
 

Development of Bulk Metallic Glass Matrix Composites (BMGMC) by 

Additive Manufacturing: Modelling and Simulation – A Review: Part B  

Muhammad Musaddique Ali Rafique1,a*, Stephen Niezgoda2,b  

and Milan Brandt3,c  
1RMIT University, Melbourne, VIC, Australia 

2The Ohio State University, Columbus, Ohio, USA 

3Additive Manufacturing Precinct, RMIT University, Melbourne, VIC, Australia  

a*ali.rafique@hotmail.com, bniezgoda.6@osu.edu, cmilan.brandt@rmit.edu.au 

Keywords: bulk metallic glass matrix composites, additive manufacturing, modeling and 
simulation 

Abstract. Bulk metallic glasses (BMGs) and their composites (BMGMC) have emerged as 

competitive materials for structural engineering applications exhibiting superior tensile strength, 

hardness along with very high elastic strain limit. However, they suffer from a lack of ductility and 

subsequent low toughness due to the inherent brittleness of the glassy structure which render them 

to failure without appreciable yielding owing to mechanisms of rapid movement of shear bands all 

throughout the volume of the material. This severely limits their use in the manufacture of structural 

engineering parts. Various theories and mechanisms have been proposed to counter this effect. 

Introduction of secondary ductile phase in the form of in-situ nucleating and growing dendrites from 

melt during solidification have proved out to be best solution of this problem. Nucleation and 

growth of these ductile phases have been extensively studied over the last 16 years since their 

introduction for the first time in Zr-based BMGMC by Prof. Johnson at Caltech. Data about almost 

all types of phases appearing in different systems have been successfully reported. However, there is 

very little information available about the precise mechanism underlying their nucleation and 

growth during solidification in a copper mould during conventional vacuum casting and melt pool 

of additively manufactured parts. Various routes have been proposed to study this including 

experiments in microgravity, levitation in synchrotron light and modelling and simulation. In this 

report, which is Part B of two parts comprehensive overview, state of the art of development, 

manufacturing, characterisation and modelling and simulation of BMGMCs is described in detail. 

Evolution of microstructure in BMGMC during additive manufacturing have been presented with 

the aim to address fundamental problem of lack in ductility along with prediction of grain size and 

phase evolution with the help of advanced modelling and simulation techniques. It has been 

systematically proposed that 2 and 3 dimensional cellular automaton method combined with finite 

element (CAFE) tools programmed on MATLAB® and simulated on Ansys® would best be able to 

describe this phenomenon in most efficient way. Present part B focuses on methodology by which 

modelling and simulation can be adopted and applied to describe evolution of microstructure in this 

complex class of materials.  
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2.1.1 Introduction  

Present section of this Part B deals with evolution of microstructure during the processing of 

BMGMC in an incipient transient liquid melt pool formed in AM. This analysis is divided into two 

sections. The first section deals with the evolution of the melt pool as a result of the interaction of 

highly localised, focused laser light with matter (metal powder). This results in the formation of a 

melt pool whose shape, size, geometry and transient behaviour is very much a function of the heat 

transfer coefficients (HTC) evolving at every step of its formation (melting and homogenisation) 
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and dissipation (solidification). Solidification in this section is considered by a modified general 

(classical) nucleation theory (CNT). Once formed, this pool travels as the laser traverses its path all 

along the powder bed dictated by CAD geometry at the back end. The second section deals with the 

microstructural evolution during solidification which is primarily a solute diffusion and capillary 

action dominated phenomena. This is dealt with by microscopic 2D and 3D probabilistic CA 

models which model nucleation and equiaxed dendritic growth resulting in the formation of the 

microstructure within the liquid melt pool as it solidifies (Note: only “Vitrification (glass 

formation)” effects are taken into account and devitrification (heat treatment) is not considered). 

The evolution of microstructure is checked against the variation of number density, size and 

distribution of ductile phase in the glassy matrix. Inoculants for ductile phase formation were 

selected previously by edge to edge matching (E2EM) [280, 281]. 

2.1.2 A brief general introduction to modelling and simulation  

Although in use since ancient Roman times [302], modelling and simulation picked up interest and 

achieved pinnacle in modern day scientific and engineering sectors with the advent of computer 

technology which came not more than two decades ago. Now, it has proved itself to be important 

integral part of product and part design, product development as well as prediction, utilisation and 

enhancement of properties. Various branches of modelling and simulation, ranging from part scale 

modelling which involves development of codes of theorems in advanced computing platform such 

as Java®, C, C++ and MatLab Simulink® to their simulations in customised simulation packages 

such as Solidworks®, Ansys® and Catia® to performing complex atomistic simulations in 

dedicated proprietary software, have now become integral part of design procedure in major 

industrial clusters. Its use in research and development is also becoming an important part of whole 

process to eliminate so called “trial and error” methods which are not only time consuming but are 

energy, materials and resources extensive. In materials science and engineering mainly two of its 

branches are routinely used. These are “part scale modelling and simulation” and “atomistic 

modelling and simulation”. The former is used for the complete design of complex machinery 

segments, equipment, assemblies, sub-assemblies, their materials of fabrication and property 

prediction in different regions as a function of extrinsic parameters such as heat, velocity, pressure, 

time whilst the latter is used for the prediction, estimation and improvement in atomic-scale 

properties using theories of atomic configuration and arrangement mainly relying on  intrinsic 

parameters (such as specific heat / latent heat, heat capacity, density, heat of fusion and atomic fit or 

misfit). The unique ability of atomistic modelling and simulation is that it uses atomic functions and 

their variables to generate knowledge about their behaviour under various impulses. In both cases, 

the use of these methods are big help and support in saving time, materials, resources as well as 

improve functionality and in-service property development and behavior prediction.  

