Retrenchment, Refinement and Simulation

R. Banach, M. Poppletof®
8Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.
bFaculty of Maths. and Comp., Open University, Milton Keynes, MK7 6AL, U.K.
banach@cs.man.ac.uk , m.r.poppleton@open.ac.uk

Abstract: Retrenchment is introduced as a liberalisation of refinement intended to
address some of the shortcomings of refinement as sole means of progressing from
simple abstract models to more complex and realistic ones. In retrenchment the re-
lationship between an abstract operation and its concrete counterpart is mediated
by extra predicates, allowing the expression of non-refinement-like properties and
the mixing of I/O and state aspects in the passage between levels of abstraction.
Modulated refinement is introduced as a version of refinement allowing mixing of
I/0 and state aspects, in order to facilitate comparison between retrenchment and
refinement, and various notions of simulation are considered in this context. Step-
wise simulation, the ability of the simulator to mimic a sequence of execution steps
of the simulatee in a sequence of equal length is proposed as the benchmark seman-
tic notion for relating concepts in this area. One version of modulated refinement
is shown to have particularly strong connections with automata theoretic strong
simulation, in which states and step labels are mapped independently from simula-
tor to simulatee. A special case of retrenchment, simple simulable retrenchment is
introduced, and shown to have properties very close to those of modulated refine-
ment. The more general situation is discussed briefly. The details of the theory are
worked out for the B-Method, though the applicability of the underlying ideas is
not limited to just that formalism.

Keywords: Retrenchment, Refinement, Simulation, B-Method.

1 Introduction

In [1] the authors observed that the normal practice of using refinement as the sole
means of going from an abstract description of a desired system to a more realistic
one, exhibited certain deficiencies as regards the desirability of keeping things simple
and elegant at the highest levels of description, whilst accepting that a lower level ac-
count needs to recognise the impact of many low level details that necessarily intrude,
in an essential way, upon the idealised nature of the former. We therefore proposed
that the exigencies of refinement were mollified by two extra predicates per opera-
tion, the WITHIN and CONCEDES clauses, the former to strengthen the precondi-
tion and the latter to weaken the postcondition, the latter in particular allowing the
expression of non-refinement-like behaviour because of the weakening of the post-
condition. Permitting these clauses to also mix state and I/O information between
levels of abstraction when convenient, yields a very flexible framework for building
up complex specifications from over-simple but appealing predecessors. In this man-
ner we overcame the unforgiving nature of the refinement proof obligations.

In [1] we were concerned with justifying retrenchment on engineering grounds. This
more pragmatic departure we considered reasonable, so that we did not fall into the
trap of making a premature commitment to a particular mathematical notion that later
proved to be inconvenient in the face of large examples. In the present work we re-
turn to examine the foundations of the notion that we have proposed. Specifically we

examine stepwise simulation, the ability to simulate a sequence of steps of the simu-
latee by an equal length sequence of steps of the simulator. The main tool for this is
a notion of refinement, called modulated refinement, similar to elaborations of con-
ventional refinement that allow for change of 1/0 representations. Modulated refine-
ment comes in two versions, normal and inverted, and the latter supports an especial-
ly strong connection with (automata theoretic) strong simulation. This is of inde-
pendent interest, and furthermore provides the means to show how the properties of
retrenchment are related to those of refinement.

The rest of this paper is as follows. In Section 2 we discuss via an example how re-
finement can be inconvenient in developing complex specifications from simpler
models. We also discuss some ways in which the existing literature addresses these
points, if, in our view, only partially. In Section 3 we show how retrenchment pro-
vides a natural framework for the needed flexibility. Section 4 highlights the point
that stepwise simulation is the fundamental semantic notion by which we measure the
relationships between systems considered in this paper. Section 5 introduces modu-
lated refinement in its two versions, and elaborates the connection between these and
(automata theoretic) strong simulation. The link between refinement and retrench-
ment is considered in Section 6, which introduces simple simulable retrenchment, a
special case having properties very close to those of modulated refinement. Specifi-
cally, stepwise simulation and strong simulation results are easy to derive, and mod-
ulated refinements of the two kinds are recovered. Section 7 returns to the original
example and Section 8 concludes.

Notation In the body of the paper we use the B Abstract Machine Notation for model
oriented specification and system development (see [2, 3, 4, 5]). This provides a
comprehensive syntax and semantics for the concepts of refinement most used in de-
velopment, and our ideas slot very neatly into the B framework. Nevertheless the ide-
as of the paper are independent of notation, and readily apply to other approaches.

2 Some Inadequacies of Refinement

While refinement has proved its worth many times over as an implementation mech-
anism, there is room for misgivings in its use to describe the much more informal
processes that often occur when moving from an appealing and simple model of a
system, to a realistic but more complex and less elegant one, where it is the latter that
must actually be implemented. Let us illustrate with a small example. We will con-
sider a mobile radio system. At a high level of abstraction we can model its essential
features thus:

MACHINE Mobile Radio HL

SETS CALLSTATES = { Idle , Busy}

VARIABLES callState, currChan

INVARIANT callStatel CALLSTATES OcurrChand CHANELS
INITIALISATION callState:=Idle || currChan:00 CHANELS
OPERATIONS

call_outgoing(num) =
PRE callState=Idle OnumO CHANELS
THEN
CHOICE callState:= Busy|| currChan:= num
OR skip

END
END ;
call_incoming(num) =
PRE numO CHANELS
THEN
SELECT callState= Idle
THEN callState:= Busy|| currChan:=num
ELSE skip
END
END ;
disconnect_outgoing-
PRE callState= Busy THEN callState:=Idle END ;
disconnect_incoming
SELECT callState= Busy THEN callState:=1dle END ;
END

The model describes what we would expect ‘normal service’ to consist of. In this
model we distinguish betweesutgoingoperations that are initiated by the current
possessor of the device in question and whose validity is protected by PRE assertions,
andincomingoperations that are prompted unpredictably from the (user’s) environ-
ment and whose validity (besides input typing clauses) is protected by SELECT
guards. In the former case the operation diverges if called outside its PRE clause, in
the latter case it will not start unless the SELECT guard is true. The distinction is
made clear by considering the normal form of an arbitrary AMN operation as de-
scribed in [2] Ch. 6, which can be written as:

opname=
PRE P(x)
THEN
ANY X WHERE Q(x, xX) THEN x:=x END
END (2.1)

for suitable predicate® andQ in the variables mentioned. Fopnameo guarantee
to establish some propeffy, written [opnam¢ M , the following must hold:

P(x) O (OX «=Q(x, X) OM[x'\X]) (2.2)

Divergence or abortion or nontermination, is caused by the failuf(x)fto hold,
which prevents the predicate from ever being true. Normal working is viA{en
holds and there is axi such that)(x, x') andln[x'\x] hold. However whetP(x) holds

and there is na’ such thaQ(x, X') holds, the operation succeeds miraculously since
the above predicate is true independentlyipx'\x] . Since miracles are infeasable,
the miraculous region of an operation is interpreted as one in which the operation
cannot start, dually to the interpretation of the nonterminating region as one in which
the operation cannot stop (normally). The SELECT gu&@3 say, used above, just
correspond to cases whe@¥x, xX') can be decomposed into the fok@f{x) O x =
value, wherevalueis independent of andx' .

