesonephros has been shown to synthesis high levels of RA at this

stage [3]. A source-sink model of meiotic entry in the fetal mouse

gonad has therefore been proposed [3,4], in which the delivery of

mesonephros-derived RA into the anterior end of the gonad, and

its subsequent diffusion along the gonadal axis, results in the entry

of germ cells in the fetal ovary into meiosis in a rostro-caudal

(anterior-posterior) wave, with expression of PGC/pluripotency-

associated markers such as Oct4 downregulated [13,14,15], and

markers of meiosis such as Stra8, Synaptonemal Complex Protein

3 (Sycp3) and the Dosage suppressor of mck1 homologue 1 (Dmc1)

[14,15] upregulated.

In contrast to the rodent however, germ cell differentiation in

the human fetal ovary does not occur in a synchronized rostro-

caudal wave. Germ cells at different developmental stages are

instead arranged radially, with undifferentiated PGC-like OCT4-

positive/VASA-negative germ cells present at the periphery of the

organ and more differentiated OCT4-negative/VASA-postitive

germ cells deeper within the medulla [16,17]. Significantly, these

subpopulations exist in parallel, overlapping in space and time

such that undifferentiated OCT4-positive cells are still detectable

at the periphery of the ovary several weeks after the first germ cells

enter meiosis, and even beyond the onset of follicle formation [16].

This suggests that local control of germ cell differentiation may

play a greater role in the human fetal ovary than occurs in the

rodent at the equivalent developmental stage, a hypothesis

supported by the recent demonstration of intrinsic RA synthesis

and metabolism by the human fetal ovary [18].

The aim of this study was to determine whether similar

mechanisms to those reported to control the initiation of meiosis in

mouse fetal germ cells also operate to control this process in the

human fetal gonad, by examining the expression and localization

of key components of the retinoid synthesis, signalling and effector

machinery in the human fetal testis and ovary across the period of

meiotic initiation. We report differences in the expression and

localization of RA metabolising enzymes in the developing human

gonad to those reported in mice at similar developmental stages,

notably greater expression of CYP26B1 in the ovary compared to

the testis. We find germ cells to be the primary target of retinoid

signalling in the human fetal ovary, but reveal RA receptor

expression – and activation – to be widespread in the human fetal

testis, indicating that RA metabolism does not fully shield human

fetal testicular cells from RA signalling activity. Finally, we

demonstrate that RA has the capacity to induce STRA8 expression

in the human fetal testis, but does not increase expression of other

genes associated with the initiation of meiosis. Together these data

suggest that the control of meiotic initiation in the human fetal

ovary may not be controlled exclusively by retinoid signalling and

metabolism, and that there may be greater emphasis on the

regulation of meiosis at a local, rather than whole-organ level in

the human fetal ovary, than occurs in mouse.

Results

Expression of the genes encoding retinaldehyde
dehydrogenase enzymes during human fetal gonadal
development
The mesonephros of the developing mouse embryo is thought to

be the site of synthesis of meiosis-inducing RA, and mesonephric

(but not gonadal) expression of the genes encoding RA

synthesising enzyme (Aldh1a2 and Aldh1a3) has been reported

[3]. We examined the expression of RA synthesis enzymes

ALDH1A1, ALDH1A2 and ALDH1A3 at three gestational stages

(namely 8–9, 14–16 and 17–20 weeks gestation) which broadly

reflect the timing of key events in the development of the human

fetal gonad. At 8–9 weeks gestation, sex determination has

occurred, yet male and female gonads contain only undifferenti-

ated proliferating primordial germ cells. By 14–16 weeks, meiosis

has initiated and syncitial germ cell nests are forming alongside

ongoing germ cell proliferation in the fetal ovary. Finally, at 17–20

weeks, germ cell nests in the fetal ovary start to break down,

primordial follicle formation commences and germ cells become

arrested at the diplotene stage of meiotic prophase I. A progressive

process of germ cell maturation also occurs in the fetal testis during

this period, with a progressive loss of primordial germ cell-

associated marker expression [16,19].

In the human fetal testis, ALDH1A1 expression increased

significantly across the gestational range examined (p,0.05;

Figure 1A). In contrast, there was a trend towards decreasing

expression of ALDH1A1in the fetal ovary over the same period

(Figure 1A) although this did not reach significance. We found no

significant differences in expression of ALDH1A1 between gonads

of different sexes of the same gestational age, or between fetal

gonads and mesonephroi from 8–9 week fetuses. ALDH1A2

expression in the fetal testis was significantly higher at 8–9 weeks

gestation than at 14–16 weeks (p,0.05) or 17–20 weeks gestation

(p,0.01. Figure 1B). Furthermore, at 8–9 weeks gestation we

detected a sexual dimorphism in ALDH1A2 expression, with

transcript levels significantly higher in the testis than the ovary at

this developmental stage (p,0.05). Notably, ALDH1A2 transcript

levels were also higher in the 8–9 week human fetal testis than in

mesonephroi from the same fetuses (p,0.01), indicating that in

humans the gonad, rather than the mesonephros, may be the

predominant site of RA synthesis. No significant differences in the

expression of ALDH1A3 were detected either within or between

sexes at any developmental stage (Figure 1C) although, as with

ALDH1A1 and ALDH1A2, expression in both ovary and testis was

not lower than in mesonephros. Together, these data support the

hypothesis [18] that the human fetal gonad has an intrinsic

capacity to produce retinoic acid.

