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RETRACTIONS AND QUASI-MONOTONE MAPPINGS
OF UNICOHERENT SPACES

M.  M.  MCWATERS AND J.  H. REED1

Abstract. It is shown that retractions of connected, locally

connected, unicoherent spaces are unicoherent, and that quasi-

monotone maps preserve the unicoherence of any connected uni-

coherent space.

1. Introduction. It is well known [3] that the unicoherence of locally

connected metrizable continua is invariant under maps which are either

(i) interior, (ii) monotone or (iii) retractions. Wallace [2] showed that

quasi-monotone maps preserve the unicoherence of such continua, and

recently Charatonik [1] proved that confluent maps preserve the uni-

coherence of these continua. Charatonik also showed that the class of

confluent maps includes the interior maps as well as the monotone maps

on continua, and that quasi-monotone and confluent maps coincide on

locally connected continua. It should be remarked that a monotone map

preserves the unicoherence of, and is quasi-monotone on, any continuum.

Our purpose here is to show that the conditions of compactness and

metrizability may be dropped in the first mentioned theorem for re-

tractions; and that quasi-monotone maps preserve the unicoherence of any

connected space. We give examples to show that in the absence of compact-

ness neither monotone, confluent, nor interior maps preserve unico-

herence.

We assume throughout the paper that the spaces under discussion are

Hausdorff, and use the asterisk to denote the closure of a set.

2. Retractions of connected, locally connected, unicoherent spaces.   The

following two results enable us to show that such retractions preserve

unicoherence.

Lemma 2.1. Let X be a locally connected, connected space and let C, D

be closed connected subsets of X with X=C(JD. If CnD=A(jB where

A and B are closed disjoint subsets of Cr\D then some component of D—

(A KJB) has limit points in both A and B.
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Proof. Suppose no component of D—(AkjB) has limit points in both

A and B. Let R(A) be the union of all components of D-(AkjB) which

have limit points in A, and let R(B) be the union of all components of

D—(AkjB) which have limit points in B. Let S(A)=AuR(A) and S(B)=
BuR(B).

SinceD-(AKjB) is an open subset of X, D — (AvB) is locally connected.

Thus each component of D-(AkjB) is open in D, and therefore no com-

ponent of D—(A\JB) is closed in D since D is connected. Thus each

component of D-(AkjB) has limit points in either A or B, and hence

S(A)\JS(B)=D.

Since no component of D-(AkjB) has limit points in both A and B,

we have S(A)r\S(B)= 0. Thus since D is connected, [S(A)nS(B)*]U

[S(A)*nS(B)]*0. Assume S(A)r\S(B)*j¿0 and let xeS(A)nS(B)*.

We consider two cases, either xeA or xfiA.

If xeA, let U be an open connected subset of X such that xeU and

UC\B=0. Let F={/nZ>. Then VC\S(B)j£0 but Fn5=0. Thus there

exists a component À' of D— (A\jB) with limit points in B such that

FnA>í0. Since K*r\A = 0, K\JB is closed in D and A". Therefore,

Vr\K=(Ur\D)r\K=Ur\(Kr\D)=Uf\K=Ur\(K\jB) is closed in ¿7.

But K is a component of the open subset D—(A \JB) of a locally connected

space, hence AT is open in X. Thus JCn U= VnK is also open in U. Since

£/ is connected, U=VnK. Thus xeFOAT, and xeA, hence ÄTO/M0

which contradicts K*C\A=-0.

\f x$A, then xe/?(,4), hence there exists a component AT,, of D — (AuB)

which has limit points in A such that „xeAT,. Thus K*C\B= 0 and so xé^4 U

5. Therefore there exists an open connected subset U of X such that

xell^D — (AkjB). But since x is a limit point of S(B), U must contain

some point yeR(B), where y is an element of some component K2 of

D—(A<uB) which has limit points in B. Thus xeKxfMJ and ^e.^C\U

which means £/£ A\ and t/£ /C,. Therefore Kx=K2, and .rv, has limit points

in each of A and B, a contradiction.

Theorem 2.2 (Wilder [4. Theorem 4.13, p. 51]). If X is a connected,

locally connected space which is unicoherent, then for any closed subset M

of X and components C, D of M, S—M respectively, the set CnBd(D) is

connected.

