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Abstract: Retrenchment is introduced as a liberalisation of refinement intended to
address some of the shortcomings of refinement as sole means of progressing from
simple abstract models to more complex and realistic ones. In retrenchment the re-
lationship between an abstract operation and its concrete counterpart is mediated
by extra predicates, allowing the expression of non-refinement-like properties and
the mixing of I/O and state aspects in the passage between levels of abstraction.
Modulated refinement is introduced as a version of refinement allowing mixing of
I/O and state aspects, in order to facilitate comparison between retrenchment and
refinement, and various notions of simulation are considered in this context. Step-
wise simulation, the ability of the simulator to mimic a sequence of execution steps
of the simulatee in a sequence of equal length is proposed as the benchmark seman
tic notion for relating concepts in this area. One version of modulated refinement
is shown to have particularly strong connections with automata theoretic strong
simulation, in which states and step labels are mapped independently from simula-
tor to simulatee. A special case of retrenchment, simple simulable retrenchment is
introduced, and shown to have properties very close to those of modulated refine-
ment. The more general situation is discussed briefly. The details of the theory are
worked out for the B-Method, though the applicability of the underlying ideas is
not limited to just that formalism.
Keywords:  Retrenchment, Refinement, Simulation, B-Method.

1 Introduction

In [1] the authors observed that the normal practice of using refinement as the
means of going from an abstract description of a desired system to a more rea
one, exhibited certain deficiencies as regards the desirability of keeping things si
and elegant at the highest levels of description, whilst accepting that a lower leve
count needs to recognise the impact of many low level details that necessarily int
in an essential way, upon the idealised nature of the former. We therefore prop
that the exigencies of refinement were mollified by two extra predicates per op
tion, the WITHIN and CONCEDES clauses, the former to strengthen the preco
tion and the latter to weaken the postcondition, the latter in particular allowing
expression of non-refinement-like behaviour because of the weakening of the
condition. Permitting these clauses to also mix state and I/O information betw
levels of abstraction when convenient, yields a very flexible framework for build
up complex specifications from over-simple but appealing predecessors. In this
ner we overcame the unforgiving nature of the refinement proof obligations.

In [1] we were concerned with justifying retrenchment on engineering grounds. T
more pragmatic departure we considered reasonable, so that we did not fall int
trap of making a premature commitment to a particular mathematical notion that
proved to be inconvenient in the face of large examples. In the present work w
turn to examine the foundations of the notion that we have proposed. Specificall
1
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examine stepwise simulation, the ability to simulate a sequence of steps of the s
latee by an equal length sequence of steps of the simulator. The main tool for t
a notion of refinement, called modulated refinement, similar to elaborations of
ventional refinement that allow for change of I/O representations. Modulated re
ment comes in two versions, normal and inverted, and the latter supports an esp
ly strong connection with (automata theoretic) strong simulation. This is of in
pendent interest, and furthermore provides the means to show how the propert
retrenchment are related to those of refinement.

The rest of this paper is as follows. In Section 2 we discuss via an example how
finement can be inconvenient in developing complex specifications from sim
models. We also discuss some ways in which the existing literature addresses
points, if, in our view, only partially. In Section 3 we show how retrenchment p
vides a natural framework for the needed flexibility. Section 4 highlights the po
that stepwise simulation is the fundamental semantic notion by which we measur
relationships between systems considered in this paper. Section 5 introduces m
lated refinement in its two versions, and elaborates the connection between thes
(automata theoretic) strong simulation. The link between refinement and retre
ment is considered in Section 6, which introduces simple simulable retrenchme
special case having properties very close to those of modulated refinement. Sp
cally, stepwise simulation and strong simulation results are easy to derive, and
ulated refinements of the two kinds are recovered. Section 7 returns to the ori
example and Section 8 concludes.

Notation. In the body of the paper we use the B Abstract Machine Notation for mo
oriented specification and system development (see [2, 3, 4, 5]). This provid
comprehensive syntax and semantics for the concepts of refinement most used
velopment, and our ideas slot very neatly into the B framework. Nevertheless the
as of the paper are independent of notation, and readily apply to other approac

2 Some Inadequacies of Refinement

While refinement has proved its worth many times over as an implementation m
anism, there is room for misgivings in its use to describe the much more infor
processes that often occur when moving from an appealing and simple mode
system, to a realistic but more complex and less elegant one, where it is the latte
must actually be implemented. Let us illustrate with a small example. We will c
sider a mobile radio system. At a high level of abstraction we can model its esse
features thus:

MACHINE Mobile_Radio_HL
SETS CALLSTATES = { Idle , Busy }
VARIABLES callState , currChan
INVARIANT callState∈ CALLSTATES ∧ currChan∈ CHANELS
INITIALISATION callState := Idle || currChan :∈ CHANELS
OPERATIONS

call_outgoing ( num )  =̂
PRE callState = Idle ∧ num∈ CHANELS
THEN

CHOICE callState := Busy|| currChan := num
OR skip
2
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END ;

call_incoming ( num )  =̂
PRE num∈ CHANELS
THEN

SELECT callState = Idle
THEN callState := Busy|| currChan := num

ELSE skip
END

END ;
disconnect_outgoing  =̂

PRE callState = Busy  THEN callState := Idle  END ;
disconnect_incoming  =̂

SELECT callState = Busy  THEN callState := Idle  END ;
END

The model describes what we would expect ‘normal service’ to consist of. In
model we distinguish betweenoutgoingoperations that are initiated by the curren
possessor of the device in question and whose validity is protected by PRE asser
andincomingoperations that are prompted unpredictably from the (user’s) envir
ment and whose validity (besides input typing clauses) is protected by SELE
guards. In the former case the operation diverges if called outside its PRE clau
the latter case it will not start unless the SELECT guard is true. The distinctio
made clear by considering the normal form of an arbitrary AMN operation as
scribed in [2] Ch. 6, which can be written as:

opname =̂
PRE P(x)
THEN

ANY x′  WHERE Q(x, x′)  THEN x := x′  END
END (2.1)

for suitable predicatesP andQ in the variables mentioned. Foropnameto guarantee
to establish some propertyΠ , written [opname ] Π , the following must hold:

P(x) ∧ (∀x′ • ¬Q(x, x′) ∨ Π[x′\x]) (2.2)