Moving now to a lower level of abstraction, we take into account various facts: firstly
that before the radio will work, the user must select a suitable waveband; secondly
that when making an outgoing call the radio may jam, from which it must be reset;
thirdly that during a call, fadeouts can occur which will also cause the radio to jam,
requiring a reset. The lower level model is then as follows:

MACHINE Mobile_Radio_LL

SETS JCALLSTATES = CALLSTATES O { Jam}
VARIABLES jcallState, jcurrChan, bandSelected
INVARIANT jcallStated JCALLSTATES O

jeurrChand0 CHANELS ObandSelecte@ BOOL
INITIALISATION jcallState:= Idle || jcurrChan:00 CHANELS ||
bandSelected= FALSE
OPERATIONS
select_band=
PRE bandSelected FALSE THEN bandSelected= TRUE END ;
call_outgoing(num) =
PRE bandSelected TRUE OjcallState= Idle Dnumd CHANELS
THEN
CHOICE jcallState:= Busy|| jcurrChan := num
OR skip
OR jcallState:= Jam
END
END ;
call_incoming(num) =
PRE numO CHANELS
THEN
SELECT bandSelected TRUE OjcallState= Idle
THEN jcallState:= Busy|| jcurrChan:= num
ELSE skip
END
END ;
disconnect_outgoing
PRE bandSelected TRUE OjcallState= Busy
THEN jcallState:=Idle
END ;
disconnect_incoming
SELECT bandSelected TRUE OjcallState= Busy
THEN jcallState:=Idle
END ;
fadeout™
SELECT bandSelected TRUE OjcallState= Busy
THEN jcallState:= Jam
END ;
reset =
PRE jcallState= Jam THEN jcallState:=Idle END ;
END

One might say very loosely that one had refined the HL model to the LL model, but
one could not attach any mathematical weight to such a statement. To see this it suf-
fices to examine the refinement proof obligation in B notation:

INV) OINVe Otrm(opname)
O trm(opname) O[opname] - [opnamg] -~ INVc (2.3)

In this theA andC subscripts indicate the more abstract and the more concrete of the
models respectively, th&lV clauses refer to the invariants at the two levels, and the

trm clauses describe the termination conditions for the operation in question (given
in the PRE clauses). The heart of the refinement PO i tpmame] — [opnameg]

- INV(' clause which states that whenever the concrete operation is able to make a
step, there is a step that the abstract operation is able to make such that the concrete
invariant is reestablished. Now normally in B, the concrete invariant contains clauses
that relate the abstract and concrete state variables, i.e. the retrieve relation. In our
example, with malice aforethought, we omitted to do this, but we can easily repair
the situation by explicitly defining the retrieve relation thus:

RETRIEVES jcallState= callStatelljcurrChan = currChan (2.4)
and rewriting the PO thus:

INV), ORETy ¢ OINVe Otrm(opnameg)
O trm(opname) O[opname] - [opnamg] = RETy¢ (2.5)

We can now examine the implications of this for various operations in our example.
For the moment we will disregard the fact that the more concrete model features more
operations than the abstract one. Consider the operdisoonnect_outgoing Its
concretetrm predicate fandSelected TRUE [jcallState= Busy) is stronger than

its abstract ongdallState= Busy , so the latter does not imply the former as required

in the PO. One way round this is to notice that for the corresporidecwmningoper-

ation, thetrm predicates are bottiue , resolving one problem, and to notice that the
‘[opname] ~ [opnamg] = RETyc’ structure demands that the concrete SELECT
guard implies the abstract one (as can be derived from (2.2) and the remarks which
follow it). Since theincomingoperation’s guards are (essentially) just thegoing
operation’s preconditions, this succeeds. So we can model the situation desired by
keeping to thencomingstyle, retaining a refinement, but we lose the distinction be-
tween the two kinds of operation.

Consider now the operatiarall_outgoing. The strengthened precondition problem

is just as evident here, but beyond that, in the concrete model, if the call fails to con-
nect, the apparatus ends up in flaenstate, outside the reach of the retrieve relation.
Changing preconditions to guards will not help here. No notion of refinement can
cope with such a situation. A similar but more behavioural manifestation of the same
phenomenon is apparent in tfagleoutoperation: if a communication is in progress
and afadeoutevent occurs, there is no way that a concrete execution sequence includ-
ing this can be modelled by an abstract execution sequence, again because the con-
crete state ends up outside the reach of the retrieve relation. This would still be the
case if we introduced a dummy abstréadieoutoperation, specified bygkip , to be
‘refined by’ the concrete one. From the point of view of the abstract model, such an
operation would be adding uninformative clutter, and more than anything would be
signalling that the relationship between the ‘real’ abstract model and the more con-
crete one is certainlyot a refinement. A case ofkip considered harmful'.

We can go further. Given the greater range of possible behaviours of the concrete
call_outgoingoperation compared to the abstract version, we would expect the user

to be given more feedback, say in the form of some output. This would require a

change in operation signature viz.

res —— call_outgoing(num) = ...

Changes of signature are not allowed in conventional refinement. And even if we en-
hanced the abstract operation with output to provide user feedback, a different set of

output messages would be appropriate in the two cases, again forbidden in conven-
tional refinement.

All of the foregoing is not to say that more generous interpretations of the concept of
refinement have not allowed some of the phenomena mentioned above, one way or
another. For example, change of I/O representation within refinement has been ad-
mitted in [6, 7, 8, 9], though this does not extend to mixing of /O and state concerns
as we have proposed. Usingip to bypass awkward points of refinement where a
more informative account of things is impossible, is of course a familiar trick. Like-
wise the device of introducing new operations at the concrete level which gfime

at the abstract level, is familiar from action refinement [10, 11, 12] — the actual pres-
ence or absence of dummy operations at the abstract level becomes then a matter of
mere notation. Such operations also play a part in superposition refinement [13, 14,
15], where additional concrete computations are introduced to control the progress of
a more abstract computation. Our introduction of bla@dSelectesdariable and its
influence on the abstract computation can be seen as being in the flavour of a super-
position, though it cannot be a superposition in any strict sense since the abstract
computation is interfered with at the more concrete level by the consequences of jam-
ming. The jamming phenomenon itself and the way it relates to ‘normal system be-
haviour’, bears comparison with work on the difficulties of refining abstract variables
which take values in ideal and typically infinite domains, to concrete variables taking
values in strictly finite ones. From a wide range of approaches to the latter question
we can mention [16, 17, 18, 19, 20].