Theorem 2.3. Let X be a connected, locally connected, unicoherent

space, and let f be a retraction on X. Then f(X) is unicoherent.

Proof. Suppose f(X) is not unicoherent. Then f(X) is a closed,

connected, locally connected subset of X which can be expressed as the

union of two closed connected subsets Ckj D such that Ct~\D is not

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] RETRACTIONS  AND  QUASI-MONOTONE  MAPPINGS 559

connected. Let Cr\D=A UB where A and B are disjoint closed subsets

of f(X). Let M=f'xiC) and let O be the component of f~~x(C) containing

C. Consider X—M=f~x(D—C). By Lemma 2.1, there exists a com-

ponent K of D—C having limit points in each of A and B. Since

K^D-C^f-X(D-C)=X-M, there exists a component KY of X-M

having limit points in each of A and B, and by Theorem 2.2, QnBd(K~x)

is connected.

We show that/[^oBd (£,)]£ Cr\D. Let xeQr\Bd(Kx). Then f(x)eC.

Also, since Kx^f~x(D-C) we have £1*Ç[/-10D-C)]*ç/-1[(Z)-C)*]g

f-i(D*)=f-i(D). Thus if AeBd^) then/(x)eZ). Hence f[Qr\Bd(Kx)]^
Cr\D.

Since ^çA^ and K*C\A^0 ¿¿K*nB, we have KtC\A^0¥^KXr\B.

Also, ^S/^ÍC) and B^f~xiC), and since £1Ç/-1(Z)-C) we have #,0

^4 = 0 =KxC\B. Moreover, £x is an open subset of Xsince Kx is a compo-

nent of the open set/"MD-C) in X, and so BaiKx)=K1*-K1. Thus

Bd(Kx)r\Ajt0 and Bd(7V1)n£?i0. But since C^Q, we have Bdi^n

(AvB)çBd(Kx)nCçBàiKx)r)Q. Thus [Bd(A:1)n^]u[Bd(/:1)n£] =

/[Bdí^ní/íu^C/IBdí^nCJg/tBdí^ne]. Therefore,

f[BdiKx)r\Q]r\A?i0    and  /[Bd(/:1)nO]n.B;¿0.

But then/[£?nBd(£1)] is not connected, a contradiction.

3. Quasi-monotone maps on connected unicoherent spaces. We begin

with the following definitions.

Definition. A map/of a space X onto a space Y is quasi-monotone if

for each closed, connected subset Q of F with a nonempty interior, the set

of components of f~x(Q) is finite and/maps each component onto Q.

Definition. Let S? be a collection of subsets of a space X. A c/Wn in

y is a finite sequence Xlt X2, ■ ■ ■ , Xk of elements of y such that ^nl,^

0 if and only if |/'—j\ < 1.

Theorem 3.1. Let X be a connected, unicoherent space and let f be a

quasi-monotone map of X onto Y. Then Y is unicoherent.

Proof. Let C and D be closed connected proper subsets of Y such that

y=CuD. We show that CnD is connected.

Since / is quasi-monotone, f~xiC) has a finite number of components,

say K~x, K2, ■ • ■ , K„. Similarly f~xiD) has a finite number of components,

say Lx, L2, • • • , L,n. Each K, intersects some L.J and each L, intersects some

K„ otherwise X is not connected. Also, f(Kinf-x(D))=f(Ljr)f-x(C))=

Cr\D for each Kt and L¡.
Consider £,. Reindex the L's so that £,, L2, ■ • • , Lv each intersect Kx

and 7_p+1, Lp+2, ■ • ■ , Lm each do not intersect Kx. Let .s/={^1, • • • , K„,
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Lx, • • •, LJ and let ¿8=si-{Kx}. For each /, 1 £i£p, let Mi={P\Pe^,

P can be joined to L¡ by a chain in 88}, and let Lf=U {Q\QeMt).
Each Pe88 is a member of some A/¿, l£jí'ií/>. For if P$Mi for any i,

let #=L4eá?, ^ is a link of some chain in J1 starting at F}. Let 3i=si—c€.