Divergence or abortion or nontermination, is caused by the failure ofP(x) to hold,
which prevents the predicate from ever being true. Normal working is whenP(x)
holds and there is anx′ such thatQ(x, x′) andΠ[x′\x] hold. However whenP(x) holds
and there is nox′ such thatQ(x, x′) holds, the operation succeeds miraculously sin
the above predicate is true independently ofΠ[x′\x] . Since miracles are infeasable
the miraculous region of an operation is interpreted as one in which the opera
cannot start, dually to the interpretation of the nonterminating region as one in w
the operation cannot stop (normally). The SELECT guardsG(x) say, used above, just
correspond to cases whereQ(x, x′) can be decomposed into the formG(x) ∧ x′ =
value, wherevalue is independent ofx andx′ .
Moving now to a lower level of abstraction, we take into account various facts: fir
that before the radio will work, the user must select a suitable waveband; seco
that when making an outgoing call the radio may jam, from which it must be re
thirdly that during a call, fadeouts can occur which will also cause the radio to j
requiring a reset.  The lower level model is then as follows:
3
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MACHINE Mobile_Radio_LL
SETS JCALLSTATES = CALLSTATES ∪ { Jam }
VARIABLES jcallState , jcurrChan , bandSelected
INVARIANT jcallState∈ JCALLSTATES ∧

jcurrChan∈ CHANELS ∧ bandSelected∈ BOOL
INITIALISATION jcallState := Idle || jcurrChan :∈ CHANELS ||

bandSelected := FALSE
OPERATIONS

select_band  =̂
PRE bandSelected = FALSE  THEN bandSelected := TRUE  END ;

call_outgoing ( num )  =̂
PRE bandSelected = TRUE ∧ jcallState = Idle ∧ num∈ CHANELS
THEN

CHOICE jcallState := Busy|| jcurrChan := num
OR skip
OR jcallState := Jam
END

END ;
call_incoming ( num )  =̂

PRE num∈ CHANELS
THEN

SELECT bandSelected = TRUE ∧ jcallState = Idle
THEN jcallState := Busy|| jcurrChan := num

ELSE skip
END

END ;
disconnect_outgoing  =̂

PRE bandSelected = TRUE ∧ jcallState = Busy
THEN jcallState := Idle
END ;

disconnect_incoming  =̂
SELECT bandSelected = TRUE ∧ jcallState = Busy
THEN jcallState := Idle
END ;

fadeout  =̂
SELECT bandSelected = TRUE ∧ jcallState = Busy
THEN jcallState := Jam
END ;

reset  =̂
PRE jcallState = Jam  THEN jcallState := Idle  END ;

END

One might say very loosely that one had refined the HL model to the LL model,
one could not attach any mathematical weight to such a statement. To see this
fices to examine the refinement proof obligation in B notation:

INVA ∧ INVC ∧ trm(opnameA)
⇒ trm(opnameC) ∧ [opnameC] ¬ [opnameA] ¬ INVC (2.3)

In this theA andC subscripts indicate the more abstract and the more concrete o
models respectively, theINV clauses refer to the invariants at the two levels, and t
4
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trm clauses describe the termination conditions for the operation in question (g
in the PRE clauses). The heart of the refinement PO is the ‘[opnameC] ¬ [opnameA]
¬ INVC’ clause which states that whenever the concrete operation is able to ma
step, there is a step that the abstract operation is able to make such that the co
invariant is reestablished. Now normally in B, the concrete invariant contains cla
that relate the abstract and concrete state variables, i.e. the retrieve relation. I
example, with malice aforethought, we omitted to do this, but we can easily re
the situation by explicitly defining the retrieve relation thus:

RETRIEVES jcallState = callState∧ jcurrChan = currChan (2.4)

and rewriting the PO thus:

INVA ∧ RETAC ∧ INVC ∧ trm(opnameA)
⇒ trm(opnameC) ∧ [opnameC] ¬ [opnameA] ¬ RETAC (2.5)

We can now examine the implications of this for various operations in our exam
For the moment we will disregard the fact that the more concrete model features
operations than the abstract one. Consider the operationdisconnect_outgoing. Its
concretetrm predicate (bandSelected= TRUE ∧ jcallState= Busy) is stronger than
its abstract one (jcallState= Busy) , so the latter does not imply the former as require
in the PO. One way round this is to notice that for the correspondingincomingoper-
ation, thetrm predicates are bothtrue , resolving one problem, and to notice that th
‘ [opnameC] ¬ [opnameA] ¬ RETAC’ structure demands that the concrete SELEC
guard implies the abstract one (as can be derived from (2.2) and the remarks w
follow it). Since theincomingoperation’s guards are (essentially) just theoutgoing
operation’s preconditions, this succeeds. So we can model the situation desir
keeping to theincomingstyle, retaining a refinement, but we lose the distinction b
tween the two kinds of operation.

Consider now the operationcall_outgoing. The strengthened precondition problem
is just as evident here, but beyond that, in the concrete model, if the call fails to
nect, the apparatus ends up in theJamstate, outside the reach of the retrieve relatio
Changing preconditions to guards will not help here. No notion of refinement
cope with such a situation. A similar but more behavioural manifestation of the s
phenomenon is apparent in thefadeoutoperation: if a communication is in progres
and afadeoutevent occurs, there is no way that a concrete execution sequence in
ing this can be modelled by an abstract execution sequence, again because th
crete state ends up outside the reach of the retrieve relation. This would still b
case if we introduced a dummy abstractfadeoutoperation, specified byskip , to be
‘refined by’ the concrete one. From the point of view of the abstract model, suc
operation would be adding uninformative clutter, and more than anything would
signalling that the relationship between the ‘real’ abstract model and the more
crete one is certainlynot a refinement.  A case of ‘skip considered harmful’.

We can go further. Given the greater range of possible behaviours of the con
call_outgoingoperation compared to the abstract version, we would expect the
to be given more feedback, say in the form of some output. This would requi
change in operation signature viz.

res←— call_outgoing ( num )  =̂ …
Changes of signature are not allowed in conventional refinement. And even if we
hanced the abstract operation with output to provide user feedback, a different s
5
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output messages would be appropriate in the two cases, again forbidden in co
tional refinement.

All of the foregoing is not to say that more generous interpretations of the conce
refinement have not allowed some of the phenomena mentioned above, one w
another. For example, change of I/O representation within refinement has bee
mitted in [6, 7, 8, 9], though this does not extend to mixing of I/O and state conce
as we have proposed. Usingskip to bypass awkward points of refinement where
more informative account of things is impossible, is of course a familiar trick. Lik
wise the device of introducing new operations at the concrete level which refineskip
at the abstract level, is familiar from action refinement [10, 11, 12] — the actual p
ence or absence of dummy operations at the abstract level becomes then a ma
mere notation. Such operations also play a part in superposition refinement [13
15], where additional concrete computations are introduced to control the progre
a more abstract computation. Our introduction of thebandSelectedvariable and its
influence on the abstract computation can be seen as being in the flavour of a s
position, though it cannot be a superposition in any strict sense since the abs
computation is interfered with at the more concrete level by the consequences of
ming. The jamming phenomenon itself and the way it relates to ‘normal system
haviour’, bears comparison with work on the difficulties of refining abstract variab
which take values in ideal and typically infinite domains, to concrete variables tak
values in strictly finite ones. From a wide range of approaches to the latter que
we can mention [16, 17, 18, 19, 20].