The exponential rise in the use of modelling and simulation with the advent and progress of 

computer technology and increase of computing power of machines gave rise to greater flexibility in 

the design and development process. Many difficult, or in some cases, impossible to envisage 

problems can now be simulated using these computing platforms. These include simulation of water 

flow and its patterns in rivers and channels, simulate of interior of sun, stars and other heavenly 

bodies, cosmic events and nuclear engineering problems. However, despite of these advantages, 

there are still situations and applications which limits the use of modelling and simulation 

techniques. These include, unavailability of strong efficient computing algorithms (with lesser 

approximations) needed for the replication of actual real world situations, unavailability of real 

world experimental data (physical constants and thermo-physical properties) needed to simulate a 

particular problems, unavailability of more accurate deterministic or non-probability based models 

using actual situations rather than basing their outcome on statistics. Owing to these reasons, there 

is still need for further investigation and removal of bottlenecks from modelling and simulation 

problems and it is envisaged that their popularity is still at arm’s length.  
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2.1.3 Modelling and simulation of heat transfer in liquid melt pool – Solidification 

As the microstructure formed during SLM is mostly columnar [303], it is a good indicator that heat 

flux transfer from melt is highly unidirectional thus heat transfer from bottom is a transient 1D 

process. Although, heat is lost from the material in x-y plane i.e. perpendicular to the z – direction 

(perpendicular to build direction), its contribution is so low that it can be safely ignored. However, 

this was an old concept. New experimental observations have proposed a new concept according to 

which during SLM, a melt pool is formed, where the shape of this pool is a function of:  

a. Laser power (laser beam intensity). 

b. Presence of thermocapillary convection (marangoni convection). 

In even more advanced and recent models, [304, 305] the transfer of heat after its generation is 

considered by three main parameters:   

a. Heat transfer due to convection. 

b. Evaporation (i.e. formation of plasma) (this results in re-radiation (inverse radiation)). 

c. Conduction from the bottom and the side walls 

This is very recent and advanced approach which, however, ignores marangoni convection effects. 

Overall, the heat transfer phenomena associated with the solidification of metal in a liquid melt pool 

in AM is associated with three processes: 

• Generation of heat (laser matter interaction). 

• Assimilation of heat (melting and stages of solidification). 

• Extraction of heat. 

2.1.3.1 Generation of Heat (Laser-matter interaction) 

This is the first stage of AM in which heat is generated. The problem in this stage is related with 

impingement of light of certain intensity (I) on a solid surface for a certain amount of time which 

may results in production of heat. This interaction can be explained in terms of law known as the 

“Beer lambert law”. 

2.1.3.1.1 Beer lambert law for AM 

Consider a thin layer of powder with thickness d1, on a flat disk substrate of refractory metal with 

thickness d2 and radius r uniformly illuminated by light of intensity I.  

For absorptivity of powder (or melt) assuming uniform temperature throughout the disk, the 

temperature evolution is  

 
where  

A(T) = Absorptivity 

Q(T) = Thermal loss (convective and radiative)  

I = Intensity  

ρ1 = Density of powder 

ρ2 = Density of substrate 

c1 = Specific heat of powder 

c2 = Specific heat of substrate 

d1 = Thickness of powder 

d2 = Thickness of substrate 

Heat generated by this process is used for melt pool generation (its morphology, homogenisation, 

and holding (generation of supercooled liquid (SCL) region and its progression)).  
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2.1.3.2 Assimilation of heat (Melting and stages of solidification)  

As the heat generated above interacts with metal powder, it causes its melting and generation of 

liquid melt pool. The behaviour of a certain metal / alloy in the melt pool can be explained by its 

cooling curve which is briefly described below.   

2.1.3.2.1 General form of cooling curve 

A cooling curve of a metal / alloy is a plot of the variation of temperature with time. It has different 

regions which embodied various types of information. Cooling curves can have different shapes 

depending on the metal or alloy type.  A schematic cooling curve is shown in Fig – 11 for a single 

component pure metal (without any inoculants).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Cooling curve for a single component pure metal (without any inoculants). 

Its distinct regions are explained as following; 

Region above A1: This is the region in which metal is in its complete liquid-state and can be 

described by only melting and liquid-state homogenisation. Heat carried by metal in this region is 

“super heat” only and lost in the form of specific heat (mcpΔT). This homogenisation in turn 

depends on type of melting (gas / solid (coal) / liquid (oil) fired crucible furnace melting, electric 

(resistance / induction / arc) melting) and subsequent melt treatment.  (Note: Homogenisation is 

required by some external means in case of all modes of melting. Only induction furnace is 

manifested by self-homogenisation due to phenomena of induction currents). 

Region A1 – A: This is a region which is characterised by the loss of super heat until the first arrest 

point A. (Point at which the first nucleant form – explained in detail in later sections). This is also 

called the start of solidification. In pure metals it is a sharp point (melting point) while in alloys, it 

can be a range (melting range). In BMGMCs / multicomponent alloys, it is also called start of the 
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super cooled region (SCL). This region is followed by undercooling (ΔTn) region which is described 

below 

Region A – D: This is the most important region of cooling curve (present case) for pure metals. In 

this region, metal cools down to a specific temperature characterised by a certain minimum amount 

of energy (activation energy for nucleation) needed to overcome a barrier of energy (energy barrier 

to nucleation) to create a liquid – solid (L – S) interface eventually leading to formation of a stable 

nuclei out of the melt. This region is further divided into two regions. A – C and C – D 

Region A – C: This is region in which undercooling occurs, heat is extracted, the temperature drops 

and shape of cooling curve goes down. This is characterised by two energies described in the above 

paragraph.  

Region C – D: This is the region in which heat energy is absorbed, temperature is gained and shape 

of curve goes up. This is called recalescence.     

Notes:  

(a) Recalescence is gain in temperature as a result of thermal fluctuations caused by phase 

transformations occurring within solidifying melt / alloy. In present case, phase change 

is solid formation within undercooled liquid while thermal fluctuations are described by 

release of heat in the form of heat of fusion.  

(b) Region A – C is characterised by another point. Point “B” occurring in the middle of 

cooling curve. This is specifically shown in Fig – 11 as intermediate point of 

Supercooled liquid region (SCL). For the present case model (transient heat transfer 

conditions will be modelled at this point as well to get better understanding of 

phenomena occurring in SCL in BMGMCs). 

Region D – E: This is the region at which (after arrest point D), metal losses all its heat of fusion 

(mHf). In this region transformation occurs at constant temperature in such a way that all liquid gets 

transformed into complete solid (all fine equiaxed grains formation at mould wall (Cu mould 

casting) / at surface of inoculant (heterogeneous nucleation - not present case), “equiaxed – 

columnar” transition, growth of columnar dendrites, CET and growth of all equiaxed dendrites 

accomplishes). This is also called the solidification time.  

Region E – F: This is the region in which solid cools. That is, after all liquid gets transformed into 

solid, the solid casting cools down to room temperature. This again occurs after a sharp invariant 

point (point F) in case of pure metals and after a range in case of multicomponent alloys.      

