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Abstract. Customers in many developing regions (like India) use phys-
ical bank branch as primary and preferred banking channel, resulting in
high footfall in the branch. This results in high wait time of customers
and high pressure on organization’s resources, impacting customer sat-
isfaction (CSAT) as well as employee satisfaction (ESAT) adversely. A
naive solution to handle this is to increase the service personnel to cater
to the customers. However, this is an unviable alternative because this
impacts top and bottom line of the bank. Therefore, organizations are
strategically looking for intelligent systems which can help in fine tuning
the overall business process to maximize their business objectives while
incurring zero or very less investments. Towards this end, we present a
system RETRAiN to enable such calibration of various components of
bank operations. Based on real time data like waiting customers, service
requests, availability of service personnel and business metrics, the sys-
tem provides recommendations for reconfiguration of the operations. The
reconfiguration includes selection of scheduling policy, number of service
personnel and configuration of service personnel. We present the overall
system along with analysis and optimization algorithms for generating
the recommendations. To showcase the efficacy and usefulness of our
system, we present results based on data collected over a period of four
months from multiple branches of a leading bank in India.

Keywords: Applications and Experience, Retail Banking, Services
Quality.

1 Introduction

In this paper, we present a framework to optimize the business process in re-
tail banking through use of analytic and optimization techniques. Customers in
many developing countries prefer to visit bank branch for their banking needs.
Even though various alternate channels like ATM, Internet banking and mobile
banking have evolved significantly in the last few years, the bank branch has still
retained its position as the primary service delivery channel in many emerging
economies. Due to various factors like literacy rate, lack of infrastructure, legacy
of public sector banks, lack of trust in e-transactions, the alternate channels
have not been adopted widely. While the private banks in India have nearly 35
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to 40%1 transactions through alternate channels, this figure is in single digit for
the public sector banks where the vast majority of population still bank. This
results in high footfall in the bank making it difficult to maintain Customer Sat-
isfaction (CSAT) at an acceptable level. Retail banking is one of the industries
where CSAT plays a key role towards retention and growth of customer base.
According to a study done by Financial Service Sector (FSS) consultants in our
organization, wait time, staff interaction, service time, and information availabil-
ity were discovered as important factors which influence CSAT. Of these wait
time was found to be the most important factor. Moreover, due to huge volume of
customers, the service personnel are also under constant scrutiny of customers
and face tremendous pressure (often undue) to be more efficient. This affects
the ESAT in an undesirable fashion. Please note that there is causal relationship
between ESAT and CSAT, i.e., less pressure on employees will reflect itself in
better interaction with customers, which in turn will positively impact CSAT.

A seemingly straightforward solution to the above mentioned challenges is to
increase the number of service personnel. This will reduce wait time of customers
(thereby increasing CSAT) as well as reduce workload for the service personnel
(thereby influencing ESAT). The readers would note that every organization
have multiple, sometime conflicting, business metrics. For example, even though
CSAT and ESAT is important, the organizations always strive to increase gross
profit. Therefore, adding personnel is an unviable solution because the bank
has to incur cost for hiring, training, providing seats, procuring computers etc.
Therefore, strategically, organizations are looking at intelligent integrated sys-
tems which help to meet diverse business objectives, minimize investments and
increase Return on Investments (RoI).

In this paper, we provide a transformation frameworkREcommendationTool
for Reconfiguration of RetAil BaNk Branch - RETRAiN, which generates var-
ious recommendations for the administrator or branch manager to reconfigure
the branch operations. The framework does not change the business process asso-
ciated with customer service but aims to optimize the process for various stake-
holders. The system takes into account the real time information of customers,
resources and service types to generate operational planning recommendations.
Specifically, RETRAiN generates recommendations for the following questions:
Given the real time mix of customers, service requests and resources2-

1. What is a good scheduling policy? Goodness depends on the efficacy of policy
with respect to the business metrics. Our setting in non-preemptive, i.e., the
customer service request is fulfilled in one go by assigned resource.

2. How many resources should be employed? The correct supply of resources
helps in matching customer demand.

3. What should be the configuration of resources? Since the resources we con-
sider are people, they display different proficiency towards different services.
Therefore, given the demand, the most efficient resources should be chosen.
The historical efficiency data is used for this assignment.