Despite these efforts it is fair to say that there are nevertheless drawbacks in tryi
restrict oneself to pure refinement as the only way of going from an abstract to a
crete model, especially if the objective is to start from a simplified but transparen
scription, moving to a realistic but more complex description only by degrees. A
size matters. Clearly there is little to be gained by presenting as small an examp
the one above in this gradual manner, but one can imagine that in industrial sca
uations, where there is much more complexity to manage, a multi stage develop
of a large specification is highly desirable, particularly if the size of the real spe
cation is not dramatically smaller than that of the code that implements it, which
often happen when there is a lot of low level case analysis in the system descript

3 Retrenchment

In [1], we introduced retrenchment as a means of addressing the issues just high
ed, within a ‘refinement-like’ framework. In the context of B, a syntax very simil
to that of the B REFINEMENT construct captures what is required, namely the
lowing:

MACHINE M ( a ) MACHINE N ( b )
RETRENCHES M

VARIABLES u VARIABLES v
INVARIANT I ( u ) INVARIANT J ( v )

RETRIEVES G ( u , v )
INITIALISATION X ( u ) INITIALISATION Y ( v )
OPERATIONS OPERATIONS

o ←— opname ( i )  =̂ p←— opname( j ) =̂
S ( u , i , o ) BEGIN
6
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END T ( v , j , p )
[ LVAR

A ]
WITHIN

P ( i , j , u , v , A )
CONCEDES

C ( u , v , o , p , A )
END

END (3.1)

The left hand MACHINEM(a) , with operationso ←— opname(i) , each with body
S(u, i, o) , is retrenched (via the RETRENCHESM clause and retrieve relation RE
TRIEVESG(u, v) ), to MACHINE N(b) , with operationsp ←— opname(j) . These
latter operations now have bodies which areramifiedgeneralised substitutions, tha
is to say generalised substitutionsT(v, j, p) , each with its ramification, the LVAR ,
WITHIN and CONCEDES clauses. Eachopnameof M must appear ramified within
N , but there can also be additional operations inN .

Speaking informally, the ramification of an operation allows us to describe how
concrete operation fails to refine its abstract counterpart. The optional LVARA
clause permits the introduction of logical variablesA , that remember before-values
of variables and inputs, should they be needed later. Its scope is the WITHIN
CONCEDES clauses. The WITHIN clause describes nontrivial relationships
tween abstract and concrete before-values of the state variablesu andv , and abstract
and concrete inputsi andj , and definesA if A is being used. It strengthens the pre
condition as we will see. The CONCEDES clause provides similar flexibility for t
after-state, weakening the postcondition, and describes nontrivial relationship
tween abstract and concrete variables and abstract and concrete outputs, and uA
if it has previously been defined.

The proof obligations make all this more precise. The conventional POs for the
chinesM andN hold, including the initialisation POs,[ X(u) ] I(u) and[ Y(v) ] J(v) ,
and the machine invariant preservation POs,I(u) ∧ trm(S(u, i, o)) ⇒ [ S(u, i, o) ] I(u)
andJ(v) ∧ trm(T(v, j, p)) ⇒ [ T(v, j, p) ] J(v) . A joint initialisation PO is also required
to hold, being identical to the refinement case,[ Y(v) ] ¬ [ X(u) ] ¬ G(u, v) . Of most
interest however is the retrenchment PO for operations which reads:

(I(u) ∧ G(u, v) ∧ J(v)) ∧ (trm(T(v, j, p)) ∧ P(i, j, u, v, A))
⇒

trm(S(u, i, o)) ∧ [ T(v, j, p) ] ¬ [ S(u, i, o) ] ¬
(G(u, v) ∨ C(u, v, o, p, A)) (3.2)

This contains on the left hand side the invariants (I(u) ∧ G(u, v) ∧ J(v)) , and we
strengthen the concretetrm predicate withP(i, j, u, v, A) , as stated above. The righ
hand side infers the abstracttrm predicate, and the ‘[ T(v, j, p) ] ¬ [ S(u, i, o) ] ¬’
structure establishes in the after-states, the retrieve relation weakened byC(u, v, o, p,
A) . A detailed heuristic discussion in [1] justified the shape of this PO. A major p
of the purpose of this paper is to show how simulation properties support this cho

We can now show how the low level machineMobile_Radio_LLof the last section
retrenchesMobile_Radio_HL. To conform to the above syntax we have to add t
retrenchment declaration ‘RETRENCHESMobile_Radio_HL’ , and of course the re-
7
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trieves clause (2.4), but the main thing is the ramifications of the operations. We
sider these in turn.

Thecall_outgoing operation can be dealt with as follows:

call_outgoing ( num )  =̂
BEGIN

PRE bandSelected = TRUE ∧ jcallState = Idle ∧ num∈ CHANELS
THEN

CHOICE jcallState := Busy|| jcurrChan := num
OR skip
OR jcallState := Jam
END

END
LVAR

jCH
WITHIN

jCH = jcurrChan
CONCEDES

jcurrChan = jCH ∧ jcallState = Jam
END

Note that the WITHIN clause serves only to definejCH . This is because the stronge
concretetrm predicate appears as hypothesis in the operation PO, and the ab
one is deduced. Of course we could strengthen the WITHIN clause with ‘bandSe-
lected= TRUE’ to highlight the differences between thetrm predicates if we wished.
Note also how the CONCEDES clause captures what happens when the retrie
lation breaks down; here it is important to realise that the occurrence of thejcurrChan
state variable in the WITHIN clause refers to its before-value, while the occurre
in the CONCEDES clause refers to its after-value, moreoverjCH , being a fresh log-
ical variable, remembers the former for use in the context of the latter.

The correspondingcall_incomingoperation needs only the trivial ramification
WITHIN true CONCEDESfalse . This is because thetrm predicates are the same
for this case, and the ‘[ T(v, j, p) ] ¬ [ S(u, i, o) ] ¬’ of the operation PO, requires the
concrete guard to be stronger than the abstract guard (the same structure as fo
refinement).

The remaining operations that need ramifying,disconnect_outgoingand
disconnect_incomingcan also be given the trivial ramification. As before this is b
cause in retrenchment, both the guard and the termination predicate of the con
version of an operation are required to be stronger than the abstract ones (pe
qualification by the WITHIN clause). In this sense retrenchment has no prefere
between the ‘called operation’ and ‘spontaneous event’ views of an operation.