Expression and localisation of retinoid receptors in the
human fetal gonads
Retinoid signals are transduced by two families of receptors,

RAR and RXR receptors, which can hetero- and homodimerise

to regulate gene expression. Inhibition of RA receptor action has

been shown to inhibit meiosis in RA-treated mouse fetal testes

[3,4] and in the human fetal ovary [18]. To identify the possible

receptors involved in retinoid signalling in the human fetal gonad,

we examined the expression of the RA receptors (RARa, b and c)
and the retinoid receptors (RXRa, b and c) at the transcript and

protein level in the developing human fetal ovary and testis.

We detected transcripts encoding all three RAR (Figure 2A–C)

and RXR (Figure 2D–F) receptors in human fetal testes and

ovaries. Interestingly however, we did not detect any significant

changes in expression of any of the receptor isoforms either

between gonads obtained from fetuses of the same sex at different

gestational ages, or between those of different sexes at the same

developmental stage (Figure 2A–F, n= 4–6 per group). Expression

of the retinoid receptor machinery therefore appears not to be

developmentally-regulated at the transcript level in human fetal

gonads around the time of meiosis.

To establish the cellular targets of retinoid signalling in the

human fetal testis and ovary, we performed immunohistochem-

istry using specific antibodies raised against RARa, RARb and

RA Signalling and Meiosis in the Human Fetal Gonad
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RXRa on sections of second trimester human fetal ovaries and testes

(Figure 3). RARa expression was widely distributed in the second

trimester human fetal testis (Figure 3A). Expression was detected in

germ cells, which displayed either nuclear or both nuclear and

cytoplasmic staining. Sertoli cells were predominantly immunopo-

sitive, and displayed strong nuclear staining, although a sub-

population of these cells could be identified which did not express

RARa. Peritubular myoid (PTM) cells were also mostly immuno-

positive, with the nucleus the predominant site of receptor

localisation in this cell type. Interstitial cells were mostly immuno-

positive, although a subpopulation which showed no staining was

also detectable. RARa expression in the human fetal ovary at a

comparable developmental stage was present in germ cells in

syncitial clusters (also known as germ cell nests; Figure 3B), and

localised to both the cytoplasm and nuclei of these cells. Pregranulosa

cells interspersed between germ cells also displayed strong nuclear

staining for RARa. Expression of RARa in streams of mesenchymal

cells between germ cell nests was variable, with some cells displaying

nuclear staining and some being immunonegative.

Like RARa, the expression of RARb in the second trimester

testis was broadly distributed, with germ, Sertoli, PTM and

interstitial cells all immunopositive (Figure 3C). In contrast to

RARa however, the subcellular localisation of RARb appeared to

be predominantly nuclear in all cell types examined. In the fetal

ovary, germ cells in syncitial clusters were again the predominant

site of RARb expression, with a mixture of large weakly-staining

germ cells in which staining was cytoplasmic, and smaller germ

cells with intensely immunopositive-nuclei (Figure 3D). Pregranu-

losa cells displayed no staining, whilst RARb staining was either

weak or absent in the nuclei of mesenchymal somatic cells.

In the fetal testis, Sertoli and PTM cells displayed intense

nuclear staining for RXRa (Figure 3E). Germ cells also expressed

this receptor, but displayed weaker staining in both the cytoplasm

and nucleus. A subpopulation of interstitial cells with immunone-

gative nuclei could also be discerned. In the fetal ovary, RXRa

expression was similar to that of RARb, with germ cells in nests

displaying both nuclear and cytoplasmic staining (Figure 3F),

whilst mesenchymal somatic cells and pregranulosa cells were

immunonegative.

These data suggest that RA and its derivatives likely target a

diverse range of cell types in the second trimester human fetal

testis, whilst germ cells are the predominant target of retinoid

action in the fetal ovary at a comparable developmental stage.

