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ABSTRACT 
This paper is concerned with the analysis of a single server 

retrial queue with vacation and orbital search. The server is 

subject to starting failure and repair. At the completion epoch 

of each service, the server may take a single vacation. After 

vacation completion, the server searches for the customers in 

the orbit or remains idle. Retrial times, service times and 

vacation times are assumed to be arbitrarily distributed. 

Various performance measures are derived and numerical 

results are presented. 

1. INTRODUCTION  
Vacation models had been the subject of interest to queue 

theorists of deep study in recent years because of their 

applicability and theoretical structures in real life congestion 

situations such as manufacturing and production, computer 

and communication systems, service and distribution systems, 

etc. The most remarkable work done by some researchers on 

vacation models include Doshi (1990), Takagi (1991), Ke 

(2003), Baba (2005) and Wu and Takagi (2005).  

 

One of the most important characteristic in the service 

facility of a queueing system is its starting failures. An 

arriving customer who finds the server idle must turn on the 

server. If the server is started successfully the customer gets 

the service immediately. Otherwise the repair for the server 

begins and the customer must join the orbit. The server is 

assumed to be reliable during service. Such systems with 

starting failures have been studied as queueing models by 

Yang and Li (1994), Krishna kumar et al. (2002), Mokaddis et 

al. (2007) and Ke and Chang (2009). 

 Retrial Queues considered by researchers so far have the 

characteristic that each service is preceded and followed by an 

idle period. Artalejo et al. (2002) have considered a retrial 

queue in which immediately after a service completion the 

server searches for customer from the orbit or remains idle. If 

a search is made a service is followed by another service, and 

if not, a service is followed by an idle time. Research work on 

retrial queueing system with orbital search is seldom found in 

literature. This motivates to study a    single server retrial 

queue with vacation, starting failure and orbital search.  

2. MODEL DESCRIPTION 
Consider a single server retrial queue with the server 

subject to starting failure. Customers arrive at the system 

according to Poisson process with rate . If the server is 

found to be busy the arriving customers enter the retrial queue 

to try again for their requests after random intervals. 

Successive interretrial times of any customer are governed by 

an arbitrary probability distribution function )(xA  and 

Laplace-Stieltjes transform )(* sA . If the server is free, an 

arriving customer must start the server, which takes negligible 

time. If the server is started successfully, the customer gets 

service immediately. Otherwise the repair for the server 

commences immediately and the customer must leave for the 

orbit and make a retrial at a later time. Successive repair times 

are independent and identically distributed with probability 

distribution function )(xG , Laplace-Stieltjes transform 

)(* sG  and the first two moments 1g  and 2g . The 

probability of successful commencement of service is 

assumed to be  . 

 

Successive service times are independent with common 

probability distribution function )(xB , Laplace-Stieltjes 

transform )(* sB  and the first two moments 1b and 2b . At 

the completion of each service the server may take a vacation 

with probability   or waits for the next customer with 

complementary probability  . After completing vacation, the 

server searches for customer in the orbit (if any) with 

probability    or remains idle with probability  (= 1– ). 

The search time is assumed to be negligible. Vacation times 

are general with common probability distribution function 

)(xV , Laplace-Stieltjes transform )(* sV  and the first two 

moments 1v  and 2v . 

 

The state of the system at time  t can be described by the 

Markov process, {N(t) ; t  0} = {C(t), X(t), 0(t), 1(t), 2(t), 

3(t), t  0} where C(t) denotes the server state 0, 1, 2 or 3 

according as the server being free, providing the service, 

under repair or on vacation respectively and X(t) corresponds 

to the number of customers in the orbit at time t. If C(t) = 0 

and X(t) > 0 then  0(t) represents the elapsed retrial time, if 

C(t) = 1 and X(t) > 0 then  1(t)  corresponds to the elapsed 

time of the customer being provided service, if C(t) = 2 and 

X(t) > 0 then 2(t) represents the elapsed repair time and if  

C(t) = 3 and X(t) > 0 then 3(t) represents the elapsed vacation 

time at time t.  