2.1.3.2.2 Cooling curve for well inoculated Zr-based in-situ dendrite BMGMCs 

Shape of cooling curve changes its form as melt is changed from single component to binary to 

multicomponent alloys. This can be explained in the form of various cases.  

Case 1: Well inoculated single component melt: In these types of alloys, undercooling / 

undercooled region (ΔTn) diminishes and is almost absent. Inoculation with potent nuclei serves as 

active nucleation sites and triggers heterogeneous nucleation as the alloy reaches its first invariant 

point. Thus, no undercooling happens and solid alloy directly starts cooling as all liquid gets 

transformed to solid at constant temperature.  
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Case II: Binary alloys without inoculants (slowly cooled) 

In these types of alloys cooling occurs in following steps 

1. Distinct undercooling occurs (characterised by drop and gain (recalescence) of temperature) 

2. It is followed by region of constant temperature cooling which is called local solidification. 

This is only visible in case of very fluid alloys in which mushy region is very fluid / less 

viscous (not BMGMCs). This region is absent in most multicomponent (industrial) alloys as 

their solidification is dominated by mushy zone. (Note: BMGMCs are special case of alloys 

in which mushy region is extensively dominated but another phenomenon known as 

“sluggishness” governs the solidification. In these alloys, three laws  [7] which describe 

BMGMC formation and evolution make sure that not only sluggishness dominates kinetics 

but it also ensures “glass formation” (i.e. retaining supercooled liquid at room temperature).  

3. Alloy solidification range (it depends on alloy. In slowly cooled binary alloys (most 

laboratory conditions), this is very clearly marked (usually bears an intermediate shape)) 

4. At the end of this range, alloy becomes stable momentarily at constant temperature (usually 

negligible in most industrial castings) at which nuclei (dendrite arm branches) grow and fills 

interdendritic arm spacing and other small liquid pockets. This is marked by end of 

solidification. (In some cases, it is also characterised by start of CET and then growth of 

equiaxed grains) 

5. Following this point, solid alloy cools to room temperature or below room temperature (in 

case of cryogenic cooling).  

Note: For theoretical analysis, cooling curve can be of any type of combination between type of 

alloy (single component, binary and multicomponent), method of cooling (slow or fast) and 

inoculation (zero inoculation and well inoculated). All these can be drawn following rules of 

thermal transitions and kinetics. For simplicity and sufficiency, we will jump to cooling curve of 

Multicomponent alloy (BMGMCs) fast cooled and well inoculated (present case).  

Case III: Multicomponent alloys with inoculants (fast cooled) (present case BMGMCs) 

In these types of alloys, cooling can occur following below steps. (Fig – 12) 

1. No undercooling occurs (as there is sufficient amount (number) of potent nuclei which serve 

as sites for active nucleation triggering heterogeneous nucleation prior to loss of temperature 

(drop of cooling curve), and gain of temperature (recalescence – rise of cooling curve)).   

2. This is followed by region of constant temperature at which all liquid get transformed into 

solid. However, in these alloys, this region is very small (because of presence of marked 

mushy zone).  

3. Instantly after this region, alloy enters in alloy “solidification range”. As the alloy is very fast 

cooled, this region is again not very clearly identified which is typical behaviour in case of 

fast cooled castings.  

4. Following this, again alloy momentarily enters in brief constant temperature zone which 

marks starts of CET and growth of equiaxed grains (B2 CuZr phase equiaxed dendrites) 

until all liquid gets transformed into solid (end of solidification). This again is not very 

distinct as other phenomena (suppressing kinetics) dominate.    

5. Finally, after this, BMGMC solidifies to room temperature.  
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Fig. 12: Cooling curve for a multicomponent alloys with inoculants (fast cooled) (BMGMC). 

Note: Shape of cooling curve in case of slowly cooled and fast cooled alloys is the slope of curve 

towards the end of cooling which is very steep in case of very fast cooled alloys (liquid melt pools 

(present case)).  

2.1.3.2.3 Extraction of Heat – Determination of Heat Transfer Coefficients (HTCs) 

In the development of model, heat transfer coefficients will be determined at every point of cooling 

curve following earlier defined one dimensional (1D) schemes [306]. These will ensure, time of 

solidification calculation during cooling following above cooling curve and helps in determining 

shape of melt pool and its transient behaviour during cooling.   

2.1.3.2.4 Final time of solidification 

Final time of solidification is sum of time in each region / section of cooling curve of a particular 

alloy / melt. It will be determined using standard transport equations and will be used empirically to 

assess the conformability of AM process. Time of solidification gives other parameters as well such 

as fraction of mass solidified after a time, t, which is direct measure of microstructure evolved 

during that time. It can be qualitatively (extrapolation) used to predict further (type (equiaxed, 

columnar, mix, CET) and amount) evolution of microstructure with time.   
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2.1.4 Modelling and simulation of nucleation (heterogeneous) in liquid melt pool – 

Microstructural development  

Modelling and simulation of microstructural development in liquid melt pool can be described by 

macroscopic and microscopic models of heat and mass transfer depending on type of alloy, its 

nature, number of elements, cooling curve, undercoolings (constitutional (solute / particulate), 

curvature, interfacial), thermal and kinetic limitations, behaviour of mushy zone, presence or 

absence of inoculants. These can be broadly divided into macroscopic and microscopic models 

[307] which are explained as follows; 

2.1.4.1 Macroscopic models 

By following the regimes of macroscopic models, finite element (FEM) and finite difference 

methods (FDM) can be used to explain microstructural development both during steady and 

transient state transport processes.  

2.1.4.1.1 Limitations 

Both FEM and FDM based models cannot fully describe mushy region, its behaviour and evolution 

during solidification as they do not account for microscopic  

• solute diffusion and  

• capillary effects 

which are primarily responsible for scale at which microstructure forms (which is very small as 

compared to macroscopic methods based on average continuity equations [308-311] in which it is 

assumed that solidification starts at liquidus and finishes at solidus / eutectic temperatures (A case 

of BMGMCs having good match of GFA and eutectic temperature [64, 65]). In order to overcome 

these limitations, microscopic models were proposed.  

2.1.4.2 Microscopic models of Microstructure evolution / formation during solidification 

Stage 1 Model: These models take into account the mechanism of (1) grain nucleation and (2) grain 

growth in alloys which are solidifying with equiaxed dendrite or eutectic microstructures [312]. 

These do not account for alloys which are solidifying with columnar dendritic and planar interfaces. 