1 This figure was quoted by bank officials during our meetings.
2 In this article, we use resource and service personnel interchangeably.
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Table 1. Comparison with BAU scenario and effect on KPM

Dimension Current Proposed Optimized KPM
(BAU) (RETRAIN)

Scheduling Policy Agnostic to Demand Demand aware, Profitability,
Fixed, FIFO Dynamic, non-FIFO Wait Time, CSAT

Number of Fixed Computed ESAT, Small Queue
Resources or Ad-hoc Change Customer Expectation
Resource Universal (for all services) Any Subset of services Reduction in Service Time

Configuration or Dedicated (for single service)

Table 1 highlights the key dimensions which are transformed by RETRAiN,
comparison with Business-As-Usual (BAU) scenario and the impact on Key Per-
formance Metrics (KPM) for a retail bank. We briefly describe the data in table.

Scheduling Policy. Currently, all banks use FIFO to schedule and serve cus-
tomers. While FIFO is a fair policy but it does not lend itself to customer and
service differentiation [1]. Given the number of customers coming in branch, the
banks are increasingly looking at way to pay more attention to more important
customers (High Networth Individuals -HNI) or high profitable services (like
Demand Orders) and provide better quality service (low wait times). However,
it is not always advisable to use non-FIFO policy. For example, consider the
following scenarios:

Scenario 1: Only 10% of customers waiting in branch are HNI.
Scenario 2: 60% of customers waiting in branch are HNI.

It is clear that a priority based scheduling will work very well in Scenario 1
and help server HNIs in a better fashion. However, in Scenario 2, a FIFO based
policy might be better because of large number of HNIs in the branch.

Number of Resources. Currently, the number of resources are fixed in the
bank or resources are added after manually observing the queue in the bank. In
our system, the choice of addition or removal of a resource is taken by analytically
computing the impact of such action on the business metrics.

Configuration of Resources. The banks configure the service personnel in
two ways either the personnel can provide all services or she provides only one
service (like Account Opening or investment advice). However, our system ana-
lyzes the current demand of customers while taking into account the individual
proficiencies of resources to generate a configuration which allows any subset of
services to be assigned to a resource.

To re-iterate, the crux of our framework is to leverage the current customer
demand, proficiencies of resources, priority of customers and profitability of ser-
vices to generate recommendations by employing novel algorithms which will
optimize various business metrics.



RETRAiN 675

To further motivate the need and importance of such framework, we present
few results derived from data which was collected from multiple branches while
deploying some functionality of RETRAiN. Figure 1(a) shows the wait time of
customers in each hourly slot for both FIFO as well as RETRAiN. Please note
that the wait time is almost equal for both cases. Overall, the FIFO provides
a slightly better performance. The wait time using FIFO is 2% less than RE-
TRAiN. However, our system does provide the differentiation between customers
by recommending non-FIFO based policies. Now, lets look at the number of re-
sources used as shown in Figure 1(b). The number of resource hours used by our
system is 29 whereas in static system the corresponding number is 40. There-
fore, our system is able to reduce 25% resource hours while increasing the wait
time by a mere 2%. Moreover, in few slots, our system recommended non-FIFO
policy which helped in focusing on important customers and profitable services,
thereby, optimizing metrics which matter the most.
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Fig. 1. Comparison of wait time and number of resources

Section 2 describes the related work in this field. Due to real time nature of
the system, we chose to develop some polynomial time approximation algorithms
to handle the technical challenges. We provide those details in Section 3. Finally,
we present results on data in Section 4. The data was collected over a period of
four months from multiple branches of a leading bank in India.