 

Let the functions (x), (x), r(x) and γ(x) be the 

conditional completion rates at time x respectively for 

repeated attempts, service, repair and vacation. Then 

))(1/()()( xAxax  ; ))(1/()()( xBxbx    

))(1/()()( xGxgxr   and ))(1/()()( xVxvx  . 
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3. STABILITY CONDITION 
 

The following theorem provides the necessary and 

sufficient condition for the system to be stable. 

Theorem 1.  
 

The embedded Markov chain {Nn, n є N} is ergodic if 

and only if  

)).(*1()(*))1(111(  AAgbv 

 

Proof:  

 

{Nn, n є N} is an irreducible aperiodic Markov chain. To 

prove ergodicity, we shall use the Foster’s criterion, an 

irreducible and aperiodic Markov chain is ergodic if there 

exists a non negative function f(j), j є N and ξ > 0 such that  

the mean drift  xj = E[f(Nn+1) – f(Nn)ІNn = j] is finite for all j є 

N and xj ≤ -ξ for all j є N except for a finite number of js. 

Here we consider the function f(j) = j. Then we have 

xj=  









0  j  E(x),

.......3,2,1)),(*1()(*))1(111( jAAgbv 

 

Clearly the inequality 

))(*1()(*))1(111(  AAgbv  is a 

sufficient condition for ergodicity. 

 

The same inequality is also necessary for ergodicity. As 

noted in Sennot et al. (1983), we can guarantee non 

ergodicity, if the Markov chain {Nn, n є N} satisfies Kaplan’s 

condition, namely xj < ∞ for all j ≥ 0 and there exists j0 є N 

such that xj ≥ 0 and j ≥ j0. In our case Kaplan’s condition is 

satisfied because there is k є N such that rij = 0 for j<i–k and 

i>0, where (rij) is the one step transition matrix of {Nn, n є N}. 

Then 

))(*1()(*))1(( 111  AAgbv 

 implies the non ergodicity of the Markov chain. 

 

4. STEADY STATE DISTRIBUTION 
 

Define 

}0)(,0)({)(0  tXtCPtI  

1,0,0

};)(0,)(,0)({),(





nxt

dxxtxntXtCPdxtxnI 
 

0,0,0

};)(1,)(,1)({),(





nxt

dxxtxntXtCPdxtxnW 
 

1,0,0

};)(2,)(,2)({),(





nxt

dxxtxntXtCPdxtxnR 
 

0,0,0

};)(3,)(,3)({),(





nxt

dxxtxntXtCPdxtxnV 
  

The system of steady state equations that governs the model is 

given below  
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with boundary conditions 
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The normalizing condition is 

1
0 0
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1 0
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0 0
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Define the probability generating functions  

n
z

n
xzxI 






1
)(n ),( ;         

n
z

n
xWzxW 






0
)(n ),(  

n
z
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1
)(n ),(   and  

n
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0
)(n ),(  

 

The following theorem discusses the steady state distribution 

of the system. 

Theorem 2.  
  

If 

))(*1()(*αθβ))(11gα1αb1αβv(  AA 

 then  
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The probability generating function of the orbit size when the 

server is idle is  

(16)             )(/0))1)(*))((*

)(*(  ))(*)(*

)1()(*)1))((((*1()(

zDIzzGzV

zBzzzVzB

zBAzI













 

The probability generating function of the orbit size when the 

server is busy is 

)(/0)1)(*)((*)( zDIzBAzW                  (17) 

The probability generating function of the orbit size when the 

server is under repair is 

)(/0)1)(*(

))(*)(*)((*)(

zDIzG

zVzBzAzR








           (18) 

The probability generating function of the orbit size when the 

server is on vacation is 

)(/0)1)(*)((*)(*)( zDIzVzBAzV   (19) 