A modification of these accounts for equiaxed-columnar (at mould wall) and columnar to equiaxed 

transition (CET) in bulk of liquid (This will be discussed later). These can be used to “describe 

microstructures” and “prediction of grain size” in case of eutectic compositions of BMGMC. 

Majority of these is based on “analytical / deterministic approaches” which can be described as 

follows; 

2.1.4.2.1 Nucleation  

• Choose a time “t” (initially non – zero value) 

• At this time t, density of grains (which have nucleated in bulk) is a function of undercooling  

d = f (ΔTn)         (12) 

f (ΔTn) is difficult to be found from theoretical considerations alone. It needs to be found 

experimentally i.e. form a set of experiments e.g.  

Method 1 Measurement of cooling curve  

This has been explained in detail in section 3.4.2.2.1 and 3.4.2.2.2  

Method 2 Measurement of grain density (optical micrograph of cross section (using Image J® / 

manually)) for specimens solidified at various cooling rates [307] 
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2.1.4.2.2 Growth 

As soon as grain has nucleated, and its growth can be explained by special modified case of CNT 

for BMGMC (A detailed treatment of modified CNT for BMGMC is given in Appendix A) and its 

distribution can be explained by Constitutional Supercooling Zone / Interdependence theory 

(propagation of L – S interface / L – S spherical front) (a possibility which is still under 

investigation by author for suitability for AM processes), it grows with an interface velocity which 

is also a function of undercooling.   

2.1.4.2.3 Velocity of growth 

Velocity of growth may be written as   

Vg = f (ΔTn)                                                                      (13) 

In this case, there is no need to determine solidification kinetics of dendrite tip / eutectic (spherical 

front) interface by cooling curve or grain size but it can be determined by theoretical models 

developed (by using basic laws of physics) [313, 314] as applied to BMGMC only under transient 

condition.  

2.1.4.2.4 Impingement 

Impingement of grains as they grow is another important phenomenon which for all practical 

reasons governs the shape of grain after CET (CET in AM is recently explained by Amrita Basak et. 

al. [315] which is combined with present model and is explained in detail in Appendix B). This 

phenomenon is not remarkably present in Bulk Metallic Glass (BMG) and their Composites 

(BMGMC) due to their sluggish nature and very little formation crystal grains as compared to huge 

glassy matrix. However, despite these drawbacks, this is mainly responsible for equiaxed dendritic 

grain formation even in glassy alloys, especially in eutectic compositions which is assumed to be the 

case for present research.  

This has been typically treated by  

a) Standard J M A K [316, 317] correction or by  

b) Geometrical [318, 319] or  

c) Random grain arrangement models [307].  

These “microscopic” solidification models have been coupled with “macroscopic” transient one 

dimensional (1D) heat flow calculations to successfully predict “microstructural features” specially 

“grain size” at the scale of whole process (part scale) [320, 321].  

2.1.4.2.5 Limitations  

These deterministic models have their following limitations  

a. Grain selection 

They cannot account for the “grain selection” which occurs  

a. Close to mould region / surface giving rise to columnar dendritic microstructure (in case of 

conventional Cu mould casting / TRC) or 

b. At surface of external inoculant particles (precursors of heterogeneous nucleation) in case of 

well inoculated melts (present case)) giving rise to onset of columnar dendritic 

microstructure (at a very small length scale) since they almost neglect any aspect which is 

related to crystallographic effects.  
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b. “Equiaxed – Columnar” Transition 

They cannot predict the co-called “equiaxed-columnar” transition which occurs very near to mould 

wall [322] or variation of transverse size of columnar grains [323] (also known as columnar 

dendritic arm branching). This is explained in detail in individual cases for each type of metal 

(crystal structure) 

i. Case 1: Cubic Metals 

It is well established facts that for cubic metals, this “grain selection” is based upon a criterion of 

best alignment” of the < 100 > crystallographic axes of grain with heat flow direction [322-324]. 

Thus, this method cannot account for this anisotropic behaviour of heat flow. A solution to this 

problem could be proposed by determining best fit direction by use of recent developments in 

crystallography and their application to solidification. Edge to edge matching (E2EM): One way is 

to use Edge to Edge Matching (E2EM) technique at inoculant – ductile phase level (in case of Zr 

based BMGMC) (present research). This gives rise to selection of suitable potent nuclei of certain 

size and specific preferred orientation (i.e. along a defined easy crystallographic plane (e.g. (001)). 

If this crystallographic plane direction could be used in conjunction with macroscopic heat flow 

models, it can give rise to “prediction or selection of grain”. In other words, if matching 

crystallographic axes (suitable for a potent inoculant selection for B2 ductile phase’s preferred 

precipitation (in case of BMGMC)) could be best aligned with heat flow direction (or heat flow 

direction could be assigned to this preferred matching crystallographic axes) a best “grain selection: 

could be determined (one of aim of present research – not done previously elsewhere). This type of 

phenomena is particularly important in  

a. Directional solidification (DS) or  

b. Production of single crystal dendritic alloys for aerospace applications or 

c. Production of BMGMC by Bridgeman solidification  

Note: This is in addition to use of E2EM for selection of potent nuclei 

ii. Case 2: BCC Metals  

These methods are also ineffective in predicting “equiaxed-columnar” and then “branching of 

dendrite arms” in bcc metals (i.e. grain selection) as best alignment between heat flow and 

crystallographic direction is not best known. Only assumptions are possible (i.e. in case of bcc best 

heat flow direction could be assigned to close packed direction)  

iii. Case 3: FCC Metals 

These methods are again in effective in predicting the “equiaxed – columnar”, “CET” and then 

branching of dendrite arms in fcc metals (i.e. grain selection) as best alignment between heat flow 

and close packed direction (111) could only be assumed (to a satisfactory qualitative level). More 

quantitative experimentation is needed to determine best directions along which heat flow occurred 

or revert to more advanced models.  

c. Extension of a grain into an open region of liquid.  

They cannot account for extension of a grain into an open region of liquid. 

d. Columnar – to – Equiaxed Transition (CET) 

Finally, when very fine equiaxed grains at a region very close to mould wall / right at the interface 

of inoculant and melt are converted to columnar grains, which when grow, there comes a point / 

plane at which columnar grains gets converted to not so fine equiaxed grains. This point is known as 

Columnar to Equiaxed Transition (CET)). These equiaxed grains finally extend towards centre of 

casting (wedge shape / melt pool centreline in case of AM). CET primarily happens as a result of 

thermal fluctuations which happen at melt (liquid) and solid (solidified melt) interface which are 

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

50 Advanced Materials and Technologies II



 

triggered by solutal effects as well as heat extraction or absorption due to phase changes occurring 

at a micro-scale (explained in subsequent sections). CET is dominant when thermal gradient is 

small.  