Expression of genes encoding STRA8, CYP26B1 and
NANOS1-3 in the developing human fetal gonad
In the fetal mouse ovary, RA induces the expression of Stra8,

which is required for pre-meiotic DNA replication and progression

Figure 1. Expression of genes encoding retinaldehyde dehy-
drogenase enzymes in the human fetal gonad. qRT-PCR analysis
reveals developmentally regulated expression of ALDH1A1 (A) in the
human fetal testis, with transcript levels increasing significantly
between 8–9 weeks gestation and 14–16/17–20 weeks gestation
(ANOVA; a,b,c; p,0.05, n = 5–6 per group). Expression was not
significantly different between gonads of different sexes at the same
developmental stage, not between ovaries at different gestational ages.
ALDH1A2 expression (B) is also developmentally-regulated in the human

fetal testis, with transcript levels in the first trimester (8–9 weeks
gestation) testis significantly higher than those in the early second
trimester (14–16 weeks) testis (a vs b, p,0.05) and the late second
trimester (17–20 weeks) testis (a vs c, p,0.01). Expression in the testis at
8–9 weeks gestation was also significantly higher than that in the fetal
ovary at the same developmental stage (a vs d, p,0.05). ALDH1A2
transcript levels were also higher in the 8–9 week human fetal testis
than in mesonephroi from age-matched fetuses (a vs e, p,0.01), which
contrasts with the mesonephric-specific expression of Aldh1a2 in the
mouse at a comparable developmental stage. No differences in the
expression of ALDH1A3 (C) were detected between samples of different
gestational ages of the same sex, or between the gonads of different
sexes at the same developmental stage. 8–9, 14–16 and 17–20 denote
the gestational age (in weeks) of specimens, meso: 8–9 week
mesonephroi (pooled male and female). Values denote mean 6 s.e.m..
doi:10.1371/journal.pone.0020249.g001
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through meiosis [5]. Germ cells in the fetal testis are shielded from

the meiosis-inducing action of RA by Sertoli cell-expression of the

RA metabolising enzyme Cyp26b1, and later by the expression of

Nanos2 in germ cells which acts to ‘lock in’ the male fate. As

conservation of the expression patterns of these genes in the

human fetal gonad is likely to reflect functional conservation with

their roles in mice, we compared the expression of STRA8,

CYP26B1 and NANOS2 (and its paralogues NANOS1 and NANOS3)

in the male and female human fetal gonad across the

developmental window encompassing meiotic entry outlined

above.

Expression of STRA8 was low/absent in the gonads of both

sexes at 8–9 weeks gestation (Figure 4A), consistent with these

tissues containing only pre-meiotic proliferating germ cells at this

developmental stage. STRA8 expression increased significantly

between 8–9 and 14–16 weeks in the human fetal ovary however

(p,0.05), concomitant with the initiation of meiosis in this tissue.

STRA8 expression remained very low in the testis at all gestations

examined, and was significantly higher in the fetal ovary than testis

at 14–16 weeks (p,0.0001) and 17–20 weeks (p,0.008) gestation.

The developmental and sex-specific pattern of Stra8 expression

therefore appears to be conserved between the fetal gonads of

humans and mice at comparable developmental stages, as

reported previously [18,20].

In contrast to STRA8 however, the expression of CYP26B1 in

the human fetal gonad diverges significantly from that previously

Figure 2. Expression of genes encoding retinoic acid and retinoid receptors in the human fetal gonad. qRT-PCR analysis of expression of
the genes encoding the retinoic acid (RARa (A), RARb (B) and RARc (C) and retinoid (RXRa (D), RXRb (E) and RXRc (F)) in the human fetal testis and
ovary. No significant differences in levels encoding any of the receptor isoforms were detected between samples of different gestational ages within
the same sex, or in gonads of different sexes at the same developmental age, indicating that RAR/RXR receptor expression is not developmentally-
regulated in the human fetal gonad. Values denote mean 6 s.e.m; 8–9, 14–16 and 17–20 denotes gestational age (in weeks) of specimens.
doi:10.1371/journal.pone.0020249.g002
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reported in mouse. CYP26B1 expression was not significantly

different between ovaries and testes at 8–9 weeks gestation, but

was unexpectedly higher in 14–16 week ovaries than testis

(p = 0.02, Figure 4B). To determine whether another member of

the CYP26 family may be responsible for retinoid metabolism in

the human fetal testis, we also examined the expression of

CYP26A1 and CYP26C1, but were unable to detect transcripts for

either gene at any gestational age examined in both fetal testis and

ovary (data not shown). These data suggest that the ovary may

have a greater capacity for RA metabolism than the fetal testis at

this stage.

NANOS2 displayed both developmentally-regulated and sexual-

ly-dimorphic expression in the human fetal gonad (Figure 4C).

NANOS2 expression was significantly higher in the fetal testis at

17–20 weeks gestation than at 8–9 weeks, consistent with the

progressive commitment of germ cells to the male fate between

these developmental stages. Whilst no difference in NANOS2

expression was detected between testes and ovaries at 8–9 weeks

gestation, NANOS2 transcript levels were significantly higher in the

fetal testis than ovary at 14–16 weeks (p = 0.01) and 17–20 weeks

(p,0.01). The expression of NANOS2 in the human fetal testis

therefore appears to mirror that reported for the homologous gene

in mouse, indicating possible conservation of its functional role in

reinforcing the male fate in testicular germ cells between these two

species.