2 Related Work

In the proposed system, different (human) resources have different efficiency. The
problem of scheduling in such settings is known as unrelated machine problem,
which has already been proved to be NP-Hard by [2]. Since then, several approx-
imation algorithms like [2–8] have been proposed for solving this problem. [9]
describes scheduling on unrelated parallel machines where every job is associated
with a weight. Our system also has a weight/priority assigned to every customer.
But unlike the standard problem where number of machines/resources are fixed,
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number of resources may vary in our system. Apart from finding a good sched-
ule, we also need to find correct number of resources to be used in the schedule.
Moreover since all resources are not equally efficient, we also need to find which
resources are best to be used given the real time state of the system. Our schedule
depends not only on makespan but also on business metric. Therefore, solutions
mentioned in above literature are not suitable for our system. We propose a
polynomial time approximation algorithm for this problem. We point interested
readers to some excellent surveys on scheduling [10–12].

The work most pertinent to our work is by [13]. The authors describe a hy-
brid scheduling policy obtained from the integration of real time scheduling
algorithms. Based on the characteristics of jobs, hybrid scheduling policy gets
reduced to one of the scheduling algorithms. Their choice of real time scheduling
algorithms and formulation of hybrid scheduling policy are very much specific
to the embedded real time monitor and control system requirements. Hence it
cannot be extended for our system. Moreover, working of a scheduling policy is
supposed to be unknown to our system. We need to pick the best scheduling
policy based on the business metrics returned by various scheduling policies.
This objective of our system overrules the idea of having a hybrid policy.

In our previous work [1], we presented a scheduling algorithm for reducing
weighted average weight time of customers in a bank branch, while considering
prioritization of customers based on several factors. Our system also considers a
priority assigned to every customer. It additionally considers a priority assigned
to every service as well requested by customers. The focus of the this paper is
not on scheduling algorithm. The scheduling algorithm is one component of the
our system. Currently, we use algorithm presented in [1], however, the proposed
framework allows for replacing it with any other scheduling algorithm.

In commercial offerings, Adobe and IBM solutions for bank branch transfor-
mation [14] concentrates mainly on efficient processing of data and documents.
It focuses on providing solutions with more secure, personalized, and compelling
communications. It helps in setting up different processes in a bank branch ensur-
ing compliance with government regulations. In the similar spirit, Oracle’s Siebel
Branch Teller solution [15] provides a comprehensive, customer-centric teller so-
lution with the following features. It has 360-degree view of customer relationship
which enables more relevant and targeted sales offers (up/cross sell) and improves
customer experience. It streamlines transaction processing via an easy-to-use in-
terface. It improves operational efficiencies driven by centralizing business pro-
cesses and operational information that traditionally exists in each branch server.
A branch transformation system by Talaris [16] focuses on maximizing revenue
through increased sales of targeted financial products. It also mentions creating
a branch experience to retain and develop customer relationships through excep-
tional service. The tool advises on strategies to position the bank branch as strate-
gic delivery channel and their expertise assists clients to achieve specific outcomes
through targeted investment. However, like our system, none of above mentioned
bank branch transformation systems enhances customer experience by employ-
ing scheduling policy which is different from traditional FIFO scheduling policy.
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Fig. 2. Depiction of algorithm

Optimizing resource usage for better demand and supply match is not supported
by the solutions. Similarly, various Queue Management Systems exist in market
to enforce discipline and schedule customers in some predefined order. The solu-
tions generally work on a static fair play principle and schedule customers in a
FIFO order. However, any advanced dynamic scheduling (e.g. based on multiple
service parameters) and real time decision support system is missing from these
products. To best of our knowledge, the proposed framework, associated technical
problems and business use cases are novel.