2.1.4.3 Evolution of probabilistic models    

The solution to above four problems is presented first by Brown and Spittle [325, 326]. They 

developed probabilistic models. They used Monte Carlo (MC) procedure for explaining 

solidification phenomena developed in earlier research [327]. MC method is based upon minimising 

of interfacial energy (which is practically calculated by using physical properties of material (Zr- 

and Fe-based BMGMC)) from literature and earlier published data or inference from extrapolation 

or interpolation of data as needed). Procedurally, this minimisations is achieved by 

(a) Considering the energy of “unlike sites” (e.g. (a) “liquid / solid sites” or (b) “sites belonging to 

different grains” and  

(b) By allowing transition between these states to occur according to randomly generated numbers  

By using this method, Brown and Spittle merely able to produce computed 2 D microstructures 

which resembled very closely to those observed in real micrographic cross section. In particular  

a. The selection of grains in the columnar zone and  

b. CET 

were nicely reproduced using this technique also 

a. the effect of solute concentration or  

b. melt superheat upon the resultant microstructure  

was determined “qualitatively” in a nice way. Their quantitative representation was not achieved.  

2.1.4.3.1 Limitations 

These methods suffer consistently from lack of physical basis and thus cannot be used to analyse 

quantitatively the effect of various physical phenomena (happening within the phase 

transformations). For example, to illustrate this, consider the following example.  

a. During one MC time step, Consider N sites where N is number of sites whose evolution is 

calculated and is chosen from another N (total number) sites. Therefore, not all sites of 

interest (i.e. those located near to solid – liquid interface) are investigated. This in turn, 

leads to algorithm predicted grain competition in columnar region, which does not at all 

reflect the physical mechanisms observed in organic alloys.  

b. Furthermore, the results are sensitive to type of Monte Carlo network itself which is used for 

computations. Thus a single powerful model is presented in present work which combines 

“advantages of probabilistic methods with those of deterministic approaches” to predict 

more accurately the grain structure in a casting.  

2.1.4.4 Two dimensional Cellular Automaton (CA) Method 

For this purpose, for now, a 2D Cellular Automaton model is developed which is based upon 

physical mechanisms of nucleation and growth (NG) of dendritic grains. Its salient features are as 

follows. 

1. Heterogeneous Nucleation; which was modelled by means of a nucleation site distribution in 

deterministic solidification models, is treated in a similar way in present probabilistic 

approach.  

2. If total density of grains which nucleate at a given undercooling is obtained from an average 

distribution (dc = average (distribution)), the location of these sites is chosen randomly 
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where a1, a2, a3, a4 …… an are distributions of grains 1, 2, 3 to n  

where n = R (R = Real numbers) 

3. Crystallographic orientation of a newly nucleated grain is also taken into account at random.  

4. The growth kinetics of (a) dendrite tip and (b) of side branches are also incorporated into the 

model in such a way that final simulated microstructure is independent of the “cellular 

automaton network” which is used for computations.  

Although, it produces micrographic cross sections very much similar to those already obtained by 

Brown and Spittle, present model has a “sound physical basis” and can thus reflect effects of (a) 

cooling rate” or (b) “solute concentration” quantitatively.  

2.1.4.4.1 Detailed description (Phase 1 – Application of CAFE to Conventional Casting) 

Physical background: Consider a BMGMC wedge shape casting as shown in Fig – 13 below 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

      (a)          (b)                 (c) 

 

 

 

 

 

 

 

                                        

 

 

 

 

 

(d) 

Fig. 13: (a) Schematic 3D (b) Optical Micrograph of cross section (etched) (c) 2D Schematic 

showing regions (d) A specific region (from B2 dendrites) showing B19ˊ twins (B2 – B19ˊ TRIP) 
[328]. 

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

52 Advanced Materials and Technologies II



 

Fig – 13 (c) is typical 2D cross section of cast eutectic Zr-based BMGMC solidified in water cooled 

wedge shape Cu – mould [255, 329]. Their dendritic grains which have various crystallographic 

orientations appear as zones of different colours (Fig – 13 (b)). Most common regions encountered 

in any casting appear here [322, 323] and are marked all along cross-section. On the top end of 

wedge shape ingot coarse grains are present as this region was exposed to air. Its more detailed 

explanation will follow after characterizing region chronologically from bottom to top.  

2.1.4.4.2 Characterization  

Bottom region Glass: The tip of casting is 100% glass (monolithic BMG). This region is classified 

as glass and no crystal structure is observed here because cooling rate is maximum here which 

results in extraction of heat at a very high rate resulting in retaining supercooled liquid state at room 

temperature. 

Bottom region Columnar Dendrites: This region marks the beginning of “equiaxed columnar” first 

transition. This consists of very fine layer in which this transition happens and then columnar grains 

grow (primarily) in random 3D orientation) because of still rapid rate of heat transfer which is 

complemented by sluggish nucleation on growth mechanisms of BMGMC. These grains are not 

very long as heat flow pattern is somewhat exponential because of wedge shape casting which 

triggers next transition too quickly before extension of growth as predicted by kinetics. This helps in 

retaining glassy matrix all throughout the casting. Otherwise 100% crystallisation would have 

happened.  

Bottom region Columnar to Equiaxed Transition (CET): This is the region in which columnar 

dendritic grains which have developed / grown to a satisfactory level, transit to equiaxed grains, 

known as CET. This is triggered by various phenomena such as solute diffusion, solute – solvent 

partitioning, shape of liquid – solid propagation front, thermal fluctuations happening at the tip of L 

– S propagating interface.  

Fine equiaxed dendrites (B2): Once CET happens, equiaxed dendrites are formed all throughout the 

casting. Only their shape differs. In this region, they are fine sized while in Top Region, their size is 

even more reduced due to presence of IMCs. Casting scum and other impurities coupled with faster 

cooling rate from open top (convection and radiation) and side walls (conduction).  

NOTE: In case of BMGMC not only inoculant particles serve as sites for heterogeneous nucleation 

but grain boundaries also serve this purpose [216, 330]. Other defects and solidification 

microstructure also serve as sites for heterogeneous nucleation. (Their effects in total solidification 

(nucleation and growth model) are to be taken into account in final model).   