We also examined the expression of the related genes NANOS1

and NANOS3 in the developing fetal gonad. We found no

differences in the expression of NANOS1 between testes and

ovaries at any gestational age, nor between gonads of the same sex

at different developmental stages (Figure 4D). Unexpectedly

however, NANOS3 transcript levels were found to be significantly

higher in ovaries than testes at 14–16 weeks (p,0.05) and at 17–20

weeks gestation (p = 0.02; Figure 4E), revealing a sexual dimor-

phism in expression levels in this gene that has not previously been

reported in mice. Strikingly – and in stark contrast to the

expression of Nanos3 in the fetal mouse ovary, which is

downregulated shortly after the entry into meiosis from e14.5

onwards - the expression of NANOS3 increased significantly

between 8–9 and 14–16 weeks gestation in the human fetal ovary

(p,0.05), suggesting a possible role in meiosis for this protein.

Figure 3. Immunohistochemical localisation of retinoid receptor expression in the human fetal gonad. In the second trimester human
fetal testis (A) RARa staining was detected in germ cell (GC) and peritubular myoid (PTM) nuclei. Two populations of Sertoli cells (SC; immunopositive
and immunonegative) could also be detected. In the fetal ovary at the same developmental stage (B), RARa expression was detected in the nuclei
and cytoplasm of germ cells in nests, and in the nuclei of pregranulosa cells (PG) interspersed between germ cells. Mesenchymal somatic cells in
streams (CS) displayed variable staining. RARb expression was widespread in the fetal testis (C) with all major cell populations displaying intense
nuclear staining. In contrast, variable RARb expression was detected in the germ cells of the fetal ovary (D); with some displaying intensely stained
nuclei or both nuclear and cytoplasmic staining (solid arrows) and others showing little or no staining (dashed arrows). Pregranulosa cells were
immunonegative, as were somatic cells in streams, although some displayed nuclear staining for RARb (arrowheads). Peritubular myoid and Sertoli
cell nuclei in the testes displayed intense staining for RARb (E), with weaker expression in detected in germ cells. A population of immunonegative IC
was also detected. The distribution of immunostaining for RXRa in the fetal ovary (F) was comparable to that of RARb, with expression restricted to
germ cells in nests (GCn) and absent in somatic cell streams and pregranulosa cells. The widespread nuclear localization of RA receptors in testis
suggests cells of all types (including germ cells) are exposed to RA signals. Magnification: 4006 (A, B), 10006 (C–F).
doi:10.1371/journal.pone.0020249.g003
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Figure 4. Conserved and divergent patterns of expression of STRA8, CYP26B1 and NANOS1-3 in the human fetal gonad. qRT-PCR
analysis of human fetal gonads reveals female-biased and developmentally-regulated expression of STRA8 (A). STRA8 expression increased
significantly between 8–9 and 14–16 weeks in the human fetal ovary (a vs b, p,0.05) consistent with the initiation of meiosis in the fetal ovary
around 11 weeks gestation. Levels of transcripts encoding STRA8 were low and not significantly different between human fetal testes and ovaries at
8–9 weeks gestation, but were significantly higher in fetal ovaries than fetal testes at 14–16 weeks (c vs d, p,0.0001) and 17–20 weeks (e vs f,
p = 0.008). CYP26B1 (B) expression was not significantly different between samples of the same sex at different gestational ages, but was significantly
higher at in the fetal ovary than the fetal testis at 14–16 weeks (a vs b, p = 0.02); suggesting the male-specific expression of CYP26B1 reported in mice
at a comparable developmental stage is not conserved to humans. NANOS2 (C) expression was predominantly male-specific and developmentally-
regulated, with expression increasing in the human fetal testis with increasing gestational age (a,b,c, p,0.001). NANOS2 expression was also
significantly higher in fetal testes than ovaries at 14–16 weeks (d vs e, p = 0.01) and 17–20 weeks (f vs g, p,0.01), a result consistent with a role for
this protein in repressing meiosis in the fetal male germline. 8–9, 14–16 and 17–20 denote gestation age (in weeks) of specimens. No differences were
detected in the expression of NANOS1 (D) between testis and ovaries at any gestational age, nor between gonads of the same sex at any
developmental stage. NANOS3 expression (E) was significantly higher in the human fetal ovary at 14–16 weeks gestation than at 8–9 weeks gestation
(a vs b, p,0.05), in contrast to the downregulation of the homologous gene in the fetal mouse ovary at the comparable developmental stage.
Expression of NANOS3 was also greater in the fetal ovary than in the fetal testis at 14–16 weeks (c vs d, p,0.05) and 17–20 weeks (e vs f, p,0.02). 8–9,
14–16 and 17–20 denote the gestational age (in weeks) of specimens, values denote mean6 s.e.m, 8–9, 14–16 and 17–20 denote the gestational age
(in weeks) of specimens.
doi:10.1371/journal.pone.0020249.g004
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Retinoic acid induces STRA8 expression in the second
trimester human fetal testis, but does not affect the
expression of other meiosis-associated genes
To determine whether the induction of STRA8 expression by