4 Stepwise Simulation

The semantic touchstone for retrenchment is stepwise simulation, by which we m
the simulation of a sequence of steps of the simulateeT by an equal length sequence
of steps of the simulatorS , see Fig. 1. However the precise definition of ‘simulate
in this context will depend on the precise relationship between the two systems u
study so we will not give a formal definition here. Suffice for the moment to say t
8
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‘simulates’ always includes the preservation of the retrieve relation, since there
always be one around.

We write a step of a machine such asM of (3.1) in the form:

u -(i, m, o)-› u′
whereu andu′ are the before and after states,m is the name of the operation (where
it can help, we writeS , the body ofm , instead ofm itself), andi ando are the input
and output ofm . This signifies that (u, i) satisfytrm(S) , and that (u, i, u′, o) satisfy
the before-after predicate ofm (this is the predicateQ(u, u′) in the normal form (2.1)
when there is no I/O, otherwise it isQ(u, i, u′, o) , the corresponding predicate for th
normal form with I/O present). When discussing properties of sequences of s
last(T ) will denote the index of the last state mentioned inT , andr ∈ dom•(T ) will
meanr ∈ [0 … last(T ) – 1] if T is finite, andr ∈ NAT otherwise. Similarly for se-
quences of any type. In general we need to distinguishOpsM , the operation names
at the abstract level, fromOpsN the operation names at the concrete level, whe
OpsM ⊆ OpsN .

5 Modulated Refinement and Simulation

In this section we explore in some depth a notion, modulated refinement, that lies
way between conventional refinement and retrenchment, in order to illuminate th
lationship between them. Modulated refinement is superficially a straightforward
tension of refinement to allow different I/O signatures at the two levels of abstrac
in question. In this sense part of what appears here bears comparison with oth
aptations of refinement to cope with change of I/O representation such as [6, 7,
Here is a specific B syntax.

MACHINE M ( a ) MACHINE N ( b )
MODREF M

VARIABLES u VARIABLES v
INVARIANT I ( u ) INVARIANT J ( v )

RETRIEVES G ( u , v )
INITIALISATION X ( u ) INITIALISATION Y ( v )
OPERATIONS OPERATIONS

o ←— opname ( i )  =̂ p←— opname( j ) =̂
S ( u , i , o ) BEGIN

END T ( v , j , p )
WITHIN

P ( i , j , u , v )
NEVERTHELESS

V ( u , v , o , p )
END

END (5.1)

Fig. 1.  A stepwise simulation.

• • • • • • • • • • • • • •T
• • • • • • • • • • • • • •S
9
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Note the MODREF keyword, indicating the intended relationship, and as in retre
ment, the separate appearance of the retrieve relation. Because modulated refin
mirrors conventional refinement, we demand thatM andN have the same set of op-
eration namesOps . In N , each operation has a WITHIN clause, but this time the
are no logical variables, so the clause simply expresses the relationship betwee
before-states and the inputs, as an enhancement to the retrieve relation. Lik
there is a NEVERTHELESS clause, expressing the relationship between the a
states and the outputs. Unlike the CONCEDES clause of retrenchment, the NEV
THELESS clause will act conjunctively, also enhancing the retrieve relation, he
the different name.

In fact the above syntax will serve for two slightly different notions of modulated
finement,normalandinvertedto be introduced shortly, and we could introduce se
arate N-MODREF and I-MODREF keywords for these, but it is convenient not to
so.  Until further notice we will study normal modulated refinement.

Aside from the usual machine POs forM andN , the semantics of normal modulate
refinement is captured by the POs.  Firstly for initialisation:

[ Y(v) ] ¬ [ X(u) ] ¬
(G(u, v) ∧ (∀ jm ∃ im • Pm(im, jm, u, v))) (5.2)

Next the PO for operations, which for a typical operation reads:

(I(u) ∧ G(u, v) ∧ J(v)) ∧ (trm(S(u, i, o)) ∧ P(i, j, u, v))
⇒

trm(T(v, j, p)) ∧ [ T(v, j, p) ] ¬ [ S(u, i, o) ] ¬
(G(u, v) ∧ V(u, v, o, p)) (5.3)

and lastly the operation compatibility PO, which for a typical operationn (wheren ∈
Ops , and has clausesPn andVn ) reads:

G(u, v) ∧ Vn(u, v, on, pn) ⇒ (∀ jm ∃ im • Pm(im, jm, u, v)) (5.4)

The role of the operation compatibility PO is to ensure that the result of one step
not prevent any next step purely because of the relationship between abstract an
crete I/Os and states (similar remarks apply for (5.2)). Note the appearance
conjunctive context of the NEVERTHELESS clauses in (5.3) and (5.4). The m
reason for studying normal modulated refinement is that it posesses the natura
logue of the simulation property so characteristic of conventional refinement.

Definition 5.1 Let (5.1) be a (normal or inverted) modulated refinement. Supp
T ≡ [ v0 -(j0, m0, p1)-› v1 -(j1, m1, p2)-› v2 … ] is a concrete execution sequence, an
thatS ≡ [ u0 -(i0, m0, o1)-› u1 -(i1, m1, o2)-› u2 … ] is an abstract execution sequenc
ThenS is a stepwise simulation ofT iff G(u0, v0) holds, dom(T ) = dom(S) , and for
all r ∈ dom•(T ) :

G(ur, vr) ∧ Pmr
(ir, jr, ur, vr) ∧

G(ur+1, vr+1) ∧ Vmr
(ur+1, vr+1, or+1, pr+1) (5.5)

Definition 5.2 Let (5.1) be a (normal or inverted) modulated refinement. Supp
T ≡ [ v0 -(j0, m0, p1)-› v1 -(j1, m1, p2)-› v2 … ] is a finite concrete execution sequenc
with sequence of invoked operation namesms≡ [ m0, m1 … ] . We define the abstract

m ∈ Ops
∧

m ∈ Ops
∧

10
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trmP predicates and associatedpreP sets (with respect toT ) thus, whereSmr
is the

body of operationmr in M :

trmPM,r,r  = true
… … …

trmPM,r,s  = Pmr
(ir, jr, u, vr) ∧ [ Smr

 ] trmPM,r+1,s (5.6)

(wherer < s ∈ dom(T ) ), and for finiteT  with last(T ) = size(ms) = z :

prePM,ms  =  {(u0, i0, i1 … ik–1) ∈ U × I0 × I1 … × Ik–1 | trmPM,0,z} (5.7)

Note that these objects depend not only on abstract states and abstract inputs, b
itly also on the concrete states and inputs (and sequence of operationsms) appearing
in T  .  We can now prove the following.