2.2 Appendix A 

Heterogeneous nucleation and growth in very fluid alloys (as per CNT) [331] 

Heterogeneous Nucleation rate per unit volume is defined as  

 
Where  

Ns = No. of atoms in contact with substrate  

υ = vibrational frequency 

ΔGc = Activation energy for nucleation (Critical energy of nucleus formation (i-e creation of 

liquid – solid interface) 

ΔGd = Activation energy of diffusion (Diffusional activation energy) 

Rearranging equation (15) using definition of υ vibrational frequency 

                                                             

 

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

Advanced Materials Research Vol. 1154 53



 

Proof  

 

 

 

 

 

 

 

N can be neglected as during initial stages there is no nucleation event 

According to CNT, a minimum energy value is needed to create a solid – liquid interface eventually 

leading to stable nuclei out of melt. This is known as “activation energy”. This activation energy is 

the energy to overcome ΔG* - the energy barrier to nucleation. Now, as solid – liquid interface 

grows to form stable nuclei, atoms must be transported through liquid thus another temperature 

dependent activation energy must be overcome known as ΔGd (activation energy for diffusion) 

The net effect is that CNT predicts a nucleation rate (I) given by  

 
it is the nature of difference between ΔG* and ΔGd that dictates whether solidification will be 

crystalline or glassy. For crystalline solids, ΔGd has a significant value while for glassy solids there 

is no diffusion thus ΔGd can be neglected. Thus 

 
where Kβ is constant dictated by nature and type of liquid composition and measured 

experimentally. ΔGd is also zero in case of small undercooling (i-e well inoculated liquids / 

multicomponent alloys (Metallic Glasses inoculated with / without potent nuclei (present 

research))). [332] 

Notes: 

1) Vibrational frequency  

 =   

 

 
where       

or        

i-e   

Definition used in eq. 17 

2) The difference between frequency and rate is that frequency is “occurrence of an event per unit 

time” while rate is total number of that event (in terms of numerical value) per unit time.  

Thus, from equation 16 

No = Total number of heterogeneous substrate particles originally available per unit volume 

N = Number that have already nucleated 

Io = constant  
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Value of Io can be calculated from equation 15 using another term known as “liquid diffusion 

coefficient”.  

      

where 

 
  

which gives 

     
for small values of undercooling (well inoculated melts / multicomponent alloys) 

 
where ΔT = undercooling  

Thus, Nucleation rate is equation 16 

    

or     

where u is a constant 

       

The value of u can be measured from  

Method 1: T (heterogeneous nucleation temperature). This is defined as temperature, where there is 

an initial nucleation rate of one nucleus / cm3 / sec. 

Method 2: Second method to calculate u is  

     

Proof  

Taking natural log of equation (25) both sides 

i-e      

    

  

 

because lnI and  lnN1020 can be neglected 

 
where ΔTN = undercooling at heterogeneous nucleation temperature  

Time is user defined input and temperature comes from user defined value initially as well. Then its 

every new value is assigned back to equation 15. With temperature and time, k changes and 

assigned back to equation (25). Also, with time, υ (vibrational frequency) changes and assigned 

back to original equation (15). Similarly, the value of u also changes with time and temperature. 

Below table (Table 5) summarises the values which are user defined and which change as a function 

of transience as programs runs. 

Table 5: Summary of user defined and program determined functions used in CNT modified for 

BMGMC. 

Sr. No. User defined value Time Temp(f) 

1 Time   

2 Temp(i)   

3 Temp(f)    

4 k     

5 Υ     

6 U     
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Note: 

1. In BMG, in some cases due to slow motion of large atoms, only nucleation happens and 

growth never happens. In these cases a new phenomenon known as soft impingement effects 

of crystals must be considered. These could be solutal / thermal. However, this is quite rare. 

2. In general, in case of BMG, CNT cannot be applied alone to describe NG. 

3. CSZ and Interdependence models cannot be applied because of very high (η) viscosity of 
BMG (and their sluggish nature). CSZ and Interdependence theories are for less viscous / 

more fluid alloys.  

4. A new concept, known as complex inter diffusion tensor [332] is much more helpful to 

describe NG in BMG 

5. Fick’s law in its native form (i-e linear form) is not sufficient. 

2.3 Appendix B 

1.  Special case of growth of “Columnar microstructures” 

The growth of columnar dendrites, which is initiated by nuclei that form at the mould interface (Cu 

mould casting / TRC of BMGMC) (only if constitutional supercooling zone (CSZ) is suppressed – 

not present case) is usually simulated in a much simpler way. Again, in this case, there is no need to 

use cooling curve measurements or grain size measurement but same growth kinetics models [7, 8] 

can be used to determine.  

Undercooling of eutectic front (ΔTn eutectic) or  

Undercooling of dendrite tips (ΔTn dendrite tip) as well as 

Undercooling of lamellae or dendrite trunk spacing (ΔTn lamellae / trunk spacing) 

This undercooling is determined by direct measurement of  

(a) Thermal gradient and  

(b) Speed of corresponding isotherm (eutectic or liquidus, respectively, i.e. speed of eutectic 

isotherm and speed of liquidus isotherm)  

The later values are obtained from a macroscopic (part scale) heat flow calculations [306, 312]. The 

secondary arm spacing of both equiaxed and columnar dendritic microstructures are deduced from a 

local solidification time.  

2. Columnar structure growth in well inoculated BMGMC: Growth of columnar dendrites 

can also occur at surface of external inoculants (well inoculated deeply undercooled melts – 

present case of BMGMC development. However, it should also be noted that another 

condition for growth of columnar dendrite to occur is suppression of CSZ which is clash 

with aforementioned condition for onset of this phenomena at external potent nuclei of 

inoculant. That’s why; still there is dispute about application of this concept to deeply 

undercooled well inoculated melts (BMGMC) whose solution is under investigation.  

3. Columnar to equiaxed transition (CET) [315] 

Growth rate of solid – liquid interface  

 
where S = Scan speed 

Temperature gradient parallel to dendrite growth direction can be calculated using  

Ghkl = G / Cos ψ                                                                   (15) 

where ψ = Angle between “normal vector” and “possible dendrite growth orientation” at the solid – 

liquid interface. This is evaluated by CFX – Post in Ansys®  

A modification known as Rappaz modification is applied to predict CET. This is as follows 
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where  

Vhkl = dendrite growth velocity =  

n = material constant determined from literature [238, 333]  

φ = equiaxed fraction (critical value = 0.066%) 

No = nucleation density  

ΔTtip = tip undercooling  

ΔTn = nucleation undercooling  

This will be incorporated in present model at point where CET is determined. However, this model 

does not give true 3D representation output.  