Despite these efforts it is fair to say that there are nevertheless drawbacks in trying to
restrict oneself to pure refinement as the only way of going from an abstract to a con-
crete model, especially if the objective is to start from a simplified but transparent de-
scription, moving to a realistic but more complex description only by degrees. And
size matters. Clearly there is little to be gained by presenting as small an example as
the one above in this gradual manner, but one can imagine that in industrial scale sit-
uations, where there is much more complexity to manage, a multi stage development
of a large specification is highly desirable, particularly if the size of the real specifi-
cation is not dramatically smaller than that of the code that implements it, which can
often happen when there is a lot of low level case analysis in the system description.

3 Retrenchment

In [1], we introduced retrenchment as a means of addressing the issues just highlight-
ed, within a ‘refinement-like’ framework. In the context of B, a syntax very similar

to that of the B REFINEMENT construct captures what is required, namely the fol-
lowing:

MACHINE M(a) MACHINE N(b)
RETRENCHES M

VARIABLES u VARIABLES v

INVARIANT I(u) INVARIANT J(V)
RETRIEVES G(u,v)

INITIALISATION X(u) INITIALISATION Y (V)

OPERATIONS OPERATIONS

0 —— opname(i) = p —— opnaméj) &
S(u,i,o) BEGIN

END T(Vv,j,p)

[LVAR
Al

WITHIN
P(i,j,u,v,A)

CONCEDES
C(u,v,0,p,A)

END

END (3.1)

The left hand MACHINEM(a) , with operation® —— opnamé) , each with body
Hu, i, 0) , is retrenched (via the RETRENCHB& clause and retrieve relation RE-
TRIEVESG(y, V)), to MACHINE N(b) , with operationg —— opnam¢j) . These
latter operations now have bodies which eamifiedgeneralised substitutions, that
is to say generalised substitutioh§, j, p) , each with its ramification, the LVAR ,
WITHIN and CONCEDES clauses. Eaopnameof M must appear ramified within
N, but there can also be additional operatiord in

Speaking informally, the ramification of an operation allows us to describe how the
concrete operation fails to refine its abstract counterpart. The optional LWAR
clause permits the introduction of logical variablesthat remember before-values

of variables and inputs, should they be needed later. Its scope is the WITHIN and
CONCEDES clauses. The WITHIN clause describes nontrivial relationships be-
tween abstract and concrete before-values of the state vanadtely , and abstract

and concrete inputsandj , and defined\ if Ais being used. It strengthens the pre-
condition as we will see. The CONCEDES clause provides similar flexibility for the
after-state, weakening the postcondition, and describes nontrivial relationships be-
tween abstract and concrete variables and abstract and concrete outputs, ald using
if it has previously been defined.

The proof obligations make all this more precise. The conventional POs for the ma-
chinesM andN hold, including the initialisation PO§.X(u)] 1(u) and[Y(v)] J(v) ,

and the machine invariant preservation PIQg), Otrm(Su, i, 0)) O [Su, i, 0)] I(u)
andJ(v) Otrm(T(v,j, p)) O [T(vj, p)] J(v) . Ajointinitialisation PO is also required

to hold, being identical to the refinement cads¥(v)] = [X(u)] = G(u, v) . Of most
interest however is the retrenchment PO for operations which reads:

(I(u) OG(u, v) OJ(V) O (trm(T(v j, p)) OPC, j, u, v, A)
U

trm(Su,i,0)) O[T(v,j,p)] = [Su,i,0)] =
(G(u,v) OC(u, v, 0, p, A) (3.2)

This contains on the left hand side the invarian{s)(d G(u, v) 0 J(v)) , and we
strengthen the concretiem predicate withP(i, j, u, v, A) , as stated above. The right
hand side infers the abstracin predicate, and thd T(v,j, p)] - [Su,i,0)] =’
structure establishes in the after-states, the retrieve relation weake@#d, byo, p,

A) . Adetailed heuristic discussion in [1] justified the shape of this PO. A major part
of the purpose of this paper is to show how simulation properties support this choice.

We can now show how the low level machiktobile _Radio_LLof the last section
retrenchedobile_Radio_HL To conform to the above syntax we have to add the
retrenchment declaration ‘RETRENCHE®bile_Radio_HL, and of course the re-

trieves clause (2.4), but the main thing is the ramifications of the operations. We con-
sider these in turn.

Thecall_outgoingoperation can be dealt with as follows:

call_outgoing(num) =
BEGIN
PRE bandSelected TRUE OjcallState= Idle DJnumd CHANELS
THEN
CHOICE jcallState:= Busy|| jcurrChan := num
OR skip
OR jcallState:= Jam
END
END
LVAR
jCH
WITHIN
JCH =jcurrChan
CONCEDES
jeurrChan=jCH OjcallState= Jam
END

Note that the WITHIN clause serves only to defi@él . This is because the stronger
concretetrm predicate appears as hypothesis in the operation PO, and the abstract
one is deduced. Of course we could strengthen the WITHIN clause batidSe-
lected= TRUE to highlight the differences between ttren predicates if we wished.

Note also how the CONCEDES clause captures what happens when the retrieve re-
lation breaks down; here it is important to realise that the occurrence githi€han

state variable in the WITHIN clause refers to its before-value, while the occurrence
in the CONCEDES clause refers to its after-value, morejividr, being a fresh log-

ical variable, remembers the former for use in the context of the latter.

The correspondingall_incomingoperation needs only the trivial ramification
WITHIN frue CONCEDESfalse . This is because them predicates are the same

for this case, and thg T(v,j, p)] = [Su, i, 0)] =’ of the operation PO, requires the
concrete guard to be stronger than the abstract guard (the same structure as found in
refinement).

The remaining operations that need ramifyirdjsconnect_outgoingnd
disconnect_incomingan also be given the trivial ramification. As before this is be-
cause in retrenchment, both the guard and the termination predicate of the concrete
version of an operation are required to be stronger than the abstract ones (pending
qualification by the WITHIN clause). In this sense retrenchment has no preference
between the ‘called operation’ and ‘spontaneous event’ views of an operation.

4 Stepwise Simulation

The semantic touchstone for retrenchment is stepwise simulation, by which we mean
the simulation of a sequence of steps of the simulatdy an equal length sequence

of steps of the simulatdy , see Fig. 1. However the precise definition of ‘simulates’

in this context will depend on the precise relationship between the two systems under
study so we will not give a formal definition here. Suffice for the moment to say that

‘simulates’ always includes the preservation of the retrieve relation, since there will
always be one around.

Fig. 1. A stepwise simulation.

We write a step of a machine suchvasf (3.1) in the form:
u-@, m o)->u

whereu andu’ are the before and after statesis the name of the operation (where
it can help, we writes, the body ofm, instead oimitself), andi ando are the input
and output ofn. This signifies thaty, i) satisfytrm(S) , and that ¢, i, u’, 0) satisfy

the before-after predicate pf(this is the predicat®(u, u') in the normal form (2.1)
when there is no I/O, otherwise it@(u, i, U', 0) , the corresponding predicate for the
normal form with I/O present). When discussing properties of sequences of steps,
last(T) will denote the index of the last state mentioned inandr O dorm'(T) will
meanr O[O ... last(T) — 1] if T is finite, andr O NAT otherwise. Similarly for se-
quences of any type. In general we need to disting@igt™ , the operation names
at the abstract level, fro®psN the operation names at the concrete level, where
OpsM g OpsN .