Theorem 5.3 Let (5.1) describe a normal modulated refinement where the comm
set of operation names isOps . Let T ≡ [ v0 -(j0, m0, p1)-› v1 -(j1, m1, p2)-› v2 … ] ,
with sequence of invoked operation namesms≡ [ m0, m1 … ] , be a finite execution
sequence ofN . Suppose there is a (u0, i0 … ) ∈ prePM,mssuch thatu0 also witnesses
the initialisation PO (5.2). Then there is an execution sequence ofM , S ≡ [ u0 -(i0,
m0, o1)-› u1 -(i1, m1, o2)-› u2 … ] , which is a stepwise simulation ofT  .

Proof. Let T ≡ [ v0 -(j0, m0, p1)-› v1 … ] be as given. If dom(T ) = {0} , then the
hypothesisedu0 is all we need, asG(u0, v0) holds. Otherwise we construct a corre
spondingS ≡ [ u0 -(i0, m0, o1)-› u1 … ] by an induction on dom•(T ) .

For r = 0 , we know from the hypotheses that a (u0, i0 … ) ∈ prePM,msexists such
thatG(u0, v0) holds. SincetrmPM,0,size(ms)(u0, i0 … ) ⇒ trm(Sm0

)(u0, i0) , we have
trm(Sm0

)(u0, i0) ∧ Pm0
(i0, j0, u0, v0) ∧ G(u0, v0) . From the initialisation POs forM

andN we know thatI(u0) andJ(v0) hold. So we have the antecedents of the norm
modulated refinement PO for operations, which from the stepv0 -(j0, m0, p1)-› v1 of
T , yields a step ofM , u0 -(i0, m0, o1)-› u1 , such thatG(u1, v1) ∧ Vm0

(u1, v1, o1, p1)
holds.  So we have as required:

G(u0, v0) ∧ Pm0
(i0, j0, u0, v0) ∧ G(u1, v1) ∧ Vm0

(u1, v1, o1, p1)

Since (u0, i0 … ) ∈ prePM,mswe conclude that there is a (u1, i1 … ) ∈ prePM,tail(ms) ,
and we also have the machine invariantsI(u1) andJ(v1) .

For the inductive step, supposeS has been constructed as far as ther’th step. Then
the machine invariantsI(ur) andJ(vr) hold, and we also have1 G(ur, vr) ∧ (ur, ir … )
∈ prePM,ms↓r .  This enables us to perform the inductive step as above.

We cannot extend the above strategy to the case of infinite sequencesT , as the pred-
icatetrmPM,0,r does not behave well asr grows without bound: not only does theu
aspect of the predicate accumulate ‘at the front’ of the predicate, but we also ha
unbounded number of input variables to contend with. These problems require
hypotheses and a different strategy.

Definition 5.4 Let (5.1) be a (normal or inverted) modulated refinement. Supp
T ≡ [ v0 -(j0, m0, p1)-› v1 -(j1, m1, p2)-› v2 … ] is a(n infinite) concrete execution se
quence.  Let

1. For a sequencems, ms↑r is the firstr elements ofms, andms↓r is all except the firstr ele-
ments ofms, wherer refers specifically to cardinality rather than to absolute index values
dom(ms) .
11
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r  = | {(u, i) ∈ U × Ir | G(u, vr) ∧ trm(Smr

)(u, i) ∧ Pmr
(i, jr, u, vr)} |

We say thatT  is retrieve bounded iff:

∀ r ∈ dom•(T ) • NUI
r < ∞ (5.8)

Note that retrieve boundedness is inspired by the same thought as internal cont
in [21] and finite invisible nondeterminism in [22].

Theorem 5.5 Let (5.1) describe a normal modulated refinement where the comm
set of operation names isOps . Let T ≡ [ v0 -(j0, m0, p1)-› v1 -(j1, m1, p2)-› v2 … ] ,
with sequence of invoked operation namesms≡ [ m0, m1 … ] , be an infinite execu-
tion sequence ofN . SupposeT is retrieve bounded. Suppose moreover for eachr ,
that there is a (u0, i0 … ) ∈ prePM,ms↑r such thatu0 also witnesses the initialisation
PO (5.2). Then there is an execution sequence ofM , S ≡ [ u0 -(i0, m0, o1)-› u1 -(i1,
m1, o2)-› u2 … ] , which is a stepwise simulation ofT  .

Proof. LetT ≡ [ v0 -(j0, m0, p1)-› v1 … ] be as given. We show there is a correspon
ing S ≡ [ u0 -(i0, m0, o1)-› u1 … ] as follows. We know that each finite prefix ofT
can be stepwise simulated because of Theorem 5.3. These finite simulations c
arranged into a tree thus: the root is a special node at level –1 ; the nodes at lever are
(u, i) pairs such thatG(u, vr) ∧ trm(Smr

)(u, i) ∧ Pmr
(i, jr, u, vr) holds; and there is an

edge of the tree from (ur, ir) at levelr to (ur+1, ir+1) at levelr+1 iff there is a simulation
of a finite prefix ofT with ur -(ir, mr, or+1)-› ur+1 as final step; also there are edge
from the root to all level 0 nodes. Because there are infinitely many finite simulat
the tree is infinite, and by retrieve boundedness each of its levels is finite. By Kön
Lemma, the tree has an infinite branch, which corresponds to a stepwise simu
S of T  .

Now we introduce inverted modulated refinement. The only difference compare
normal modulated refinement is that instead of (5.3), the operation PO for inve
modulated refinement reads:

(I(u) ∧ G(u, v) ∧ J(v)) ∧ (trm(T(v, j, p)) ∧ P(i, j, u, v))
⇒

trm(S(u, i, o)) ∧ [ T(v, j, p) ] ¬ [ S(u, i, o) ] ¬
(G(u, v) ∧ V(u, v, o, p)) (5.9)

Note the inverted roles of thetrm predicates.

Theorem 5.6 Let (5.1) describe an inverted modulated refinement where the c
mon set of operation names isOps . Let T ≡ [ v0 -(j0, m0, p1)-› v1 -(j1, m1, p2)-› v2
… ] be an execution sequence ofN . Then there is an execution sequence ofM , S ≡
[ u0 -(i0, m0, o1)-› u1 -(i1, m1, o2)-› u2 … ] , which is a stepwise simulation ofT  .

Proof. LetT ≡ [ v0 -(j0, m0, p1)-› v1 … ] be an execution sequence ofN . The dom(T )
= {0} case is as in Theorem 5.3.  Otherwise we go by induction on dom•(T ) .