3 Algorithms

Notations. Let C = {C1, C2, . . . , CN} denote the customers. Assume
S ={S1, S2, . . . , SK} be the list of services offered by the organization. Each
customer Ci is associated with an arrival time ATi, service request(s) Gi ⊆ S
and a data packet Di. The data packet can contain customer specific informa-
tion like category, number of years with the bank, average quarterly balance etc.
Please note that the focus of our current work is to recommend a policy and
therefore, we do not delve into data requirements and the rules for individual
policies. The assumption is that the abstract data packet would contain all rele-
vant information which is needed by individual scheduling policies. For example,
a policy can give more priority to customers with long running accounts. This
priority can be calculated by using data packet. The list of scheduling policies
is represented by P ={P1, P2, . . . , PQ}. The list of M resources is denoted by R
= {R1, R2, . . . , RM}. E is a M ×K matrix capturing the efficiency of resources.
Ei,j stores the time which Ri takes to serve a request of type Sj . Finally, B =
{B1, B2, . . . , BU} represents the list of business metrics. Each policy Pi will gen-
erate a schedule for serving customers and also evaluate the generated schedule
with respect to various business metrics. Some metrics which we consider are
wait time, wait time per category, wait time of important customers, wait time
of customers with profitable services, etc.
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Policy Evaluation Function. This function generates a schedule SchPi using
policy Pi, subset of customers C′, subset of resources R′ and corresponding
efficiency matrix E′. The definition is: Sch = evalPolicy(Pi, C’, R’, E’). If
there are L resources, the schedule will have L ranked lists one corresponding to
each resource. Please note that generation of the optimal schedule, in presence
of resources with different efficiencies, is a NP-Hard problem and is an area of
active research. However, in our proposed algorithm (Steps 1 and 2), we use
this function with equally efficient resources. Therefore, the scheduling reduces
to single resource scheduling problem (which can be solved in polynomial time)
and schedule generation component simply picks the unserved customer from
ranked list and assigns it to a free resource, thereby creating L ranked lists for
L resources.

Schedule Evaluation Function. Given a schedule generated by Pk, this
function returns values of different business metrics. The definition is
B = evalSch(SchPk

, R’, E’). For each resource, the corresponding ranked
list is simulated by taking into account the efficiency of the resource.

Gain Evaluation Function. Given a schedule and two policies P1 & P2, the
function computes the difference in the values of different business metrics. This
difference can be construed as gain G which a candidate policy P2 realizes over

current in-use policy P1. The function is implemented as: ∀Ui=1 G(i) =
B

P2
i −B

P1
i

B
P1
i

.

3.1 Algorithms

As noted in related work, the problem of scheduling jobs on known number of
unrelated machines is a NP-Hard problem. Our problem becomes much harder
because the number of machines (resources) and which resources to be used
are also unknown. The choice of resources depends upon the characteristics of
services being requested by the customers. Moreover, due to complexity of prob-
lem arising from varying efficiency of resources, properties which could help to
reduce search space do not hold. For example, P1 can outperform P2 on a busi-
ness metric given L resources, however, with addition of one more resource, the
performance may be reversed. Similarly, given customer and service data, as-
sume we use a single resource to serve all customers. Let resource R1 be the
best performer followed by R2 and R3. However, the top resources together, i.e.,
{R1, R2} can be outperformed by combination of {R2, R3}. This can happen if
efficiency of R2 and R3 complement each other. We propose a solution which
iterates over values of L from 1 to M , while picking best L resources and best
scheduling policy every time. We recommend L along with the corresponding
resources and policy, which perform the best as per the business metrics. The
bottleneck here is to chose best L resources, which is a NP-Hard problem.

NP-Hardness Proof. We already know that it is a NP-Complete problem to
decide if all edges of a graph can be covered by exactly K number of vertices.



RETRAiN 679

The problem of selecting optimal set of resources in current setting can be proved
to be NP-Hard by reducing Vertex Cover problem to resource selection problem
in polynomial time as follows. Create a resource for every vertex in the graph.
Create a customer for every edge in the graph who requires a unique service
corresponding to the same edge. A resource provides a service in unit time if
the vertex corresponding to the resource is one of the two vertices of the edge
corresponding to the service. Otherwise resource requires infinite time to pro-
vide a service. Now we solve this resource selection problem to select exactly K
resources so as to minimize the makespan. If the value of makespan is infinity,
there is at least one customer who requires a service which is not provided by
any of those K selected resources in unit time. It also indicates that all edges
in the graph cannot be covered by exactly K vertices. If the value of makespan
is any finite number, every customer can be served in unit time by one of the
K selected resources. It also indicates that all edges of the graph can be cov-
ered by K vertices corresponding to the K selected resources. Thus we can use
resource selection problem to solve vertex cover problem. Clearly, reduction of
vertex cover to resource selection problem takes polynomial time. Hence resource
selection problem is harder than vertex cover problem and can be included in
NP-Hard category. Even if we are given K optimal resources, we cannot verify it
in polynomial time. We need to enumerate all other combinations of K resources
to verify if the given solution actually results in the smallest makespan.