RA is conserved between mouse and human, we investigated the

effects of RA treatment on cells from the second trimester human

fetal testis. To ensure germ cell exposure to RA, fetal testes (14–15

weeks gestational age, n= 6) were disaggregated to a single cell

suspension (thus uncoupling germ cells from their associated

somatic cells which are in the mouse thought to be the site of

CYP26B1 expression) and cultured in serum free medium in the

presence of either vehicle (DMSO) or 1 mM all-trans RA for

24 hours. Expression of STRA8, and of the meiosis markers SYCP3

and DMC1 was then assessed by qRT-PCR in control and RA-

treated cultures. Treatment with RA for 24 hours resulted in a

2.260.3 fold increase in STRA8 expression relative to vehicle-

treated controls (p,0.05, n= 5; Figure 5A); revealing conserved

induction of STRA8 expression by RA in the human fetal testis. No

significant differences were found between RA- and vehicle treated

cultures in the expression of SYCP3 (94.465.7% of controls, n.s;

Figure 5B) or DMC1 (115.1619.6% of controls, n.s.; Figure 5C)

however, suggesting that whilst RA can selectively induce the

expression of STRA8 in the human fetal testis, it may not be

sufficient to induce additional meiosis-associated gene expression

at this developmental stage, or in this experimental system.

Discussion

In the fetal mouse gonad, germ cell differentiation proceeds in a

rostro-caudal wave, possibly reflecting the diffusion of mesoneph-

ros-derived retinoic acid along the long axis of the gonad

[3,4,14,15]. Whilst meiosis is also thought to initiate at the cranial

end of the fetal ovary in the human [21], within weeks a radial

distribution of germ cells is detectable, with undifferentiated pre-

meiotic PGC-like cells found at the periphery of the ovary and

progressively more differentiated germ cells found towards the

central cortex [16,17]. The existence of multiple subpopulations of

germ cells at different developmental stages within the human fetal

ovary indicates that differentiation is far less synchronous than in

the mouse, and raises the question as to how this asynchrony is

maintained. In this report we have examined the expression of key

components of the retinoid synthesis and signalling apparatus in

the human fetal gonad, and of key downstream effectors (STRA8)

and antagonists (CYP26B1, NANOS2) of the meiosis-inducing

action of RA. Whilst identifying conservation of some aspects of

the regulation of meiotic entry between mice and humans, we

have also identified significant species-specific differences in the

expression of genes associated with the entry or inhibition of

meiosis, which may contribute to or help explain the differing

spatiotemportal organization of germ cell differentiation in the

fetal ovary. Our findings also support the recent hypothesis that

intrinsic RA synthesis within the ovary, rather than RA originating

from the mesonephros, may be the primary driver of meiotic

initiation in the human fetal ovary [18].

The genes encoding the retinoid synthesis enzymes Aldh1a2

and Aldh1a3 are expressed in the mesonephroi of the fetal mouse

around the time of the initiation of meiosis, but their expression is

undetectable within the gonad itself [3]. In this report however, we

demonstrate the expression levels of all three ALDH1A genes in the

gonads of both sexes to be at least equal to those detected in

mesonephroi from fetuses at 8–9 weeks gestation, suggesting that

unlike that of the mouse, the human fetal gonad has an intrinsic

capacity to synthesis RA. We found the expression of ALDH1A2 to

be sexually-dimorphic, being significantly greater in the fetal testis

Figure 5. Retinoic acid promotes the expression of STRA8 but
not other meiosis-associated genes in the second trimester
human fetal testis. Human fetal testis (14–15 weeks gestation) were
disaggregated to a single cell suspension and cultured in serum free
medium in the presence of vehicle (DMSO) or 1 mM all trans retinoic
acid (1 mM RA in DMSO) for 24 hours. RA treatment induced a 2.260.3
fold increase in the expression of STRA8 (A) relative to vehicle treated
controls (a vs b, p,0.05, n = 5), indicating that RA-regulated expression
of this gene is conserved in human fetal gonads. No significant
differences in the expression of meiosis markers SYCP3 (B, n.s. n = 6) or
DMC1 (C, n = 6, n.s.) were detected between RA- and vehicle-treated
cultures, indicating that whilst RA can stimulate STRA8 expression, it is
not sufficient to cause widespread activation of the meiosis-associated
gene expression programme. Values denote mean 6 s.e.m..
doi:10.1371/journal.pone.0020249.g005
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at 8–9 weeks gestation than in ovaries from age matched samples