For r = 0 , we know that for the givenv0 andj0 from T , (5.2) holds. So for them0
from T we can find ani0 such thatG(u0, v0) ∧ Pm0

(i0, j0, u0, v0) holds. By the defi-
nition of execution step,trm(Tm0

)(v0, j0) holds. Now the initialisation POs forM and
N yield I(u0) andJ(v0) . Thus the operation PO (5.9), yields a step ofM , u0 -(i0, m0,
o1)-› u1 such thatG(u1, v1) ∧ Vm0

(u1, v1, o1, p1) holds.  So:

G(u0, v0) ∧ Pm0
(i0, j0, u0, v0) ∧ G(u1, v1) ∧ Vm0

(u1, v1, o1, p1)

For the inductive step, supposeS has been constructed as far as ther’th step. Then
we haveI(ur) , J(vr) , andG(ur, vr) ∧ Vmr–1

(ur, vr, or, pr) ∧ trm(Tmr
)(vr, jr) . From the
12
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operation compatibility PO (5.4), we can infer that for thejr andmr given byT , we
can find anir such thatPmr

(ir, jr, ur, vr) holds. This is enough to complete the induc
tive step as before.

We can see clearly why we need different termination assumptions in Theorem
and 5.5 on the one hand, and Theorem 5.6 on the other. In the latter, we need
mination assumption about the steps ofT , a given execution sequence, to be able
exploit the operation PO. Since the individual concrete steps are each within
individual trm predicates, what we have is already sufficient. In the former, we n
a termination assumption about the steps ofS , an execution sequence yet to be co
structed. Therefore stronger assumptions are needed before the relevant ope
PO can be used.

Theorem 5.6 can be understood as establishing a strong simulation in the auto
theoretic sense, an intrinsically more local concept than the property in Theorem

Definition 5.7 Let U andV be sets (of states), and letU0 ⊆ U andV0 ⊆ V be subsets
(of initial states). LetLU andLV be sets (of transition labels). LetU0 andTU ⊆ U ×
LU × U be a transition system onU , andV0 andTV ⊆ V × LV × V be a transition
system onV .  A pair of relations

( ΘS : U ↔ V , ΘL : LU ↔ LV )

is called a strong simulation fromTV to TU iff:

v0 ∈ V0 ⇒ ∃ u0 ∈ U0 • u0 ΘS v0 (5.10)

and for allu , v :

u ΘS v ∧ v -µ-› v′ ∈ TV ⇒
∃ u′ ∈ U , λ ∈ LU • u′ ΘS v′ ∧ λ ΘL µ ∧ u -λ-› u′ ∈ TU (5.11)

Note that Definition 5.7 differs slightly from the conventional notion of strong sim
lation insofar as initial states ofN are not required to relate viaΘS solely to initial
states ofM . Evidently this is for easier comparison with the initialisations arisin
from refinements and retrenchments.

Definition 5.8 Let M be a machine with operation names setOps . Then the reach-
able transition systemTM associated toM is the initial state setU0 and subsetTM of
U × LM × U where:

(1) LM  =  {(i, m, o) ∈ I × Ops × O}
(2) U  =  {u ∈ U | there is an execution sequence ofM with u as final state}
(3) U0 =  {u0 ∈ Us | u0 is an initial state ofM}
(4) TM  =  {u -(i, m, o)-› u′ | there is an execution sequence ofM

    withu -(i, m, o)-› u′ as final step}

Theorem 5.9 Let (5.1) describe an inverted modulated refinement where the c
mon set of operation names isOps . Then there is a strong simulation from the reac
able transition systemTN of N to the reachable transition systemTM of M .

Proof.  We define a strong simulation (ΘS, ΘL) as follows:

ΘS  =  {(u, v) ∈ Us× Vs | G(u, v) ∧ (∀ jm ∃ im • Pm(im, jm, u, v))} (5.12)

ΘL  =  {((i, m, o), (j, m, p)) ∈ (I × Ops × O) × (J × Ops × P) |
(∃ u, v • Pm(i, j, u, v)) ∧ (∃ u, v • Vm(u, v, o, p))} (5.13)

m ∈ Ops
∧

13
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Showing that this constitutes a strong simulation is a matter of routinely rework
the details of the inductive step of the proof of Theorem 5.6.

We note that a strong simulation relates states to states, and transition labels to
sition labels, essentially independently. In the case of Theorem 5.3, the propertie
manded of abstract states at the beginning and end of a transitionu -(i, m, o)-› u′ ,
specifically that (u, i … ) ∈ prePM,m→msand (u′ … ) ∈ prePM,ms, depend onmand
ms; in particular a step ofM is not guaranteed to reestablish in the after-state, the c
dition assumed in the before-state, a prerequisite for the successful formulatio
separate relationsΘS andΘL . Thus only the inverted case supports a proper noti
of simulation. In contrast, in normal refinement (modulated or not), the roles of ‘s
ulator’ and ‘simulatee’ are exquisitely confused; the abstract system says (via thetrm
predicate)whena step must exist and demands that the concrete system comp
while the concrete system says (via the step relation)howa step can be performed
and demands that the abstract system simulates it.

The preceding remarks depend on identifying the machine state with the auto
theoretic state. If we relax this requirement, then we can incorporate history in
mation in our notion of state, and then a notion of strong simulation can be recov
for the normal case (see eg. [21, 22, 23, 24, 25]), but this is a less natural corres
ence than for the inverted case.

6 Simple Simulable Retrenchment
In this section we build on the insights of the preceding section to address the s
lation and refinement properties of retrenchment. Now, the inclusionOpsM ⊆ OpsN

is generally a proper one. First we give the definition of stepwise simulation in
setting.

Definition 6.1 Let (3.1) be a retrenchment. Suppose thatT ≡ [ v0 -(j0, m0, p1)-› v1
-(j1, m1, p2)-› v2 … ] is an execution sequence ofN , and thatS ≡ [ u0 -(i0, m0, o1)-›
u1 -(i1, m1, o2)-› u2 … ] is an execution sequence ofM , where [m0, m1, … ] is a se-
quence overOpsM . ThenS is a stepwise simulation ofT iff G(u0, v0) holds, and for
all r ∈ dom•(T ) there is anAr such that:

G(ur, vr) ∧ Pmr
(ir, jr, ur, vr, Ar) ∧

(G(ur+1, vr+1) ∨ Cmr
(ur+1, vr+1, or+1, pr+1, Ar)) (6.1)

We now look at a simple sufficient condition for simulation and refinement. T
properties of the relevant class of retrenchments are so strong that they are inde
most refinements.

Definition 6.2 For a retrenchment like (3.1), suppose the joint initialisation esta
lishes:

(G(u0, v0) ∧ (∀ jm ∃ im, Am • Pm(im, jm, u0, v0, Am))) (6.2)

and suppose that eachOpsM operationn ≡ (Tn, An, Pn, Cn) of N satisfies the operation
compatibility PO:

G(u, v) ∨ Cn(u, v, o, p, B)
⇒

(G(u, v) ∧ (∀ jm ∃ im, Am • Pm(im, jm, u, v, Am))) (6.3)

m ∈ OpsM
∧

m ∈ OpsM
∧
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then we say that the retrenchment is a simple simulable retrenchment.