The steady state probability that the system is empty is 

)(*/))11(          

)11)(*)(1((0





Avb

gAI




               (20) 

where 

)}(*))(*)1(())](*)1((

)(*1)[(* )(*)(*
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zGzVzBzB

zVAzzzzD













 Proof:  
 

Multiplying equations (1) – (14) by zn and summing over 

n, n=0,1,2,3…,we obtain the partial differential equations 

0),()(     
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Solving the partial differential equations (21) – (24), we 

obtain 

))(1(),0(),( xA
x

ezIzxI 





                                  (29) 

))(1(
)1(

),0(),( xB
xz

ezWzxW 





                      (30) 

))(1(
)1(

),0(),( xG
xz

ezRzxR 





                        (31) 

))(1(
)1(

),0(),( xV
xz

ezVzxV 





                        (32) 

 

Using equations (29) – (32) in equations (25) – (28) and after 

some algebraic manipulation, we get 

(33)                            )(/0))1)(*(

))(*)(*( ))(*
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By substituting the expressions (33) to (36) in equations (29) 

to (32), we get the expressions 

for ),(),,(),,(),,( zxVzxRzxWzxI . Integrating these with 

respect to x from 0 to ∞, we obtain the equations (16) to (19). 

Using normalizing condition 

1)1()1()1()1(0  VRWII  and solving we get the 

analytical expression for 0I . 

 

Corollary 1. 
 

The steady state probabilities of the server being idle, 

busy, repair and on vacation are 

)(*/)))1(1

11())((*1()1(
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Corollary 2.  

 

The mean number of customers in the orbit and system 

under steady state conditions are 

Lq = 
'

N
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Proof :  

 

The probability generating function of the number of 

customers in the orbit is 

)()()()(0)( zVZRzWzIIzH    

                      Lq = 
1

lim
z

)(zH
dz

d

  
Similarly, the probability generating function of the number of 

customers in the system is 

)()()()(0)( zVZRzzWzIIzK   

                       Ls= 
1

lim
z

)(zK
dz

d
  

Theorem 3.  
 

The steady state availability of the server is  

    

 )1()1(0 WIIA   

     =  /)1(111  gv . 

5. PARTICULAR CASES 
 

If 1 , the model under study reduces to M/G/1 retrial 

queue with vacation and orbital search. 

If 1 , the model reduces to M/G/1 retrial queue with 

starting failure and orbital search. 

If θ = 0, the model under study reduces to M/G/1 retrial 

queue with vacation and starting failure. 

If A*(λ) →1, the system reduces to M/G/1 queue with 

vacation, starting failure and orbital search. 

6. NUMERICAL RESULTS 
 

The numerical calculations are carried out by assuming 

the service time, retrial time, repair time and vacation time to 

follow exponential distribution with respective parameters 

r,, and  .  As expected it is observed that 

 0I  increases with increase in  , , , ,  and r . 

 I , Ls and Lq decrease with increase in  , ,  and   

and increase with increase in  . 

 Increase in   increases VRWI ,,, , Ls and Lq. 

 

Table 1: Effect of  on the performance measures 

( 10,5.0   r  and 6 ). 

 



 

I0 I W R V Ls Lq 

1.2000 0.5760 0.0630 0.1200 0.0900 0.0600 0.2618 0.1418 

1.4000 0.4948 0.0828 0.1400 0.1050 0.0700 0.3329 0.1929 

1.6000 0.4107 0.1053 0.1600 0.1200 0.0800 0.4260 0.2660 

1.8000 0.3235 0.1305 0.1800 0.1350 0.0900 0.5601 0.3801 

2.0000 0.2333 0.1583 0.2000 0.1500 0.1000 0.7857 0.5857 

 

 

Table 2 : Effect of  on the performance measures 

( 10,5.0,1   r  and 6 ) 

 



 