or compared to testis from fetuses at later gestational ages. We

found no significant differences in the level of expression of

ALDH1A1 between the ovary and testis however, in contrast to the

male-specific expression of Aldh1a1 reported in the fetal mouse and

chicken at a comparable developmental stage [22]. The male-

biased expression of ALDH1A2 in the human fetal testis may

replace the function of Aldh1a1 in these species. Our data also both

compliment and contrast with that reported recently by Le

Bouffant et al., who found the expression of ALDH1A1 to increase

sharply in the ovary around 11 weeks post-fertilization (wpf),

coincident with the onset of meiosis (yet was lower in all ovarian

samples examined than the 9 wpf testes), whilst ALDH1A2

expression was relatively stable across the developmental range

examined [18]. A direct comparison of our data with that of Le

Bouffant et al. [18] is not straightforward, given the different

systems of aging fetal specimens, the range of gestational ages

examined and the number of independent biological replicates

(fetal specimens) used for each time point examined. Despite these

specific differences however, the data reported here and by Le

Bouffant et al. [18] support the same conclusion; that unlike the

mouse, the fetal human gonad has an intrinsic capacity to produce

RA, and thus gonadal, rather than mesonephric RA synthesis may

drive the initiation of meiosis in germ cells in the human fetal

ovary. Furthermore, local production rather than diffusion of RA

from the mesonephros may help explain the asynchronous entry of

germ cells into meiosis in the human fetal gonad.

We have examined for the first time the expression of all of the

genes encoding the RAR and RXR retinoid receptor proteins

during human fetal gonadal development, and demonstrated

protein expression of members of both receptor families (RARa,
RARb and RXRc) in the germ cells of the fetal human ovary, and

in a wide range of cell types in the human fetal testis. Our finding

that germ cells in the human fetal ovary are transducing RA

signals (as indicated by nuclear localization of the receptors)

contrasts with that reported by Morita and Tilly in the fetal mouse

ovary at a comparable developmental stage (e13.5), who (using

pan-RAR and pan-RXR antibodies) reported only weak cytoplas-

mic expression of RAR proteins, and – in contrast to the data

presented here - no expression of the RXR proteins [23]. In the

same study, treatment of e13.5 fetal mouse ovaries with a relatively

low concentration of RA (0.01 mM) resulted in the relocalisation of

RAR proteins to germ cell nuclei, leading the authors to conclude

that RA signalling must either be extremely low or absent in the

fetal ovary in vivo at this time [23]. The absence of nuclear-

localised RA receptors in the fetal mouse ovary around the time of

the initiation of meiosis seemingly contradicts the model in which

RA signalling in ovarian germ cells around e13.5 stimulates Stra8

transcription and subsequent meiotic entry, but suggests perhaps

that only very low levels of RA (i.e insufficient to cause widespread

receptor nuclear localization) are required to initiate meiosis in the

fetal mouse ovary. The predominantly nuclear localization of

RARs in human ovarian fetal germ cells may indicate the

existence of higher local RA concentrations than are present in the

mouse fetal ovary, perhaps arising from intrinsic ovarian, rather

than mesonephric RA synthesis. Alternatively, it may reflect a

broader role for RA signalling in germ cell development in the

human beyond the regulation of meiotic entry, such as in the

regulation of germ cell survival or proliferation [18].

The most significant aspect of the immunohistochemical

analyses reported here however, is the identification of germ cells

displaying nuclear staining for RARa, RARb and RXRa in the

human fetal testes. This strongly suggesting that they are both

receiving and transducing retinoid signals and are therefore not

effectively shielded by the action of the somatic cell-expressed

metabolizing enzyme CYP26B1 as is believed to be the case in the

fetal mouse testis; [3,4]. The widespread localization of the RA

receptors in the human fetal testis also contrasts with reports that

RARa and RARb are undetectable in the developing rodent testis

prior to e16 [24], providing further evidence of extensive

divergence in testicular RA signalling between these species.

These data, coupled with greater expression of CYP26B1

expression in the human fetal ovary than testis (this paper and

[18]; again in contrast to the male-specific expression of Cyp26b1

in the fetal mouse testes), suggests a less important role for

CYP26B1 in the regulation of meiosis in the developing gonad in

the human than in the mouse. Although the inappropriate entry of

testicular germ cells into meiosis in mice homozygous for targeted

disruptions of Cyp26b1 [25,26], and in in vitro cultures of fetal testes

in which Cyp26b1 is inhibited with ketoconazole [3,4] provide

compelling evidence of a role for Cyp26b1 in inhibiting the

initiation of meiosis in testicular germ cells, aspects of this model

have recently come under increasing scrutiny. The ketoconazole

culture experiments have not been replicated by other groups [27],

and ketoconazole is unable to ameliorate the inhibitory effects on

ovarian germ cell meiotic entry of a testis co-cultured with an

ovary [28], as would be expected if Cyp26b1 metabolism of RA

was the key inhibitor of meiotic initiation. Together, these data

argue that other mechanisms that inhibit the entry of germ cells

into meiosis in the fetal testis are likely to exist. The recent

identification of FGF9 as an inhibitor of RA-induced meiosis in

the fetal mouse testis [29], and the demonstration that secretory

pathways and their cargoes play a key role in determining germ

cell sex determination [27,28] provide further evidence for the

existence of additional mechanisms that inhibit meiotic entry in

the fetal testis, or conversely promote it in the ovary.