The proof of the following theorem is very similar to that of Theorem 5.6 (only t
final part of the inductive step is changed slightly), and is given in full in [26].

Theorem 6.3 Let (3.1) describe a simple simulable retrenchment where the se
abstract operation names isOpsM . Let T ≡ [ v0 -(j0, m0, p1)-› v1 -(j1, m1, p2)-› v2
… ] be an execution sequence ofN . Suppose that the sequence of invoked operat
namesms≡ [ m0, m1 … ] is anOpsM sequence. Then there is an execution seque
of M , S ≡ [ u0 -(i0, m0, o1)-› u1 -(i1, m1, o2)-› u2 … ] , which is a stepwise simulation
of T  .

Theorem 6.3 leads directly to a strong simulation result analogous to Theorem 5
simple simulable retrenchment.

Definition 6.4 LetM andNbe machines with operation name setsOpsM andOpsN .
The M-restricted reachable transition system ofN (whose states are solely thos
reachable by sequences of operations with names inOpsM ) is defined by setting:

(1) LNM
  =  {(j, m, p) ∈ J × OpsM × P}

(2) VM  =  {v ∈ V | there is an execution sequence ofN consisting
    solely ofOpsM operations, withv as final state}

(3) VM0  =  {v0 ∈ VM | v0 is an initial state ofN}
(4) TNM

  =  {v -(j, m, p)-› v′ | there is an execution sequence ofN
     consisting solely ofOpsM operations, with

v -(j, m, p)-› v′ as final step}

Theorem 6.5 Let (3.1) describe a simple simulable retrenchment where the se
abstract operation names isOpsM . Then there is a strong simulation from theM-
restricted reachable transition systemTNM

of N to the reachable transition systemTM
of M .

Proof. We define a strong simulation (ΘS, ΘL) as follows, after which the details are
relatively straightforward.

ΘS = {(u, v) ∈ U × VM | G(u, v) ∧ (∀ jm∃ im, Am • Pm(im, jm, u, v, Am))}

ΘL  =  {((i, m, o), (j, m, p)) ∈ (I × OpsM × O) × (J × OpsM × P) |
(∃ A • (∃ u, v • Pm(i, j, u, v, A)) ⇐ (∃ u, v • Cm(u, v, o, p, A)))}

Simple simulable retrenchment is sufficiently strong to yield a notion of modula
refinement. Here and in similar results below we disregard any operation ofN not in
OpsM of course. We present a number of closely related results. For the first of t
we give a full proof, the other cases following easily.

Theorem 6.6 Let (3.1) describe a simple simulable retrenchment where the se
abstract operation names isOpsM . Then the following is a normal modulated refine
ment:

MACHINE M ∀T ( a ) MACHINE N ∃A ( b )
MODREF M ∀T

VARIABLES u VARIABLES v
INVARIANT I ( u ) INVARIANT J ( v )

RETRIEVES G ( u , v )

m ∈ OpsM
∧
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INITIALISATION X ( u ) INITIALISATION Y ( v )
OPERATIONS OPERATIONS

o ←— OpName ( i )  =̂ p←— OpName( j ) =̂
S∀T ( u , i , o ) BEGIN

END T ( v , j , p )
WITHIN

P ∃A ( i , j , u , v )
NEVERTHELESS

true
END

END (6.4)

where:

S∀T ( u , i , o ) ≡ PRE
( ∀ v , j • I ( u ) ∧ G ( u , v ) ∧ J ( v ) ∧ trm( S( u , i , o ) )

⇒ trm( T ( v , j , p ) ) )
THEN

S ( u , i , o )
END (6.5)

P ∃A ( i , j , u , v ) ≡  ( ∃ A • P ( i , j , u , v , A ) ) (6.6)

Proof. SinceM ∀T is a fresh machine, we must check its consistency. The initiali
tion PO is as forM . And the operation consistency PO,I ∧ trm(S∀T) ⇒ [ S∀T ] I ,
follows since2 for anyΦ , trm(Φ|S) ⇔ Φ ∧ trm(S) , and [Φ|S] I ⇔ Φ ∧ [ S] I . For
the rest of this proof, letΦ refer specifically to the PRE clause (∀v, j • I(u) … trm(T(v,
j, p))) introduced in (6.5) above.

We can now check that the POs of the simple simulable retrenchment imply tho
the refinement. For the initialisation PO, reinterpreting the∃A in (6.2), yields (5.2)
with Pm

∃A replacing thePm . Likewise for the operation compatibility PO, weaken
ing, and reinterpreting the∃A in (6.3), yields (5.4) withPm

∃Aagain replacing thePm .

For the operation PO we need to show that for all members ofOpsM :

(I(u) ∧ G(u, v) ∧ J(v)) ∧ (trm(S∀T(u, i, o)) ∧ P ∃A(i, j, u, v))
⇒

trm(T(v, j, p)) ∧ [ T(v, j, p) ] ¬ [ S∀T(u, i, o) ] ¬ G(u, v) (6.7)

knowing that (3.2) and (6.3) hold. So let us hypothesise the antecedents of (
These contain the ingredients of an application of generalised modus ponens,
which we can infertrm(T(v, j, p)) , as required in the consequent of (6.7); also throu
foresight, we addtrm(T(v, j, p)) to the hypotheses. Now since we assumeP ∃A(i, j,
u, v) , we can inferP(i, j, u, v, A) for someA , and we add thisP(i, j, u, v, A) to the
hypotheses. At this point the hypotheses contain the antecedents of (3.2), so we
in particular that:

[ T(v, j, p) ] ¬ [ S(u, i, o) ] ¬ (G(u, v) ∨ C(u, v, o, p, A))

Next we use thetrm/prd version of the normal form for generalised substitutions gi
en in [2] and elaborated to include I/O. Applying this to bothT andS in (6.7), after
a little manipulation we get:

2. Φ|S is the substitutionS preconditioned byΦ , soΦ|S is also PREΦ THEN S END .
16
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trm(T) ∧ (∀v∼p∼ • prd(T) ⇒ ¬ (trm(S) ∧ (∀u∼o∼ • prd(S) ⇒ … …)))

We lose nothing by disjoining¬Φ to the (outer) right conjuct sinceΦ is one of our
hypotheses.  After some working we obtain:

trm(T) ∧ (∀v∼p∼ • prd(T) ⇒ ¬ (trm(Φ|S) ∧ (∀u∼o∼ • prd(Φ|S) ⇒ … …)))

Winding back the normal forms gives:

[ T(v, j, p) ] ¬ [ S∀T(u, i, o) ] ¬ (G(u, v) ∨ C(u, v, o, p, A))

We use (6.3) on the (G ∨ C) term, and monotonicity, after which some simplificatio
yields:

[ T(v, j, p) ] ¬ [ S∀T(u, i, o) ] ¬ G(u, v)

Now it remains to apply the deduction principle, to arrive at (6.7). We are done.