5 Modulated Refinement and Simulation

In this section we explore in some depth a notion, modulated refinement, that lies part
way between conventional refinement and retrenchment, in order to illuminate the re-
lationship between them. Modulated refinement is superficially a straightforward ex-
tension of refinement to allow different I/O signatures at the two levels of abstraction
in question. In this sense part of what appears here bears comparison with other ad-
aptations of refinement to cope with change of I/O representation such as [6, 7, 8, 9].
Here is a specific B syntax.

MACHINE M (a) MACHINE N(b)
MODREF M
VARIABLES u VARIABLES \
INVARIANT I(u) INVARIANT J(v)
RETRIEVES G(u,v)
INITIALISATION X(u) INITIALISATION Y (V)
OPERATIONS OPERATIONS
0 —— opname(i) = p —— opnamg(j) &
S(u,i,o0) BEGIN
END T(v,j,p)
WITHIN
P(i,j,u,v)
NEVERTHELESS
V(u,v,o,p)
END
END (5.1)

Note the MODREF keyword, indicating the intended relationship, and as in retrench-
ment, the separate appearance of the retrieve relation. Because modulated refinement
mirrors conventional refinement, we demand tiaandN have the same set of op-
eration name®ps . In N, each operation has a WITHIN clause, but this time there

are no logical variables, so the clause simply expresses the relationship between the
before-states and the inputs, as an enhancement to the retrieve relation. Likewise
there is a NEVERTHELESS clause, expressing the relationship between the after-
states and the outputs. Unlike the CONCEDES clause of retrenchment, the NEVER-
THELESS clause will act conjunctively, also enhancing the retrieve relation, hence
the different name.

In fact the above syntax will serve for two slightly different notions of modulated re-
finement,normalandinvertedto be introduced shortly, and we could introduce sep-
arate N-MODREF and I-MODREF keywords for these, but it is convenient not to do
so. Until further notice we will study normal modulated refinement.

Aside from the usual machine POs fdrandN , the semantics of hormal modulated
refinement is captured by the POs. Firstly for initialisation:

[YW)] = [X(W)] -
(Gu,v) O mD[O’L (O jm Oim ¢ Prolim Jme U, V) (5.2)

Next the PO for operations, which for a typical operation reads:
(I(w) OG(u, v) 0I(V) O (trm(Su, i, 0)) TP,], u, v))
0

trm(T(v,J, p) O[TV}, p)] = [Su,i,0)] =
(G(u, v) OV(u, v, 0, p)) (5.3)

and lastly the operation compatibility PO, which for a typical operatiGmheren [
Ops , and has clauséy, andV,,) reads:

G(u, v) OVy(u, v, 0, pp) O mD|:O;|35 (U jmOim s Pmlim Jm U, V) (5.4)

The role of the operation compatibility PO is to ensure that the result of one step can-
not prevent any next step purely because of the relationship between abstract and con-
crete 1/0Os and states (similar remarks apply for (5.2)). Note the appearance in a
conjunctive context of the NEVERTHELESS clauses in (5.3) and (5.4). The main
reason for studying normal modulated refinement is that it posesses the natural ana-
logue of the simulation property so characteristic of conventional refinement.

Definition 5.1 Let (5.1) be a (normal or inverted) modulated refinement. Suppose
T =[Vvo-(jo, Mg, P1)-> V1 -(i1, My, P2)-> Vs ...] is @ concrete execution sequence, and
thatS = ug -(ip, Mg, 01)-> Uy -(iq, My, 0o)-> U, ...] is an abstract execution sequence.
ThenS is a stepwise simulation df iff G(ug, vp) holds, dom() = dom@) , and for

allr O domi(T):

G(uy, vy) O Pmr(irv i U vp) O
G(Ur+1, Vr+1) |:IVm,(Ur+1, Ves1r Ors1s Prad) (5.5)

Definition 5.2 Let (5.1) be a (normal or inverted) modulated refinement. Suppose
T =[vo-(ig, Mg, P1)-> V1 -(i1, My, P2)-> Vs ... 1is a finite concrete execution sequence,
with sequence of invoked operation names= [my, my ...] . We define the abstract

10

trmP predicates and associatedP sets (with respect td) thus, whereg;, is the
body of operatiom, in M :

trmPy, = true

trmPy s = Pr(in r U V) O[Sy JtrmPyy g (5.6)
(wherer <sOdom(T)), and for finitel with last(T) = size(ms =z:

prePM,ms = {(Uo, io, il ik—l) Oux |0 X |1 L X Ik—l | trmPM’OZ} (57)

Note that these objects depend not only on abstract states and abstract inputs, but tac-
itly also on the concrete states and inputs (and sequence of operaspappearing
inT . We can now prove the following.

Theorem 5.3 Let (5.1) describe a normal modulated refinement where the common
set of operation names®ps . LetT =[vy -(ig, Mg, P1)-> V4 -(i1, My, P2)-> Vo ... 1,

with sequence of invoked operation nanmes= [mg, m, ...] , be a finite execution
sequence di . Suppose thereis &, ig ...) U prePy nssuch thatiy also witnesses

the initialisation PO (5.2). Then there is an execution sequenbé, & = [ug (i,

My, 01)-> Uy -(i, My, 09)-> Uy ...], which is a stepwise simulation bf .

Proof. LetT =[vg-(ip, Mg P1)-> V4 ... | be as given. If dom[) = {0}, then the
hypothesised is all we need, a&(ug, vp) holds. Otherwise we construct a corre-
spondingS = [ug -(ig, My, 01)-> Uy ...] by an induction on doffrl) .

Forr =0, we know from the hypotheses thatug,(ip ...) O prePy msexists such
thatG(up, Vo) holds. SincermPy osizemg(Uo, io ---) U trm(Sy)(Ug, ig) , we have
trm(Syy) (Uo, i) T Pry(io, Jor Up, Vo) U G(Ug, Vo) - From the initialisation POs fdvl
andN we know that (ug) andJ(vg) hold. So we have the antecedents of the normal
modulated refinement PO for operations, which from the g§efig, mg, py)-> v; of

T, yields a step oM , ug ~(ig, Mg, 01)-> Uy , such thaG(uy, v;) O Vi (uy, vy, 01, py)
holds. So we have as required:

G(Up, Vo) U Py(io: jo Uos Vo) D G(Ug, Vq) T Vi (Uy, Vi, 01, P1)

Since (g, ig ...) [prePy; mswe conclude that there is By(iy ...) U prePy tajmg »
and we also have the machine invaridg) andJ(v,) .

For the inductive step, suppoSehas been constructed as far as ithie step. Then
the machine invariantgu,) andJ(v;) hold, and we also haves(u;, v,) O (uy, iy ...)
O prePymsr - This enables us to perform the inductive step as alSove.