NOTE: In general Phase Field (PF) Methods are for microstructure evolution (its type (planer front, 

spherical front), morphology (precipitates, dendrites etc.)) while Cellular Automaton (CA) Methods 

are for grain size determination (equiaxed / columnar dendritic) and its prediction. If both are 

combined [334-336], it is possible to get full map of microstructure evolution and grain size.   

2.4 Comparison  

Below a comparison of “strengths and capabilities” and “evolution of different theories over time” 

which have enabled a better understanding of nucleation and growth phenomena in bulk metallic 

glass matrix composites, is tabulated. The aim is to present reader with a concise smart workable 

data for first hand use and reference for solving nucleation and growth problems in bulk metallic 

glass matrix composites by modelling and simulation. This will help professional programmer, 

working engineer and a researcher to effectively find previously done research till now with its 

strengths and capabilities at one platform.    

2.4.1 Strengths and capabilities  

Below (Table 6) a comparison of strength, capabilities and shortcomings of both deterministic and 

probabilistic methods are described. It highlights and chalks out parameters and certain segments of 

each technique which could possibility advantageously used over others for modelling and 

simulation of bulk metallic glass matrix composites.  
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Table 6: Comparison of strength and capabilities of modelling and simulation techniques as applied 

to nucleation and growth problem of bulk metallic glass matrix composites (BMGMCS). 

 

Note: N/A is an abbreviation to “Not Applicable” 

Sr. 

No. Phenomena / 

Property 

Deterministic 

Models 

Probabilistic Models   

 

References Ductile 

Phase 

Glass Ductile 

Phase 

Glass Comments 

1 Nucleation 

(Heterogeneous) 

  N/A   N/A  [312] 

2 Growth          [331, 332] 

3 Growth Mechanism 

(Interdependence 

theory / Complex 

inter diffusion 

tensor) 

  N/A Χ  Χ   [332, 337] 

4 Different types of 

undercoolings            

(M-H Model) 

    N/A N/A  [338] 

5 Growth Kinetics  Χ  Χ       [307] 

6 Velocity of Growth          [307, 313, 314] 

7 CET   N/A   N/A Deterministic models 

can model ductile 

phase in 2D only  

[307, 315, 339] 

8 Impingement after 

CET 

  N/A   N/A Deterministic models 

can model ductile 

phase by J M A K 

Correction, 

Geometrical and 

Random Grain 

Arrangement Models 

only 

[307, 316-319] 

9 Grain 

Selec-

tion 

Qualita-

tively 

Χ  Χ    N/A Probabilistic models 

can model ductile 

phase by MC only 

[307] 

Quanti-

tatively 

  Probabilistic models 

can model ductile 

phase by CA only 

10 Columnar dendrite 

arm branching  

Χ  Χ       [307, 340] 

11 Extension of grain Χ  Χ       [340, 341] 

12 CET in 3D Χ  N/A   N/A  [341-343] 

13 Physical Basis N/A N/A     Probabilistic models 

can form the basis of 

modelling by MC 

[307, 340] 

    Probabilistic models  

form the basis of 

modelling by CA 

14 Quantitative         Probabilistic models 

can only model 

quantitatively 

employing CA 

method 

[307, 340] 

15 Liquid – Liquid 

Transition (LLT) 

    N/A N/A  [173, 344, 345] 

16 Devitrification         Probabilistic models  

can model ductile and 

glass phase by 2D CA 

[163, 346] R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

R
E
T
R
A

C
T
E
D

58 Advanced Materials and Technologies II



 

2.4.2 Evolution of theories  

Table 7: Evolution of theories of modelling and simulation as applied to nucleation and growth 

problem of bulk metallic glass matrix composites (BMGMCS). 

Sr. 

No. 

Method / Theory / 

Approach 

Action and 

Explanation 

Limitation to 

Explanation  

Group / 

Institute  

Year Reference 

 Part Scale Modelling  

  Analytical Modelling  

1 Deterministic / 

Continuum Model 

Non-random 

methods, produce 

same types of exact 

results   

Does not 

depend on 

initial state / 

point 

 1993 [347] 

2 Probabilistic / Stochastic 

Models  

Randomised result 

based methods 

Does depend 

on initial state 

 2016 [348, 349] 

  Computational Modelling  

3 Lattice Boltzmann 

Methods (LBM) 

Solution of basic 

“Continuity” and 

“Naiver Stokes” 

Equations for CFD 

based on Ludwig 

Boltzmann’s Kinetic 

theory of gases 

Limited to 

CFD type 

problems 

Raabe, D 

(MPIE, 

Dusseldorf) 

2004 [350-356] 

4 Phase Field Method 

(PFM) 

Solution of phase 

field parameter ϕ to 
describe physical 

state (liquid / solid) of 

material 

Limited by 

type of ϕ for a 
particular 

situation 

Napolitano, 

R. E (Iowa 

State) 

2002 

and 

2012 

[357, 358] 

5 Cellular Automaton (CA) 

Method  

Division of entire 

volume into finite 

cells and solution of 

transport equations 

applied to individual 

cell 

Large initial 

Capital 

(Processor / 

RAM) 

Rappaz, M 

(EPFL)  

1993 [307, 341, 

359-361] 

6 Virtual Front Tracking 

(VFT) Method 

Dendritic growth in 

low Péclet number 

systems 

Best in 2D  Stefanescu, 

D.M 

(OSU) 

2007 [362] 

7 Sharp Interface (SIF) 

Method 

Evolution of Interface 

as a function of time 

Best in simple 

cases 

Vermolen, 

F. J (Delft) 

2006 [363] 

8 CAFE Combine Cellular 

Automaton (CA) 

Scheme with Finite 

Element (FE) Method  

 Rappaz, M 

(EPFL) 

1994 [340] 

9 PFFE Combine Phase Field 

(PF) with Finite 

Element (FE) Method 

 Britta 

Nestler 

(KIT) 

2011 [364] 
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10 PFCA Combine Phase Field 

(PF) with Cellular 

Automata (CA) 

Regime 

 Shin, Y. C 

(Purdue) 

2011 [336] 

 Atomistic Modelling 

10 Classical MD Exact Solutions Computing 

power 

Alder and 

Wainwright 

(Lawrence 

Livermore) 

1957  [54, 365, 366] 

11 Monte Carlo (MC) 

Simulation  

Set of probability 

based possible 

outcomes 

Range of 

Solutions 

Metropolis, 

Nicholas 

and co-

workers 

(LANL) 

1953 

and 

1993 

[367-370] 

12 Ab initio Method / First 

Principle Calculation   

Based on Solution of 

Schrödinger Equation 

Works well for 

H atom only. 