Figure 2 presents the key steps of the proposed solution.

Step 1. For each service type Sj , we find the resource Ri which takes the least
time to provide the service and store the service time, Ei,j , in SR. Formally,
SRj = min{E∗,j}. SR can be conceived as a Super Resource which provides all
services in minimum time possible.

Step 2. In this step, a schedule is generated given a scheduling policy Pk ∈ P
and L resources where 1 ≤ L ≤ M . The point to note is that all L resources are
taken to be super resources. Moreover, with this setup we can use evalPolicy

to generate schedule. This construction provides, hypothetically, the best per-
formance (in terms of average wait time) which can be achieved by L resources.
In next step we map the super resources to actual resources while incurring an
increase in wait time. For a resource SRi and Policy Pk, the average wait time
WTPk

SRi
of assigned customers (Qi in Step 2 of Figure 2) as per policy Pk is

computed by using evalSch.

Step 3. In this step we map L super resources to L actual resources while
minimizing the increase in wait time. We pose this problem as a maximum bi-
partite matching with edge weights. Super Resources form one set of vertices
while actual resources the other set. The graph is fully connected because ev-
ery super resource can be replaced by any of the actual resource. The cost of
replacing a super resource by actual resource is Ci,j = WTPk

Rj
- WTPk

SRi
. The

cost/penalty captures the increase in wait time if SRi is replaced by Rj . Since
the objective is to find maximum weight matching, the weights are computed
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as Wi,j = max{C∗,∗} − Ci,j+1. We use existing algorithm proposed by [17] to
find the matching. Algorithm takes O(mn log�m/n+1� n) where n is the number
of nodes and m is the number of edges.

If all resources are equally efficient or if we can order them in decreasing order
of their efficiencies such that Ri is more efficient than Rj in providing all services
for i < j, then resources selected in step 3 are nothing but the optimal resources.
Step 3 fails to get optimal resources when efficiencies of resources complement
each other for different services, for example, E1,1 < E2,1, but E1,2 > E2,2. Step
4 provides a greedy solution to fix this problem.

Step 4. Customers are scheduled in Step 2 considering super resources. It results
in service requests to be uniformly distributed among all resources. This overrules
the inclusion of resources who are extremely efficient in providing one service,
but equally bad in providing other services. In optimal solution, these resources
might have been selected to provide that one service dedicatedly, resulting in
reduction of total wait time of customers. Figure 3 represents an algorithm to
greedily select such dedicated resources.

Require: RL, set of L resources selected in Step 3;
RC , set of all available resources to be considered;
E, efficiency matrix; RCk, request count for service Sk;
RSi,k, number of requests of service Sk to be served by Ri;
P , policy in consideration; C′, waiting customers; WTmin, total wait time using
RL

1: while RC �= ∅ && maxi RCi > 0 do
2: Find a service with maximum requests, m← argmaxk RCk

3: Find the most efficient resource for service Sm, d← argmini∈RC Ei,m

4: RC ←RC − {Rd}
5: if Rd /∈ RL then
6: for all Ri ∈ RL do
7: Prepare a new set by replacingRi withRd,RL

new ←
(RL − {Ri}

) ∪ {Rd}
8: Sch = evalPolicy(P, C′,RL

new , E)
9: Compute total wait time, WTi = evalSch(Sch,RL

new , E)
10: end for
11: if mini WTi < WTmin then
12: Find a resource to be removed from RL, n← argminiWTi

13: Update minimum total wait time, WTmin ←WTn

14: Replace Rn with Rd in RL, RL ← (RL − {Rn}
) ∪ {Rd}

15: Decrease request count for Sm, RCm ← RCm −RSd,m

16: end if
17: else
18: Decrease request count for Sm, RCm ← RCm −RSd,m

19: end if
20: end while

Fig. 3. Algorithm to select dedicated resources
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‘IF’ condition on line 11 ensures that whenever a resource is replaced by a new
dedicate resource on line 14, our solution always results in decreased total wait
time and we approach towards the optimal solution. Though we could not prove
the approximation bound for our algorithm because of its complexity, it never
deviated from optimal solution by a factor more than 2 during our experiments.