We cannot extend the above strategy to the case of infinite sequEenaesthe pred-
icatetrmP), o, does not behave well aggrows without bound: not only does thie
aspect of the predicate accumulate ‘at the front’ of the predicate, but we also have an
unbounded number of input variables to contend with. These problems require extra
hypotheses and a different strategy.

Definition 5.4 Let (5.1) be a (normal or inverted) modulated refinement. Suppose
T =[Vg-(o Mg PY)-> V1 -(11, My, P2)-> V> ... Tis a(n infinite) concrete execution se-
quence. Let

1. For a sequenams, mst r is the firstr elements ofns, andmst r is all except the first ele-
ments ofms, wherer refers specifically to cardinality rather than to absolute index values for
dom(mns .

11

NT = [{(u,) DU x I | G(u, v) Dtrm(S (U, i) 0P (i, jro U, Vi)} |
We say thafl is retrieve bounded iff:
Or Odoni(T) eNY <o (5.8)

Note that retrieve boundedness is inspired by the same thought as internal continuity
in [21] and finite invisible nondeterminism in [22].

Theorem 5.5 Let (5.1) describe a normal modulated refinement where the common
set of operation names@ps . LetT =[vg-(jg, My, P)-> V1 -(11, My, Po)-> Vo ...],

with sequence of invoked operation names= [my, m; ...], be an infinite execu-
tion sequence dfl . Supposd s retrieve bounded. Suppose moreover for @ach
that there is aug, i ...) O prePy mg r SUCh thaty also witnesses the initialisation
PO (5.2). Then there is an execution sequendd of5 = [ug -(ig, Mg, 01)-> Uq ~(i,

my, 05)-> U, ...], which is a stepwise simulation of .

Proof. LetT =[vg-(jg, Mg, P1)-> V4 ...] be as given. We show there is a correspond-

ing S =[ug -(ig, Mg, 01)-> Uy ...] as follows. We know that each finite prefix &f

can be stepwise simulated because of Theorem 5.3. These finite simulations can be

arranged into a tree thus: the root is a special node at level -1 ; the nodes atlevel

(u, i) pairs such thaG(u, v;) Dtrm(Sy)(u, i) OPy (i, ji, U, V) holds; and there is an

edge of the tree fromuf, i,) at levelr to (U1, i,+1) atlevelr+1iff there is a simulation

of a finite prefix of T with u, -(i,, m, 0,+1)-> U;+1 as final step; also there are edges

from the root to all level 0 nodes. Because there are infinitely many finite simulations

the tree is infinite, and by retrieve boundedness each of its levels is finite. By K6nig's

Iéem_rlpa, the tree has an infinite branch, which corresponds to a stepwise simulation
of T . ©

Now we introduce inverted modulated refinement. The only difference compared to
normal modulated refinement is that instead of (5.3), the operation PO for inverted
modulated refinement reads:

(I(w) OG(u, v) OJ(v)) O (trm(T(v, j, p)) OP(i, j, u, v))
O

trm(Su,i,0)) O[T(v,j,p)] = [Su,i,0)] =
(G(u, v) OV(u,V, 0, p) (5.9

Note the inverted roles of thiem predicates.

Theorem 5.6 Let (5.1) describe an inverted modulated refinement where the com-
mon set of operation names@ps . LetT =[vy -(jg, Mg, P1)-> V1 -(11, My, Po)-> Vo

...] be an execution sequenceNt Then there is an execution sequenc#lafS =

[Ug ~(ig, Mg, 01)-> Uq -(i1, My, 0o)-> Uy ...], which is a stepwise simulation bf .

Proof. LetT =[vy-(jg, My, P1)-> V1 ... | be an execution sequencelf The dom()
= {0} case is as in Theorem 5.3. Otherwise we go by induction of\(dgm

Forr =0, we know that for the givewy andjy from T , (5.2) holds. So for then,
from T we can find ang such thatG(ug, Vo) 0 Py(io, jo, U, Vo) holds. By the defi-
nition of execution stegrm(T,,.)(Vo, jo) holds. Now the initialisation POs fofl and
N yield I(ug) andJ(vg) . Thus the operation PO (5.9), yields a step/ofug -(ig, Mg,
09)-> Uy such thaG(uy, vy) UV (U, vy, 01, py) holds. So:

G(ug, Vo) U Pmyio jo. Uo, Vo) U G(uy, V) OViy(Uy, vy, 01, P1)
For the inductive step, suppoSehas been constructed as far asittie step. Then
we havel (Ur) , J(v;) , andG(uy, Vi) OV (Ur, Vi, O, pr) Otrm(Ti)(v, J;) - Fromthe

12

operation compatibility PO (5.4), we can infer that for thandm, given by T , we
can find ani; such thaPp, (i, jr, Uy, ;) holds. This is enough to complete the induc-
tive step as before®

We can see clearly why we need different termination assumptions in Theorems 5.3
and 5.5 on the one hand, and Theorem 5.6 on the other. In the latter, we need a ter-
mination assumption about the stepdof a given execution sequence, to be able to
exploit the operation PO. Since the individual concrete steps are each within their
individualtrm predicates, what we have is already sufficient. In the former, we need

a termination assumption about the step$S pfin execution sequence yet to be con-
structed. Therefore stronger assumptions are needed before the relevant operation
PO can be used.

Theorem 5.6 can be understood as establishing a strong simulation in the automata
theoretic sense, an intrinsically more local concept than the property in Theorem 5.3.

Definition 5.7 Let UandV be sets (of states), and kg O UandV, O V be subsets
(of initial states). Let , andL,, be sets (of transition labels). LégandTy O U x
Ly x U be a transition system o, and Vyand Ty, O V x L, x V be a transition
system orV. A pair of relations

(GS:UH V,G)L:LU o Lv)
is called a strong simulation fromy, to T iff:

VOD VO O DUOD U0°u0G)SVO (510)
and for allu, v :

Uesv O V-I.,l-)\/ DTV 0

OuDU,AOLyeuOgV OANO g Ou-A->u 0Ty (5.11)

Note that Definition 5.7 differs slightly from the conventional notion of strong simu-
lation insofar as initial states & are not required to relate viag solelyto initial

states oM . Evidently this is for easier comparison with the initialisations arising
from refinements and retrenchments.

Definition 5.8 LetM be a machine with operation names®gs . Then the reach-
able transition systermy, associated t is the initial state set/; and subseT), of
U x Ly x Uwhere:
1) Ly = {(i,mo0)dI1x%xOps x O}
(2) U = {uOU |there is an execution sequencé/bivith u as final state}
(3) Ug= {ugO U®| upis an initial state o}
4) Ty = {u-(@, m 0)-> U |there is an execution sequencév/bf
withu -(i, m, 0)-> U" as final step}
Theorem 5.9 Let (5.1) describe an inverted modulated refinement where the com-

mon set of operation nameddps . Then there is a strong simulation from the reach-
able transition systeifi of N to the reachable transition syst&fy of M .