I0 I W R V Ls Lq 

15.0000 0.6931 0.0403 0.0667 0.0750 0.0500 0.1728 0.1061 

20.0000 0.7125 0.0375 0.0500 0.0750 0.0500 0.1548 0.1048 

25.0000 0.7242 0.0358 0.0400 0.0750 0.0500 0.1433 0.1033 

30.0000 0.7319 0.0347 0.0333 0.0750 0.0500 0.1354 0.1020 

35.0000 0.7375 0.0339 0.0286 0.0750 0.0500 0.1295 0.1010 

 

Table 3: Effect of  on the performance measures 

( 10,5.0,1   r ) 

 



 

I0 I W R V Ls Lq 

1.2000 0.1708 0.2292 0.1000 0.0750 0.0500 4.4878 4.3878 

1.4000 0.2571 0.1964 0.1000 0.0750 0.0500 2.5417 2.4417 

1.6000 0.3219 0.1719 0.1000 0.0750 0.0500 1.7670 1.6670 

1.8000 0.3722 0.1528 0.1000 0.0750 0.0500 1.3507 1.2507 

2.0000 0.4125 0.1375 0.1000 0.0750 0.0500 1.0909 0.9909 

Table 4: Effect of r  on the performance measures 

( 10,5.0,1    and 6 ) 

 

r

 

I0 I W R V Ls Lq 

15.0000 0.6833 0.0417 0.1000 0.0500 0.0500 0.2474 0.1474 

20.0000 0.6979 0.0396 0.1000 0.0375 0.0500 0.2678 0.1678 

25.0000 0.7067 0.0383 0.1000 0.0300 0.0500 0.2796 0.1796 

30.0000 0.7125 0.0375 0.1000 0.0250 0.0500 0.2873 0.1873 

35.0000 0.7167 0.0369 0.1000 0.0214 0.0500 0.2928 0.1928 

 

Table 5: Effect of θ on the performance measures 

( 10,5.0,1   r  and 6 ) 

 

θ

 

I0 I W R V Ls Lq 

0.2000 0.5867 0.0483 0.1000 0.0900 0.0500 0.2281 0.1281 

0.4000 0.6317 0.0467 0.1000 0.0800 0.0500 0.2113 0.1113 

0.6000 0.6767 0.0450 0.1000 0.0700 0.0500 0.1968 0.0968 

0.8000 0.7217 0.0433 0.1000 0.0600 0.0500 0.1841 0.0841 

1.0000 0.7667 0.0417 0.1000 0.0500 0.0500 0.1728 0.0728 

 

Table 6: Effect of β on the performance measures 

( 10,5.0,1   r  and 6 ) 

 

β

 

I0 I W R V Ls Lq 

0.2000 0.6217 0.0383     0.1000 0.0900 0.0200 0.2016    0.1016  

0.4000 0.6433 0.0433    0.1000 0.0800 0.0400 0.2031    0.1031    

0.6000 0.6650 0.0483     0.1000 0.0700 0.0600 0.2045   0.1045    

0.8000 0.6867 0.0533     0.1000 0.0600 0.0800 0.2058   0.1058    

1.0000 0.7083 0.0583    0.1000 0.0500 0.1000 0.2071   0.1071  
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Table 7: Effect of α on the performance measures 

( 10,5.0,1   r  and 6 ) 



 

I0 I W R V Ls Lq 

0.2000 0.0167 0.1083 0.1000 0.3000 0.0500 13.4000 13.3000 

0.4000 0.5479 0.0563 0.1000 0.1125 0.0500 0.2707 0.1707 

0.6000 0.7250 0.0389 0.1000 0.0500 0.0500 0.1701 0.0701 

0.8000 0.8135 0.0302 0.1000 0.0187 0.0500 0.1362 0.0362 

1.0000 0.8667 0.0250 0.1000 0.0000 0.0500 0.1192 0.0192 
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