Steps 2-4 are repeated by keeping the resources fixed at L and changing the
policy. At the end of this iteration, we would have identified L best resources for
each Pk.

Step 5. In this step we compute the gain G and other business metrics for each
policy and use a rule based system to generate candidate recommendations.
Next, we enumerate the rules and also describe intuition behind them:

– Rule 1. The Gain (G) over current configuration should be greater than
θ1 where θ1 defines the improvement which the organization would like to
witness. All policies with corresponding gain greater than θ1 are chosen to
generate candidate recommendations. In current deployment, average wait
time of all customers is used to compute gain. If gain is too less, it implies
that the organization is changing a business process with a new one without
substantial improvements.

– Rule 2. RETRAiN generates configuration recommendations after every F
minutes. Given policy (selected by Rule 1) and set of resources, we compute
how many customers can be served in next F minutes. Subtracting this from
the total waiting customers C′ (used in Policy Evaluation), gives the number
of unserved customers UC at the end of next F minutes. If UC

C′ ≤ θ2, then
the configuration gets added to candidate recommendations.

The configurations which satisfy both rules are tagged as candidate recommen-
dations with the following details {Pk, C′, L,R′, E′,G, UC

C′ }. If no configuration
satisfies rules, then number of resources is increased by 1 and Step 2 is repeated.
The process is continued till L ≤ M .

Step 6. All the candidate recommendations are presented to the administrator
to choose from. The chosen recommendation then replaces the current config-
uration and is used for next F minutes. At this point, we would like to share
the key motivation of involving domain expert as opposed to the completely
automated system. Consider an example where recommendation CR1 results in
gain of 5% whereas CR2 shows gain of 4.9%. An automated system will choose
CR1 as new configuration. However, the domain expert can investigate respec-
tive policies and conclude that the policy used in CR2 enforces fairness whereas
CR1 gives high preference to a set of customers. In this case, based on business
logic and other real time factors, she may decide to choose CR2. Moreover, in
such scenarios, the rules itself keep changing based on state of the system includ-
ing number of customers, number of available resources, time of month, special
promotion season etc. Therefore, the same expert can take different decisions
based on real time state of the physical system. It would be very challenging to
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encode and prioritize full expert knowledge base with different permutations of
system state.

4 Results

The experiments are conducted on real data collected during (partial) deploy-
ment of RETRAiN at multiple branches of a leading bank in India. Over the
deployment period, our system scheduled around 25000 customers. Category 2
(important customers) accounted for around 60% of customers whereas around
1500 customers were in Category 1 (most important customers). Out of 30000
service requests, around 75% were deemed to have positive value for the bank.
For each branch we collected one week of data with fixed resources and FIFO
policy. This data was used to learn the model and also baseline various metrics.

We demonstrate the working of our algorithm on different scenarios to show-
case the efficacy of the proposed solution. We consider four different categories
(priorities) of customers, denoted as Cat1, . . . ,Cat4. These categories scaled by
appropriate weight vector are used in ranking customers with Weighted Shortest
Job First (WSJF) policy. Different weighing vectors result in different policies.
For example, weight vector (0.5, 1, 1, 1) suggests that Cat1 customer is twice
more important than any other category. Similarly, vector (0, 1, 1, 1) implies
that Cat1 customers should be served as soon as a resource is free by pushing
it ahead of all other customers. Another weighing vector (1, 1 ,1, 5) captures
that all customers except Cat4 are equal and Cat4 would have to wait much
longer. Similarly we consider five different service categories as S1, . . . , S5. For
both customer and service categories, lower the category id, higher is the im-
portance. There are five resources in our setup with different proficiencies for
different services as mentioned in Table 2. Every cell represents the average time
(in seconds) required by corresponding resource to provide the corresponding
service. We computed the efficiency matrix from the collected data.