Proof. We define a strong simulatio®4, ©,) as follows:

Os

{(u,v) O U3x V3| G(u, v) O mDIIO;I)s (O jm Oig * Prlipy Jme U, V)Y (5.12)

O, = {((i,m,0), (. m p) O (I xOps xO) x (J x Ops x P) |

(Qu, ve P,], u,v)) OCu, veVyu v, o, p)} (5.13)

13

Showing that this constitutes a strong simulation is a matter of routinely reworking
the details of the inductive step of the proof of Theorem &.6.

We note that a strong simulation relates states to states, and transition labels to tran-
sition labels, essentially independently. In the case of Theorem 5.3, the properties de-
manded of abstract states at the beginning and end of a transit{gmm, 0)-> U’ ,
specifically that, i ...) O prePy m_msand (' ...) O prePy; s, depend omand

ms; in particular a step d1 is not guaranteed to reestablish in the after-state, the con-
dition assumed in the before-state, a prerequisite for the successful formulation of
separate relation®gand®, . Thus only the inverted case supports a proper notion

of simulation. In contrast, in normal refinement (modulated or not), the roles of ‘sim-
ulator’ and ‘simulatee’ are exquisitely confused; the abstract system says (Himthe
predicate)whena step must exist and demands that the concrete system complies,
while the concrete system says (via the step relatimnya step can be performed

and demands that the abstract system simulates it.

The preceding remarks depend on identifying the machine state with the automata
theoretic state. If we relax this requirement, then we can incorporate history infor-
mation in our notion of state, and then a notion of strong simulation can be recovered
for the normal case (see eg. [21, 22, 23, 24, 25]), but this is a less natural correspond-
ence than for the inverted case.

6 Simple Simulable Retrenchment

In this section we build on the insights of the preceding section to address the simu-
lation and refinement properties of retrenchment. Now, the incllﬁpﬂ" O OpsN

is generally a proper one. First we give the definition of stepwise simulation in this
setting.

Definition 6.1 Let (3.1) be a retrenchment. Suppose tha [vq - (g, Mg, P1)-> V1

-(i1, My, po)-> V5 ...]is an execution sequence Nf, and thatS = [ug -(ig, Mg, 01)->

uq -(iq, my, 0)-> l'e/? ...] is an execution sequence Mf, where [mg, my, ...] is a se-
quence oveDps™ . ThenS is a stepwise simulation df iff G(ug, vp) holds, and for

allr O doni(T) there is amd, such that:

G(ur, V) P (ir, Jp Up, Vi A) O
(G(Ur+1, Vr+1) O Cry (Ur+1, V41, Ops+1, Prats Ar) (6.1)
We now look at a simple sufficient condition for simulation and refinement. The

properties of the relevant class of retrenchments are so strong that they are indeed al-
most refinements.

Definition 6.2 For a retrenchment like (3.1), suppose the joint initialisation estab-
lishes:

(G0 v O Qp (0 im iy A * Prrlimy i Uos Vor An) 6.2)

and suppose that ea€tpsM operatiom = (Tns Any Ppy Cp) Of N satisfies the operation
compatibility PO:
G(u, v) OCy(u, v, 0, p, B)
O

©w)5, L1, @i D Ay Pl i 0 A (6.3

14

then we say that the retrenchment is a simple simulable retrenchment.

The proof of the following theorem is very similar to that of Theorem 5.6 (only the
final part of the inductive step is changed slightly), and is given in full in [26].

Theorem 6.3 Let (3.1) describe a simple simulable retrenchment where the set of
abstract operation namesG}ps’VI . LetT =[vg-(ig, My, P1)-> V1 -1, My, P2)-> Vo

...] be an execution sequenceNf Suppose that the sequence of invoked operation
namesns=[mg, m ... 1is anOpsM sequence. Then there is an execution sequence
of_IM , S=[ug-(ig, Mg, 04)-> Uy -(i1, My, 0)-> Uy ...], which is a stepwise simulation

of I .

Theorem 6.3 leads directly to a strong simulation result analogous to Theorem 5.9 for
simple simulable retrenchment.

Definition 6.4 LetM andN be machines with operation name s@fs™ andOps™ .
The M-restricted reachable transition systemNofwhose states are solely those
reachable by sequences of operations with nan@p:tN') is defined by setting:

(1) Ly, = {G,m p) 03 x0psMx P}
(2) Wy = {vOV|there is an execution sequencdafonsisting
solely ofOpsM operations, witlv as final state}
(3) Vo = {vo O Vi | vp is an initial state o}
(4) Ty, = {v-(G, m p)-> Vv |there is an execution sequenceNof
consisting solely abpsM operations, with
v -(j, m, p)-> Vv as final step}

Theorem 6.5 Let (3.1) describe a simple simulable retrenchment where the set of
abstract operation names@psM . Then there is a strong simulation from tlk
restricted reachable transition systégy, of N to the reachable transition systéiy

of M.

Proof. We define a strong simulatio®§, ©,) as follows, after which the details are
relatively straightforward.

©s = {(1Y) 0 Ux Viy |G,V mesM (O iy A Prim i UVt A}

O, = {((i,m 0), G, m p)) O (1xOpsMx0) x (I xOpsMxP) |
(OA«(QOu,ve P, j,u, v, A)) O (Qu,veCyu, Vv, 0, p, A))}

©

Simple simulable retrenchment is sufficiently strong to yield a notion of modulated
refinement. Here and in similar results below we disregard any operatinatfin

OpsM of course. We present a number of closely related results. For the first of these
we give a full proof, the other cases following easily.

Theorem 6.6 Let (3.1) describe a simple simulable retrenchment where the set of
abstract operation names@@s'\" . Then the following is a normal modulated refine-
ment:

MACHINE MU (a) MACHINE N (b)
MODREF m o7

VARIABLES u VARIABLES v

INVARIANT I(u) INVARIANT J(V)
RETRIEVES G(u,v)

15

INITIALISATION X(u) INITIALISATION Y (V)
OPERATIONS OPERATIONS
0 —«—— OpName(i) = p —— OpNamdj) &
ST (u,i,0) BEGIN
END T(v,j,p)
WITHIN
PG ,j,u,v)
NEVERTHELESS
true
END
END (6.4)

where:

S"T(u,i,o) =PRE
(Ov,jel(u)d0G((u,v)OJ(v)Otrm(S(u,i,o0))
Otm(T(v,j.p)))

THEN
S(u,i,o0)

END (6.5)

PA(i,j,u,v) = (OA«P(i,j,u,v,A)) (6.6)

Proof. SinceM "Tis a fresh machine, we must check its consistency. The initialisa-
tion PO is as foM . And the operation consistency P trm(S"T) 0 [S"T] 1,
follows sincé for any® , trm(®|S) < ® Otrm(S ,and [P|S] | = @ O[S] | . For

the rest of this proof, leb refer specifically to the PRE claugéyj « I(u) ... trm(T(v,

j» P))) introduced in (6.5) above.

We can now check that the POs of the simple simulable retrenchment imply those of
the refinement. For the initialisation PO, reinterpreting fen (6.2), yields (5.2)

with Pmm replacing theP,,, . Likewise for the operation compatibility PO, weaken-
ing, and reinterpreting theAin (6.3), yields (5.4) Witwmmagain replacing thB,,, .