The next two results follow from the preceding, the first by noticing that in the refi
ment operation PO,trm(T) may be hypothesised directly, and the second by notic
that the termination part of the PO becomes trivial.

Theorem 6.7 Let (3.1) describe a simple simulable retrenchment where the se
abstract operation names isOpsM . Then (6.4), with the occurrences ofM ∀T and
S∀T replaced byM T andST respectively, whereST is the generalised substitution:

ST ( u , i , o ) ≡  PREtrm( T ( v , j , p ) ) THENS ( u , i , o ) END (6.8)

and (6.6), describe a normal modulated refinement.

Theorem 6.8 Let (3.1) describe a simple simulable retrenchment where the se
abstract operation names isOpsM . Then (6.4), with the occurrences ofM ∀T and
S∀T replaced byM andSrespectively, and (6.6), describe an inverted modulated
finement.

It is interesting to compare the three refinement results of Theorems 6.6, 6.7, 6.8
ticularly with respect to the variables that occur in the various components.
thing we would like to do is to consider the various machinesM ∀T , M T , M , that
occur in these theorems as versions of theM that occurs in (3.1), since we would like
the theorems to be saying something about the original simple simulable retre
ment (3.1). Clearly there is no problem in such an identification for Theorem
since the two versions ofM are syntactically identical. However in the case of Th
orems 6.6 and 6.7, there is more to be said. For Theorem 6.6, machinesM ∀T andM
involve the same free variables. Nevertheless one cannot say straightforwardl
that the two machines exist in the same universe, for the concrete variablesv andj are
mentioned in the precondition ofS ∀T , even though they are universally quantifie
away. What discloses the dependence of machineM ∀T on these concrete entities, is
the free ocurrence of the relational (meta-)variablesG , J , trm(T) . These reveal that
even though the concrete variables that they depend on are quantified away, wh
their identity (as concrete variables), they still take values in their own appropr
concrete universes. Thus one cannot regardM ∀T as a version of theM of (3.1) with-
out taking this amplification of the universe of variable values into account.
course this is not a novel phenomenon since it is familiar already from standard
finement. (See [2] Ch. 11, where a refinement of an abstract machine, though
only in the concrete variables, is nevertheless viewed as a ‘differential’ added to
abstract machine, this being expressed via the existential quantification of the
stract variables in the concrete construct).
17
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The issue we have mentioned strikes us even more forcefully in the case of The
6.7, where the concrete variables actually occur free in the machineM T via (6.8).
Here we cannot pretend thatM T exists in the same world asM ; the applicability of
an abstract operation ofM T depends on the values of concrete variables that we w
to relate to the abstract variables at the point of application. Still, the discusion a
persuades us that the difference between the cases of Theorems 6.6 and 6.7 is
great as it might at first appear to be.

7 The Mobile Radio Example Revisited

As given, our mobile radio example does not in fact provide us with a simple sim
lable retrenchment. The problem lies with thecall_outgoingoperation, because it
can violate the retrieve relation, as revealed in Section 3, where the possibilityjcall-
State= Jamadmitted in the CONCEDES clause conflicts with the retrieve relati
clausejcallState= callState. However it is not hard to prove that we would have ha
a simple simulable retrenchment if we had substituted thecall_outgoingoperation in
Mobile_Radio_LLwith the following more robust version in which theJamstate is
not a possible outcome:

call_outgoing ( num )  =̂
PRE bandSelected = TRUE ∧ jcallState = Idle ∧ num∈ CHANELS
THEN

CHOICE jcallState := Busy|| jcurrChan := num
OR skip
END

END

This version of the operation requires only the trivial ramification to remain with
the retrenchment. Note that even though the resulting system cannot violate th
trieve relation via any of the retrenched operations, such violation can still take p
via thefadeoutevent which leads tojcallState= Jam. Thus even the simple simulable
case of retrenchment expresses things that eg. superposition refinement canno

Of course in reality, the situation described inMobile_Radio_LLwill be the more
typical one. Operations will have the capacity to yield results which either obey
retrieve relation or not. Those calls of the operation that remain within the retr
relation will be simulable, the others not. A theoretically weaker framework will
able to distinguish between these cases, to derive stepwise simulations of the we
haved execution sequences. However the price paid for the presence of the oth
the absence of results like Theorems 6.6, 6.7, 6.8 which involve an implicit quan
cation over all possible cases.  The details are beyond the scope of this paper.

8   Conclusions

In this paper we started by looking at the passage from a relatively simple descri
of the key elements of a system, to a more comprehensive and therefore more
tered picture, encompassing much detail that ‘could at the start be left till later’. T
kind of piecemeal buildup is typical of what goes on in realistic system design in
initial and preformal stages. Leaving details till later is usually not a symptom of
ziness, but a pragmatic response to the task of understanding the complexity
large system. In discussing our example we debated the extent to which exi
18
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elaborations of refinement were capable of giving an account of this process an
concluded that none of the existing ones fully covered what was needed. Ou
trenchment proposal allowed the inclusion of the desired detail in a flexible fra
work that also incorporated the most pertinent aspects of existing techniques.
benefit of retrenchment is that it allows the controlled denial of previously stated
stract properties. This is useful since a system structuring strategy that totally fo
such denial can force the system structure into a form that appears upside down
compared with normal engineering intuition. Consider a simple example: if one w
not allowed to contradict the unrealistically unbounded nature of Peano natural n
bers, then strictly speaking, the properties of finite arithmetic ought to come ou
the top level component of almostany design that requires calculations.

Our main concern in this paper was to explore some of the semantic properties
trenchment, focusing on simulation. Our approach bears comparison with sim
work eg. [27, 28]. In our case we introduced modulated refinement as a notion i
mediate between conventional refinement and retrenchment. A key observation
that in the inverted version of this concept, we could relate sequence-oriented s
lation and automata theoretic strong simulation whilst making a natural identifica
of the notions of state involved, a situation that fails for conventional refinement.
then applied these insights to a simple special case of retrenchment, the simple
lable case. We consider the simulation theoretic properties exhibited by this sp
case, (and others, based on weaker assumptions, whose treatment is beyond th
of this paper), as ample retrospective reinforcement of the semantics of retrench
given in the proof obligations proposed in [1] on purely heuristic grounds. Essen
ly, when models are connected only weakly as in retrenchment, a more unidirec
ally oriented relationship between them is more informative than the more intima
interdependent one expressed through (normal) refinement. Even so, for the s
simulable special case, we were able to recover a notion of refinement, albeit a
price of some frame issues.
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