Table 2. Efficiency matrix

Resources�Services S1 S2 S3 S4 S5

R1 258.17 275.49 250.86 180.54 236.64

R2 199.70 201.89 185.73 145.60 191.91

R3 312.95 548.07 309.27 189.34 317.12

R4 453.57 300.62 123.95 240.66 253.90

R5 308.67 312.56 220.17 168.18 135.09

Key Results. The highlights of our deployment are:

– The wait time of Cat 2 customers reduced by 30% while the most important
customers (Cat 1) experienced a wait time reduction of 83%. This can be
attributed to non-FIFO policies. Due to large chunk of customers (65%) in
these two categories, the overall wait time over all customers went down as
compared to pure FIFO policy.
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– The wait time of least important customers (10% by volume) increased by
25%.

– For the above mentioned results, the number of resources were kept fixed
(same as in baseline data). When the number of resources and their config-
uration was optimized, we found that by using ≈ 25% less resources we can
maintain same wait time (within ± 2%) as in baseline data.

– We conducted an informal survey of customers to get their feedback on the
system. Around 70% customers felt reduction in wait time. Around 19% cus-
tomers had difficulty to understand the new system. Overall 82% customers
felt system has made a positive impact and thereby increasing CSAT.

– Informally, the bank staff also acknowledged the impact of the system. The
support was exemplary.

Next, we show some of the expository results. We consider FIFO as the baseline
policy. Different variants of WSJF constitute the policy bank. The experiments
use RETRAiN frequency F as 30 minutes. From real data we observed that
during peak hours, around 60 customers come to branch in an hour. Therefore, in
our experiments we use 30 customers. Please note the arrival frequency changes
through the day. However, we choose the peak period because RETRAiN is
motivated to help banks in peak periods. We set θ1 = 0.1, i.e., a policy with
improvement of at least 10% over FIFO should be selected for the current time
slot.
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Fig. 4. Uniform ordering, (a) WSJF recommended (b) FIFO recommended (c) Cus-
tomer category distribution

In our first setting we study the effect of arrival patterns of customer cate-
gories on policy selection. Figure 4(a) shows a pattern where customer categories
are uniformly ordered and improvement of WSJF over FIFO is computed to be
21% (> θ1). Therefore, WSJF policy is selected as a candidate recommendation.
Figure 4(c) shows the histogram of different customer categories in the pattern.
Figure 4(b) shows a different arrival pattern for the same frequencies of cate-
gories. However, improvement of WSJF over FIFO in this case is very less, 9.3%
(< θ1). Therefore, FIFO is selected. It is evident that policy selection depends
on the arrival pattern of customer categories.

Consider a special case as shown in Figure 5 where there are maximum cus-
tomers of the same category Cat2 and others are distributed among other cate-
gories. Table 3 shows the two different WSJF and FIFO numbers (in seconds).
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Fig. 5. Skewed distribution

Table 3. Comparison of different policies

Policy All Customers Cat1 Cat2 Cat3 Cat4
FIFO 309.1 309.1 309.1 309.1 309.1
WSJF1 304.70 27.89 309.73 395.60 848
WSJF2 309.95 235.07 304.27 384.34 511

Since FIFO does not differentiate between customers, average wait time over
all customers is taken to be wait time in each category as well. WSJF1 drasti-
cally improves the wait time of Cat1 customers, however, customers in Cat4 are
penalized heavily. Moreover, the improvement in overall wait time (over FIFO)
is marginal. This small improvement for Cat1 may not justify heavy increase
in the wait time for other customers. Moreover, in such scenarios, the fairness
provided by FIFO also plays a role in the decision. However, WSJF2 provides
a viable alternative where wait time of important customers Cat1 decreases (by
23%) with small increase for Cat4 customers. Based on domain knowledge, the
admin can choose between FIFO or WSJF2. Wait time of Cat2 remains almost
unchanged in all three settings.

In an another setting, we study the effect of arrival patterns of service re-
quests on number of resources. Figure 6(a) and Figure 6(b) show two different
arrival patterns of service categories but with same frequencies as depicted in
Figure 6(c). In Figure 6(a) all services are uniformly ordered over the current
time slot and three best resources are suggested to be {R1, R2, R5}. Proficiency
matrix mentioned in Table 2 is used in selecting these resources. If we observe
this matrix, services S1 and S2 are most time consuming. Clearly if these two
services are clustered in the earlier part of the slot as shown in Figure 6(b), then
overall wait time of all customers increases. To reduce this wait time, system is
reconfigured and 4 resources are suggested as {R1, R2, R4, R5} instead of just 3
in previous case. Thus order of services and time required to process them are
important factors to suggest correct resources.