For the operation PO we need to show that for all memb@de' :
(1w DG, v) 0I(v) O (trm(S T(u, i, 0)) OP AG,j, u, v))
O

trm(T(v j, P)) O[T §, P 1= [S7T(u,i,0) 1= G(u, V) (6.7)

knowing that (3.2) and (6.3) hold. So let us hypothesise the antecedents of (6.7).
These contain the ingredients of an application of generalised modus ponens, from
which we caninfetrm(T(v, j, p)) , as required in the consequent of (6.7); also through
foresight, we addrm(T(v, j, p)) to the hypotheses. Now since we ass G,],

u, v) , we can inferP(i, j, u, v, A) for someA , and we add thi®(i, j, u, v, A) to the
hypotheses. At this point the hypotheses contain the antecedents of (3.2), so we infer
in particular that:

[Tvj, P]=[Sui 0] = (Guv)OC(u,v,o0,p,A)

Next we use th&rm/prd version of the normal form for generalised substitutions giv-
en in [2] and elaborated to include I/O. Applying this to bdtandSin (6.7), after
a little manipulation we get:

2. D|Sis the substitutioi® preconditioned by , so®|Sis also PREP THEN SEND .

16

trm(T) O(OvpT e prd(T) O - (trm(S) O (Quo e prd(9 O))
We lose nothing by disjoining ® to the (outer) right conjuct sinc® is one of our
hypotheses. After some working we obtain:

trm(T) O(OvVpT e prd(T) O = (trm(®|S) O (Ouo"« prd(®|9 O)
Winding back the normal forms gives:
[T, P 1= [8(u,i,0)]~ (G(u,v) OC(U, v, 0, p, A))

We use (6.3) on thed [0 C) term, and monotonicity, after which some simplification
yields:

[TO], P 1= [S"(ui, 0]~ Gu,v)
Now it remains to apply the deduction principle, to arrive at (6.7). We are dene.

The next two results follow from the preceding, the first by noticing that in the refine-
ment operation PAQrm(T) may be hypothesised directly, and the second by noticing
that the termination part of the PO becomes trivial.

Theorem 6.7 Let (3.1) describe a simple simulable retrenchment where the set of
abstract operation namesG}ps'\’I . Then (6.4), with the occurrences B g and
S replaced byM T andST respectively, wher& is the generalised substitution:

ST(u,i ,0) = PREtrm(T(v,j,p)) THENS(u,i,o) END (6.8)
and (6.6), describe a normal modulated refinement.

Theorem 6.8 Let (3.1) describe a simple simulable retrenchment where the set of
abstract operation names@psM . Then (6.4), with the occurrences &f " and

ST replaced byM andSrespectively, and (6.6), describe an inverted modulated re-
finement.

Itis interesting to compare the three refinement results of Theorems 6.6, 6.7, 6.8, par-
ticularly with respect to the variables that occur in the various components. One
thing we would like to do is to consider the various machikes’ ,M T, M , that

occur in these theorems as versions oftththat occurs in (3.1), since we would like

the theorems to be saying something about the original simple simulable retrench-
ment (3.1). Clearly there is no problem in such an identification for Theorem 6.8,
since the two versions @fl are syntactically identical. However in the case of The-
orems 6.6 and 6.7, there is more to be said. For Theorem 6.6, mashifeandM

involve the same free variables. Nevertheless one cannot say straightforwardly say
that the two machines exist in the same universe, for the concrete vanaldsare
mentioned in the precondition &7 , even though they are universally quantified
away. What discloses the dependence of madiin® on these concrete entities, is

the free ocurrence of the relational (meta-)varial®desl , trm(T) . These reveal that

even though the concrete variables that they depend on are quantified away, whatever
their identity (as concrete variables), they still take values in their own appropriate
concrete universes. Thus one cannot regtd as a version of th# of (3.1) with-

out taking this amplification of the universe of variable values into account. Of
course this is not a novel phenomenon since it is familiar already from standard B re-
finement. (See [2] Ch. 11, where a refinement of an abstract machine, though free
only in the concrete variables, is nevertheless viewed as a ‘differential’ added to the
abstract machine, this being expressed via the existential quantification of the ab-
stract variables in the concrete construct).

17

The issue we have mentioned strikes us even more forcefully in the case of Theorem
6.7, where the concrete variables actually occur free in the mashiheia (6.8).

Here we cannot pretend thsit" exists in the same world &8 ; the applicability of

an abstract operation ™ " depends on the values of concrete variables that we wish

to relate to the abstract variables at the point of application. Still, the discusion above
persuades us that the difference between the cases of Theorems 6.6 and 6.7 is not as
great as it might at first appear to be.

7 The Mobile Radio Example Revisited

As given, our mobile radio example does not in fact provide us with a simple simu-
lable retrenchment. The problem lies with ttell _outgoingoperation, because it
can violate the retrieve relation, as revealed in Section 3, where the possdaility
State= Jamadmitted in the CONCEDES clause conflicts with the retrieve relation
clausgcallState= callState However it is not hard to prove that we would have had
a simple simulable retrenchment if we had substituteat#tfie outgoingoperation in
Mobile_Radio_LLwith the following more robust version in which tlamstate is

not a possible outcome:

call_outgoing(num) =
PRE bandSelected TRUE OjcallState= Idle DJnumd CHANELS
THEN
CHOICE jcallState:= Busy|| jcurrChan:= num
OR skip
END
END

This version of the operation requires only the trivial ramification to remain within
the retrenchment. Note that even though the resulting system cannot violate the re-
trieve relation via any of the retrenched operations, such violation can still take place
via thefadeoutevent which leads tgallState= Jam Thus even the simple simulable
case of retrenchment expresses things that eg. superposition refinement cannot.

Of course in reality, the situation describedhtobile Radio_LLwill be the more

typical one. Operations will have the capacity to yield results which either obey the
retrieve relation or not. Those calls of the operation that remain within the retrieve
relation will be simulable, the others not. A theoretically weaker framework will be
able to distinguish between these cases, to derive stepwise simulations of the well be-
haved execution sequences. However the price paid for the presence of the others is
the absence of results like Theorems 6.6, 6.7, 6.8 which involve an implicit quantifi-
cation over all possible cases. The details are beyond the scope of this paper.

8 Conclusions

In this paper we started by looking at the passage from a relatively simple description
of the key elements of a system, to a more comprehensive and therefore more clut-
tered picture, encompassing much detail that ‘could at the start be left till later’. This
kind of piecemeal buildup is typical of what goes on in realistic system design in its
initial and preformal stages. Leaving details till later is usually not a symptom of la-
ziness, but a pragmatic response to the task of understanding the complexity of a
large system. In discussing our example we debated the extent to which existing

18

elaborations of refinement were capable of giving an account of this process and we
concluded that none of the existing ones fully covered what was needed. Our re-
trenchment proposal allowed the inclusion of the desired detail in a flexible frame-
work that also incorporated the most pertinent aspects of existing techniques. One
benefit of retrenchment is that it allows the controlled denial of previously stated ab-
stract properties. This is useful since a system structuring strategy that totally forbids
such denial can force the system structure into a form that appears upside down when
compared with normal engineering intuition. Consider a simple example: if one were
not allowed to contradict the unrealistically unbounded nature of Peano natural num-
bers, then strictly speaking, the properties of finite arithmetic ought to come out as
the top level component of almasty design that requires calculations.