Some aspects of meiosis initiation and germ cell sex determi-

nation do appear to be conserved between mouse and human,

however. We find STRA8 expression to increase between 8–9 and

14–16 weeks gestation, consistent with previous reports of the

expression of this gene increasing around the onset of meiosis in

the human fetal ovary [18,20] and reflecting a comparable

increase in Stra8 expression in the fetal mouse ovary from e13.5

onwards. We have also conducted the first comparative analysis of

gene expression of the NANOS family in the developing human

fetal ovary and testis. We find the expression of NANOS2 to be

restricted to the human fetal testis, consistent with the male-

specific expression and meiosis-inhibiting action of Nanos2 in the

germ cells of the fetal mouse testis [6,30]. In contrast, we detected

the opposite pattern of expression for NANOS3, which we find to

be expressed at higher levels in fetal ovaries than in testes. Nanos3 is

expressed exclusively in pre-meiotic germ cells in the mouse and is

downregulated shortly after the onset of meiosis [30], yet in the

human fetal ovary we find the expression of NANOS3 to increase

significantly between 8–9 and 14–16 weeks gestation, concomitant

with the onset of meiosis. This raises the intriguing possibility that

NANOS3 may be involved in the regulation or progression of

meiosis in human fetal ovarian germ cells; a finding that warrants

further investigation. Our finding that NANOS1 expression is

maintained at a broadly constant level across the gestational range

examined here is also unexpected, as NANOS1 protein is

detectable only in the germ cells of the second trimester testis

onwards [19]. The presence of NANOS1 transcripts in the first

trimester human fetal gonad suggests therefore that NANOS1

mRNA may be subject to post-transcriptional regulation in human

fetal germ cells.

We have demonstrated for the first time that RA can induce

expression of STRA8 in the human fetal testis. Utilizing a serum-
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free culture system used previously to investigate the effects of

growth factor signalling in the human fetal ovary [31], we

demonstrated increased STRA8 expression in response to RA in

cultures of human fetal testes at 14–15 weeks gestation –

disaggregated to ensure germ cells were uncoupled from the local

RA-metabolising action of neighbouring CYP26B1-expressing

somatic cells. We failed to detect any changes in the levels of

transcripts encoding the meiosis-specific proteins SYCP3 and

DMC1 however, indicating that whilst RA is sufficient to induce

STRA8 expression, it cannot trigger widespread meiosis-associated

gene expression in second trimester testicular germ cells. This may

in part reflect our use of early second trimester tissues in this

experiment, as expression of NANOS2, which acts to inhibit

meiotic entry in testicular germ cells in a cell-intrinsic fashion [6],

is at its peak at this time, or the relatively short (24 hours) period of

culture used. Further experiments will need to be performed

before conclusions as to whether RA can induce meiosis in the

human fetal testis can be drawn.

In summary, we have characterized the expression of the

essential components of RA signalling in the human fetal ovary

and testis that may underpin the initiation of meiosis in the fetal

ovary and its inhibition in the fetal testis. However, we identified

key differences between humans and mice in the expression and

distribution of components of the retinoic acid synthesis, signalling

and effector machinery required for RA-regulation of sex-specific

entry into meiosis. Whilst a key role for RA in the regulation of the

initiation of meiosis in the human fetal ovary now appears

indisputable [18], many aspects of this – particularly with respect

to how this relates to the spatiotemporal organization of germ cell

differentiation in the human fetal ovary and the apparent

asynchronous entry of human fetal ovarian germ cells into meiosis

– remain to be clarified. Detailed morphometric studies to

establish the location of the first meiotic cells within the fetal

ovary (aided by the development of antibodies to the human

STRA8 and NANOS3 proteins) and the determination of the sites

of retinoic acid synthesis and metabolism within the human fetal

ovary and testis will be required to resolve these questions.

Materials and Methods

Ethics statement
Ethical approval for this study was obtained from Lothian

Research Ethics Committee (study code LREC 08/S1101/1). All

participants gave informed written consent in accordance with

national guidelines [32].

Collection of human fetal tissues
Human fetal testes and ovaries were obtained following elective

termination of pregnancy during the first (50–65 days gestation)

and second (13–19 weeks gestation) trimesters, as dated from last

menstrual period. No terminations were for reasons of fetal

abnormality and all fetuses appeared morphologically normal.

Termination was induced with mifepristone (200 mg, orally)

followed by misoprostol (Pharmacia, Surrey, UK) at 200 mg

every 3 hours per vaginam. Gestational age was determined by

ultrasound, and further confirmed by measurement of foot length

for second trimester samples. The sex of first trimester fetal gonads

was determined by PCR for the SRY gene as described previously

[33]. Fetal gonads were carefully dissected in Dulbecco’s

Phosphate Balanced Salt Solution (DPBS; Invitrogen, Paisley,

UK) and subsequently snap frozen and stored at 280uC for

extraction of total RNA, fixed in Bouin’s Solution and processed

into wax by standard methods for immunohistochemistry, or

prepared for culture as detailed below. Mesonephroi were

carefully separated from first trimester gonads prior to RNA

extraction.