As noted in algorithm, we select minimum number of resources where UC
C′ ≤

θ2. In our setup, we have θ2 = 0.1. For a pattern shown in Figure 6(a) where
three resources are suggested, unserved customers are just 3 out of 30 (UC

C′ = 0.1)
and average wait time is 313s. Now if we add one more resource, the average
wait time decreases to 205s which is good for CSAT, but at the end of the slot
all four resources remain idle for 5 to 10 minutes. To avoid this under utilization,
θ2 plays an important role.
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Fig. 6. (a) Uniform ordering, three resources recommended (b) Non-uniform ordering,
four resources recommended (c) Service category distribution

We also present results of our system when run for an entire day over real time
data. Figure 7 shows recommendations given by our system for different time
slots of a day in a branch of a leading bank in India. RETRAiN frequency F is
set to be 1 hour. Horizontal axis shows slot durations along with recommended
policies and selected resources. Figure 7(a) shows distributions of customer cat-
egories for different time slots, while Figure 7(b) shows distributions of service
categories for corresponding times slots. Initially, when customers are small in
number in first slot, only two resources are selected. As we can observe services
S3 and S4 are predominantly required by customers in first slot. So resources
R2 and R5 are selected, because they are more efficient than others in providing
S3 and S4, which is clear from efficiency matrix shown in Table 2. WSJF policy
is recommended by our system for the first slot, as we are getting improvement
greater than θ1 over FIFO. FIFO is recommended for second and third slots, be-
cause WSJF has smaller improvement over FIFO in these slots. 4 and 5 resources
are selected respectively for these slots, because our system observed increased
in number of customers. When branch load decreases in later slots, resources are
removed and appropriate policies are recommended. You can observe in Figure
7(b) that service S4 is having high demand through out the day. So resource R2

is selected for all time slots, as he is the most efficient in providing service S4.
Thus resources are better managed by our system and now there is no need

for all 5 resources to be engaged for all the slots. This directly leads to reduction
of human hours from 30 to just 14 (53%).
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Algorithmic Complexity and Timing Results. Scheduling customers us-
ing a policy with a single resource is typically a sorting task. The complexity
is O(N logN). Generation of actual schedule by assigning customers to super
resources is O(N logL) where 1 ≤ L ≤ M . Therefore, the overall complexity
of generating schedule for super resources is O(N logN) +O(N logM). Finally,
we create a bipartite graph which can have maximum M ∗M edges and 2 ∗M
nodes (if L = M). So, complexity of finding maximum bipartite matching is
O(M3) using [17]. The steps are repeated for every policy (1 to Q) and number
of resources (1 to M). So overall complexity of running our algorithm is dom-
inated by O(Q × M × M3). With Q = 10 (number of candidate policies), 90
customers and 7 resources, our system generates recommendations in approxi-
mately 2 seconds. Due to the limit on number of resources which the branch can
accommodate (typically 3 to 7), M4 is manageable. The time increases linearly
with the increase in number of policies.

5 Conclusions and Future Work

In this paper, we presented an integrated system RETRAiN which analyzes the
real time mix of customers, service requests and resources and recommends a
good configuration for optimizing the retail bank branch operations. The system
tries to use minimum resources and strives to improve business metrics. We
presented an approximation algorithm which discovers how many and which
resources should be used. We presented some results on real data collected from
a leading bank in India. Currently, we are conducting more experiments to study
the quality of our algorithm vis-a-vis optimal algorithm. The problem is modeled
as math program and solved using existing solver for optimal recommendation.
Solving math program for large number of instances and comparing it with our
algorithm will enable us to perform a gap analysis. Finally, we are also exploring
the possibility of deploying the complete RETRAiN system in live customer
environment as well as other domains like call centers.
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