Our main concern in this paper was to explore some of the semantic properties of re-
trenchment, focusing on simulation. Our approach bears comparison with similar
work eg. [27, 28]. In our case we introduced modulated refinement as a notion inter-
mediate between conventional refinement and retrenchment. A key observation was
that in the inverted version of this concept, we could relate sequence-oriented simu-
lation and automata theoretic strong simulation whilst making a natural identification
of the notions of state involved, a situation that fails for conventional refinement. We
then applied these insights to a simple special case of retrenchment, the simple simu-
lable case. We consider the simulation theoretic properties exhibited by this special
case, (and others, based on weaker assumptions, whose treatment is beyond the scope
of this paper), as ample retrospective reinforcement of the semantics of retrenchment
given in the proof obligations proposed in [1] on purely heuristic grounds. Essential-
ly, when models are connected only weakly as in retrenchment, a more unidirection-
ally oriented relationship between them is more informative than the more intimately
interdependent one expressed through (normal) refinement. Even so, for the simple
simulable special case, we were able to recover a notion of refinement, albeit at the
price of some frame issues.

References

1. Banach R., Poppleton M. Retrenchment: An Engineering Variation on Refinement.
Proc. B-98, Bert (ed.), Springer, 1998, 129-147, LNI393 See alsoUMCS Technical
Report UMCS-99-3-ttp://www.cs.man.ac.uk/cstechrep

Abrial J. R. The B-Book. Cambridge University Press, 1996.
Wordsworth J. B. Software Engineering with B. Addison-Wesley, 1996.

4. Lano K., Haughton H. Specification in B: An Introduction Using the B-Toolkit. Imperial
College Press, 1996.

5. Sekerinski E., Sere K. Program Development by Refinement: Case Studies Using the B
Method. Springer, 1998.

6. Hayes I. J., Sanders J. W. Specification by Interface Separation. Form. Asp. Comp.
430-439, 1995.

7. Mikhajlova A, Sekerinski E. Class Refinement and Interface Refinement in Object-Ori-
ented Programsn: Proc. FME-97, Fitzgerald, Jones, Lucas (eds.), Springer, 1997, 82-
101, LNCS1313

8. Boiten E., Derrick J. 10-Refinement in . Proc. Third BCS-FACS Northern Formal
Methods Workshop. llkley, U.K., BCS, 1998ttp://www.ewic.org.uk/ewic/
workshop/view.cfm/NFM-98

19

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Stepney S., Cooper D., Woodcock J. More Powerful Z Data Refinement: Pushing the
State of the Art in Industrial Refinemeim: Proc. ZUM-98, Bowen, Fett, Hinchey (eds.),
Springer, 1998, 284-307, LNCI193

Back R. J. R., Kurki-Suonio R. Decentralisation of Process Nets with Centralised Con-
trol. in: Proc. 2nd ACM SIGACT-SIGOPS Symp. on Princ. Dist. Comp., 131-142, ACM,
1983.

Back R. J. R. Refinement Calculus Part Il: Parallel and Reactive Systefsc. REX
Workshop, Stepwise Refinement of Distributed Systems, de Roever, Rozenberg (eds.),
Springer, 1989, 67-93, LNC&0.

Back R. J. R., von Wright J. Trace Refinement of Action Systém&roc. CONCUR-

94, Jonsson, Parrow (eds.), Springer, 1994, 367-384, 1836S

Francez N., Forman I. R. Superimposition for Interactive Procdas@soc. CONCUR-
90, Baeten, Klop (eds.), Springer, 1990, 230-245, LMES

Katz S. A Superimposition Control Construct for Distributed Systems. ACM Trans.
Prog. Lang. Sysl5, 337-356, 1993.

Back R. J.R., Sere K. Superposition Refinement of Reactive Systems. Form. Asp. Comp.
8, 324-346, 1996.

Blikle A. The Clean Termination of Iterative Programs. Actall6f199-217, 1981.

Coleman D., Hughes J. W. The Clean Termination of Pascal Programs. Adta t85-
210, 1979.

Neilson D. S. From Z to C: lllustration of a Rigorous Development Method. PhD. Thesis,
Oxford University Computing Laboratory Programming Research Group, Technical
Monograph PRG-101, 1990.

Owe O. An Approach to Program Reasoning Based on a First Order Logic for Partial
Functions. University of Oslo Institute of Informatics Research Report No. 89. ISBN 82-
90230-88-5, 1985.

Owe O. Partial Logics Reconsidered: A Conservative Approach. Form. Asp. Gpinp.
16, 1993.

Jonsson B. Simulations between Specifications of Distributed SysterRsoc. CON-
CUR-91, Baeten, Groote (eds.), Springer, 1991, 346-360, LNCS

Abadi M., Lamport L. The Existence of Refinement Mappings. Theor. Comp83ci.
253-284, 1991.

Jonsson B. On Decomposing and Refining Specifications of Distributed Systems.
Proc. REX Workshop, Stepwise Refinement of Distributed Systems, de Roever, Rozen-
berg (eds.), Springer, 1989, 361-385, LNL3B.

Lynch N. Multivalued Possibilities Mappingis: Proc. REX Workshop, Stepwise Re-
finement of Distributed Systems, de Roever, Rozenberg (eds.), Springer, 1989, 519-543,
LNCS 430

Merritt M. Completeness Theorems for Automata.Proc. REX Workshop, Stepwise
Refinement of Distributed Systems, de Roever, Rozenberg (eds.), Springer, 1989, 544-
560, LNCS430

Banach R., Poppleton M. Retrenchment and Punctured Simulatidroc. IFM-99,
Taguchi, Galloway (eds.), 457-476, Springer, 1999.

Derrick J., Bowman H., Boiten E., Steen M. Comparing LOTOS and Z Refinement Re-
lations.in: Proc. FORTE/PSTV-9, 501-516, Chapman and Hall, 1996.

Bolton C., Davies J., Woodcock J. On the Refinement and Simulation of Data Types and
Processesn: Proc. IFM-99, Taguchi, Galloway (eds.), 273-292, Springer, 1999.

20

	Retrenchment, Refinement and Simulation
	Abstract: Retrenchment is introduced as a liberalisation of refinement intended to address some o...
	1 Introduction
	2 Some Inadequacies of Refinement
	3 Retrenchment
	4 Stepwise Simulation
	5 Modulated Refinement and Simulation
	6 Simple Simulable Retrenchment
	7 The Mobile Radio Example Revisited
	8 Conclusions
	References