For all other 

atoms, 

approximations 

are needed 

Robert Parr 

(Caltech) 

1950 [371] 

13 Hartree Fork Method and 

Slater Determinant 

Uses the variational 

theorem (which is 

wavefunction based 

approach using mean 

field approximation) 

Approximate 

solution is 

obtained. It is a 

form of Ab 

initio method.  

  [372] 

14 

Evolution 

of 

Hartree 

Fork 

Method 

Self-

Constrained 

Field (SCF) 

Method 

Evolution of HF 

Method  

Approximate 

solutions 

  [372] 

Møller – 

Plesset (MP) 

perturbation 

(MP 1) 

Hamiltonian is 

divided into two 

parts  

and solved 

 and energy 

are HF  and 

HF energy 

  [372] 

MP 2  remain same, 

energy is changed  

 is treated by 

the help of 

summations  

  [372] 

Density 

Functional 

Theory 

(DFT) 

Energy of system is 

obtained from 

electron density 

Approximation 

based 

 1996 [373-375] 

15 Interatomic Potential  Explain Interaction of 

atoms in a system in 

terms of potentials 

Limited by 

Accuracy, 

Transferability 

and 

Computational 

Speed of 

System 

Multi 

(Many) 

Body 

Potentials 

Daw Baska 

(Sandia 

National 

Labs) 

1984 [376] R
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4. Conclusion  

Nucleation and growth phenomena in single component (pure metals), binary and multicomponent 

alloys is rather well understood. CNT [316] provides many answers to the behaviour of these melts. 

BMGs and their composites (BMGMCs) are relatively new class of materials which have recently 

emerged on the surface of science and technology and gained attention due to their unique 

properties [21, 34, 127, 377]. Traditionally, they were produced using conventional methods (Cu 

mould casting [220, 222, 378] and TRC [226]) in which their metastable phase (glass) and any in-

situ ductile precipitates (stable phase) are nucleated based on their ability to surpass activation 

energy barrier. In addition, these processes, impart very high cooling rate to castings which is 

essential for retention of supercooled liquid (glass) at room temperature explained by phenomena of 

confusion [17], ordering [16, 379, 380], frustration [15], vitrification [381, 382]. 

Very recently, with the advent and popularity of AM, interest has sparked to exploit the inherent and 

fundamental advantages present in this unique process to produce BMG and BMGMCs. AM 

techniques are useful in achieving this objective as very high cooling rate in fusion liquid melt pool 

is already present inherently to assist the formation of glassy structure which is suppression of 

“kinetics” and prolonging of undercooling (“thermodynamics”) – two main phenomena responsible 

for any phase transformation. However, the in-situ nucleation of second phase equiaxed dendrites 

during solidification and then microstructural evolution (solute diffusion and capillary assisted) is 

not satisfactorily explained by CNT alone.  

Either some modifications are needed in CNT or more reliable probabilistic microstructure 

evolution models (e-g J-M-A-K Correction [332]) are needed to explain nucleation and growth (and 

other phenomena e-g LLT [173, 344, 383] and phase separations [159]) in BMGMCs. In this work, 

an effort has been made to meet both requirements. Following are propositions; 

4.1 At present scenario, there is no single hybrid / combined model which explain phenomena of 

heat transfer (liquid melt pool formation as a result of laser – matter interaction and its 

evolution – solidification) and coupled this with nucleation and growth (NG) (solute 

diffusion [384] and capillary action driven) at microscale to predict microstructure and grain 

size in BMGMC as melt cools in liquid pool of AM.  

4.1.1 Only one study has been conducted to model the same phenomena (solidification 

only) during Cu mold suction casting which will serve as base [385] in addition to 

very recent attempts [332] in which emphasis is laid on development of generalised 

theory rather than solving a problem. 

4.1.2 Only one study has been reported on microstructure formation during TRC using 

CAFE [227] but that is not aimed at BMGMCs, is carried out using commercial 

software package and does not involve any mathematical modelling at the back end. 

Software embedded (NG and heat transfer) models are used only. 

4.1.3 Four prominent studies namely by Zhou et al. [386], Zhang et al. [387], Zinoviev et 

al. [388] and a group at Shenyang, China [389, 390], have been reported very 

recently using CAFE but these are based on modelling microstructure evolution in 

modified AM (HDMR [386], LAMP [391] on 316L SS [387], 2D CAFE [388], 

Cladding [389, 390]) processes. 

4.1.4 Few studies in the past have been conducted employing SLM using CAFE [389, 390, 

392, 393], CAPF , CAFVM [394], modified CAFE [395] etc. approaches but none 

have been conducted on BMGMC.  

4.2 No effort has been made to correlate the effect of E2EM with assigning direction of easy 

heat flow and easy crystallographic growth. 

4.3 No substantial study has been reported about evolution of microstructure in three dimensions 

in BMGMCs in AM.   

4.4 No effort has been made to combine the effect of changing properties with decrease of 

temperature (transient conditions). Most of models till now predict solutions in terms of 

steady state processes. 
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4.5 Very few studies have been carried out to combine CA with FE in case of AM while it is 

routine approach to predict grain size in case of other processes (casting, welding). 

In this review consisting of two parts, an effort has been put together to overcome these 

shortcomings and propose a methodology for the modelling and simulation of solidification 

phenomena during additive manufacturing of BMGMCs. A model system Zr47.5Cu45.5Al5Co2 has 

been proposed owing to its ductile nature and tendency to show shape memory effect (exhibiting 

two types of martensitic phase evolution from B2 ductile phase). Further, the method is proposed to 

be applied to conventional wedge shape casting geometry along with its final application to melt 

pool in AM making use of powers of deterministic, probabilistic and their coupled modelling 

approaches. This route is proposed to get maximum benefit from application of modelling and 

simulation to understand nucleation and growth phenomena during solidification both in 

conventional as well as modern processing technologies (AM). It is envisaged that application of 

hybrid CAFE model by MatLAB® and Ansys® will help understand solidification in BMGMC in 

much better way not done elsewhere previously. 
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