Culture of human fetal testes
Human fetal testes (14–15 weeks gestational age, n= 6) were

mechanically and enzymatically disaggregated to yield a single cell

suspension, as described previously for human fetal ovaries

[31,34]. Following washes with DPBS, the resulting cell suspension

was divided in half, centrifuged at 1000 g for five minutes and

pellets resuspended in serum free media (MEMa (Invitrogen),

supplemented with 16 nonessential amino acids (Invitrogen),

2 mM L-Glutamine (Invitrogen), 2 mM sodium pyruvate (Sigma-

Aldrich, Poole, UK), 3 mg/ml Bovine Serum Albumin (BSA;

Sigma-Aldrich) and penicillin/streptomycin/amphotericin B

(Cambrex Biosciences, MD, USA)) containing either vehicle

(Dimethyl Sulfoxide (DMSO; Sigma-Aldrich); 0.1% final concen-

tration), or 1 mM all-trans Retinoic Acid (Sigma; reconstituted in

DMSO; 0.1% final concentration). Cells were cultured for

24 hours in a humidified incubator (37uC/5% CO2). After

culture, adherent cells were lysed using buffer RTL (QIAGEN,

Crawley, UK) and non-adherent cells collected by centrifugation

and pellets re-suspended in buffer RTL. Lysates were pooled, and

total RNA extracted as detailed below.

RNA extraction and qRT-PCR
Total RNA was extracted from fetal gonads using the RNeasy

Mini Kit (QIAGEN) with on-column DNaseI digestion as per the

manufacturer’s instructions. For the assessment of gene expression

in non-cultured tissues, first strand cDNA was generated from total

RNA using RT Kit (Applied Biosystems, Life Technologies,

Carlsbad, CA) and real-time quantitative PCR (qRT-PCR) was

performed using the Roche Universal Probe Library (Roche

Applied Science, Burgess Hill, UK) on an ABI7900HT thermal

cycler (Applied Biosystems) as described previously [35]. Primer

sequences along with corresponding probe numbers are listed in

Table S1. The expression level of each gene of interest was

normalized to that of the 18S ribosomal RNA within the same

sample. To determine the expression of STRA8, SYCP3 and

DMC1 in cultured human fetal testis, first strand cDNA was

prepared using the Superscript VILO mastermix kit (Invitrogen),

and assessed by qRT-PCR using SYBR green technology on an

ABI7500 Fast thermal cycler (Applied Biosystems) as described

previously [33]. The expression level of each gene of interest was

normalized to that of the housekeeping gene RPL32 within the

same sample. Primer sequences can be found in Table S2.

Immunohistochemistry
Immunohistochemistry was performed on fixed sections of fetal

ovary and testis tissue essentially as described previously [36].

Briefly, 5 mm thick sections of Bouin’s-fixed, paraffin embedded

tissues were mounted on electrostatically charged glass slides

(BDH Chemicals, Poole, UK), dewaxed and rehydrated using

xylene and graded alcohols and antigen retrieval performed by

pressure cooking in 0.01 M sodium citrate buffer (pH 6) for five

minutes. Endogenous peroxidase activity was blocked using 3%

(w/v) hydrogen peroxide (H2O2) in methanol for 30 minutes, and

slides were blocked using the avidin/biotin blocking kit (Vector

Laboratories, Inc., Peterborough, UK) and incubation in Tris

Buffered Saline (TBS), supplemented with 5% BSA and 20%

normal serum (NS). Antibodies (listed in Table S3) were diluted in

5% BSA/TBS and applied to the sections at 4uC overnight.

Antibodies were detected using the appropriate biotinylated

secondary antibodies (30 minutes, 1:500 dilution in BSA/TBS/

NS) and incubation with avidin-biotin-HRP complex (Vector
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Laboratories). Bound antibodies were visualized using 3,3-

diaminobenzidine tetrahydrochloride (DAB; DAKO, Cambridge,

UK). Negative controls, incubated with blocking serum instead of

primary antibody, were included in each experiment and

displayed no staining (data not shown).

Statistical analyses
Data presented represent mean 6 standard error of the mean

(SEM) of at least four independent biological replicates. Data were

analysed using either ANOVA or Student’s t test using Graphpad

Prism Software. P values of less than 0.05 were considered

statistically significant.

Supporting Information

Table S1 Oligonucleotide sequences and corresponding

Roche Universal Probe Library numbers used in qRT-

PCR assessment of gene expression in frozen human

fetal tissues.

(DOC)

Table S2 Oligonucleotide primer sequences used in

SYBR green qRT-PCR analysis of gene expression in

cultured human fetal testes.

(DOC)

Table S3 Antibodies used for immunohistochemistry.

(DOC)
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