Then ^-^0, since Lx, L2,- • • ,LV and A", are in .s/—if. Also, # is

nonempty, since Fe^. Moreover, A\ intersects no element of *€, and if an

element of si—^ different from Kx intersects an element of ^, then it is in

#. Thus (U if)n(U (si-<£))=0 and (U «")u(U (j/-if))=Jr, a con-
tradiction since X is connected.

We consider two cases, depending upon how the K's and L's intersect.

Case 1. Suppose there exist Ki for some /' such that K¿ intersects exactly

one Lj. Reindex the A"'s and L's so that K1r\L17é0 and K1f~\Lj=0 for

2^j^m. We know each Pe88 can be joined to Lx by a chain in 88; i.e.,

PeMx- Thus Lf is closed and connected, and A\nLf=A"1n/~1(L>). Since

K~xULf=X, we have Kxt~\f~x(D)=Kx<~\Lif is connected and hence

f(KxC\f~x(D)) = Cr^D is connected. A similar argument shows that CC\D

is connected if there exists Li for some / such that Li intersects exactly one

*,.

Case 2. Suppose each Kt intersects at least two F/s and each L¿

intersects at least two Kfs. Consider Kx. Then Lx, • • • , LP each intersect

Kx and Fp+i, • ■ • , Lm each do not intersect A\ where/>^2.

If there exist indices c/#j such that LfnLf^0, l^q, s^p, let A =

U {Lf|Ff nLf 5¿0, l^i^p}. Then ^ is closed and connected. Also
AC\Kx is not connected, since Lq<=kA and LS^A. Let

5= #, U (U {Lf | L? n L* = 0, 1 ̂  /< />}).

Since each element of 88 is a member of some M¿ and therefore a subset of

some Lf, we have A\JB=X. Also 5 is connected, and AC\B=At~\Kx.

Thus X is not unicoherent, a contradiction.

If for all^r^i, l^q, s^p, we have Lf(~\Lf=0, then consider Lx. There

exists Kxix) m ^ such that A't[(1)nL15£0. Then there exists Lß{i) in ^,—

{Lx} such that Lßa)nKa(x)7i0 ; there exists Kxf2) in á?—{AT<,(1)} such that

A'a(2)nLi(1,#0 ; and there exists Lß{2) in á?—{Lí(1)} such that L^2)C\

K„w^0. In general, choose Kx(n) in ^-{A^,,} such that Kx(n)C\

Lßi„-i)9*0, and choose LßM in á?—{£.„(„_!,} such that Lß{n)t~\KxM^0.

Thus we construct the two sequences Afa(1), Ara(a), • • • and Lß{1), LßK2),

Since there are only a finite number of AT's and L's, some Kxii)=Kxij),

i¿éj, and some LßM=Lß(t), r^t. Let u he the smallest integer such that for

some v<u, KxM=Kxlu) or Lßiv)=Lßlu). Suppose KxM=Kx{u). Then

\v-u\^2 and KxMr\LfiM9¿0 and A"l(B)nL/r(tí_1)í¿0. Also, LßW^-

F^(u-i)- Now reindex the A"'s and L's so that Kx=KxM = Kxlu), and so that

Lx, - • •, L. intersect A\ and L^j, • • • , Lm do not intersect A",. Then for
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some g, h such that g^h, 1 £g, h^p, we have LßM=L„ and Lp(U_D=LA.

Then Ljf C\Lf?± 0 , and as shown above, this leads to X not unicoherent,

a contradiction.

4. Some examples. A map / of a space X onto a space Y is confluent

if for each closed, connected subset Q of y, each component of/_1(Q) is

mapped by / onto Q. We show here that for noncompact, locally con-

nected, connected spaces, a mapping / may fail to preserve unicoherence

when / is interior, monotone or confluent.

Example.   Let X be the graph of the function p=(2+ee)l(l+eB),

— co<0< co, in a polar coordinate system. Let C be the unit circle, and let

f:X—>-C be the function which maps each point (p, 6) in X onto the point

(1, 6) in C. Then/is a confluent, interior map of X onto C and C is not

unicoherent.

The map/of this example is not monotone, but the example of a one-to-

one mapping of a half-open interval onto a simple closed curve shows that

monotone maps do not preserve unicoherence.
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