
E
ver-increasing computing power and connectivity bandwidth, together

with falling storage costs, are resulting in an overwhelming amount of

data of various types being produced, exchanged, and stored.

Consequently, information search and retrieval has emerged as a key

application area. Text-based search is the most active area, with applica-

tions that range from Web and local network search to searching for personal infor-

mation residing on one’s own hard-drive.

Speech search has received less attention perhaps because large collections of spo-

ken material have previously not been available. However, with cheaper storage and

increased broadband access, there has been a subsequent increase in the availability of

online spoken audio content such as news broadcasts, podcasts, and academic lectures.

A variety of personal and commercial uses also exist (e.g., indexing of customer service

calls). As data availability increases, the lack of adequate technology for processing spo-

ken documents becomes the limiting factor to large-scale access to spoken content.

The existence of time-aligned transcriptions for spoken documents essentially

transforms the speech search problem into a text search problem. Unfortunately,

manually transcribing speech is expensive and sometimes infeasible due to privacy

concerns. This makes automatic approaches for indexing and searching spoken docu-

ment collections very desirable. An ideal system would simply concatenate an auto-

matic speech recognition (ASR) system with a standard text indexing and retrieval

system. Unfortunately, today’s speech recognition systems are not yet robust enough

to produce high-quality transcriptions for unconstrained speech audio in uncon-

trolled recording environments. Though accurate commercial systems have been

successfully deployed for specialized applications (e.g., medical transcription), error

rates for more difficult tasks (e.g., transcription of multiperson meetings recorded

with far-field microphones) can easily be in the 30–50% range using state-of-the-art

ASR systems. Under these circumstances, inaccurate transcriptions can lead to errors

in spoken document retrieval (SDR).
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In this article, we strive to discuss the technical issues

involved in the development of information retrieval systems for

spoken audio documents, concentrating on the issue of han-

dling the errorful or incomplete output provided by ASR sys-

tems. We focus on the usage case where a user enters search

terms into a search engine (just as is done with text-based sys-

tems) and is returned a collection of spoken document hits. A

typical system is depicted in Figure 1. 

As shown in Figure 1, there are two primary processing

stages within a speech retrieval system. In the first stage, the

audio content is processed offline to generate an index for the

data. In the second stage, a user searches for documents via

queries to the system’s user interface. The system’s retrieval

engine then consults the index and retrieves the documents that

are relevant to the user’s queries. This scenario has several diffi-

cult problems associated with it that we will address.

A core component of the speech retrieval system is the

ASR engine. We will begin this article by discussing the

application of ASR technology to the speech search prob-

lem and some of the critical issues that must be examined

when constructing an ASR system for speech retrieval

applications.

The best method used for indexing audio data can vary

depending on the end goals of the retrieval system. Thus,

before discussing the methods for indexing and retrieving

spoken audio data, we will first introduce the different

methodologies under which a speech retrieval system may

be evaluated. We will then discuss previous work in speech-

based and text-based document search and review the

prominent approaches that have been previously explored

in this area. 

We will next address the problems associated with han-

dling the errorful output of ASR systems. Techniques for cre-

ating and searching the index in the face of ASR errors are

presented. Along a similar vein, we will discuss approaches for

indexing and retrieving documents when requested terms in

the query are not in the vocabulary of the ASR system that

generated the index. We will conclude this article by dis-

cussing issues surrounding the user interface and techniques

for enabling users to efficiently search and browse collections

of audio documents. 

AUTOMATIC SPEECH RECOGNITION

PROBABILISTIC FRAMEWORK

The core component of an information retrieval system for spo-

ken audio documents is an ASR system for converting speech

audio into linguistic hypotheses. Typically, the basic units of

these linguistic hypotheses would be words. ASR systems gener-

ally employ a probabilistic modeling framework, in which the

goal is to predict the most likely string of words W given the

observed acoustic information A. Mathematically, the goal is to

find the W which maximizes P(W |A).

To model P(W |A), a variety of simplifying assumptions must

be made. To begin, words are typically decomposed into sequences

of phonetic units (or phones) that represent the specific sounds

used to distinguish between words (e.g., the word cat contains the

phones /k/, /ae/, and /t/). By applying Bayes rule to P(W |A) and

decomposing the sequence of words W into a sequence of phonetic

units U, the search for the best word hypothesis W given the

acoustics A, is typically expressed as follows:

arg max
W,U

p(A |U)P(U |W)P(W ). (1)

In this expression, p(A |U) is referred to as the acoustic model,

P(U |W) is referred to as the lexical pronunciation model, and

P(W ) is referred to as the language model. There is a great deal

of literature on the basic components of typical speech recogni-

tion systems, so the following subsections will only discuss

three specific modeling issues that are highly relevant to the

audio information retrieval problem: ASR lattice generation,

vocabulary and language model adaptation, and out-of vocabu-

lary word modeling.

ASR LATTICE GENERATION

Given an audio file and a set of models, an ASR system must

apply the model constraints to the acoustic observations and

then search through the vast network of possible word

sequences. Because the size of this search space is immense, it

is generally pruned on the fly during the search to include only

the most likely hypotheses. The network of unpruned hypothe-

ses that have been explored can be maintained and saved for

future use. These networks, often called speech recognition lat-

tices, typically contain all of the word

timing information and modeling scores

used by the recognizer. 

An example speech recognition lattice

is shown in Figure 2. In this figure, each

arc in the network contains a word label

along with the probability of that arc

being taken from the previous state. The

single best scoring sequence of words that

can be traversed in a lattice is typically

called the one-best result. If desired, sec-

ondary searches of this lattice can be made

to produce the N-best sentence hypothe-

ses beyond the top scoring hypothesis.[FIG1] A typical speech retrieval system.
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VOCABULARY AND LANGUAGE MODEL ADAPTATION

When building an ASR system for an information retrieval appli-

cation, the choice of words in the system’s vocabulary system is

vital. ASR systems typically employ a closed vocabulary, i.e., the

vocabulary is predetermined before the speech is passed to the

ASR system for recognition. If a word spoken in the audio is not

present in the vocabulary of the recognizer, the recognizer will

always misrecognize this word and requests by users to locate

documents containing this spoken word will necessarily fail.

Unfortunately, it is often the less common, topic-specific

words that form the basis for information retrieval queries.

Studies on a variety of data have shown that out-of-vocabu-

lary (OOV) word rates for previously unseen data are not

insubstantial even for large vocabularies [1]. The introduc-

tion of new vocabulary items (e.g., new proper names, scien-

tific jargon, slang) in new audio data is also unavoidable.

Thus, methods for countering the OOV problem in audio

information retrieval are needed.

One potential method for countering the OOV problem is

vocabulary adaptation. Commercial dictation software typically

addresses this problem by providing the user with a topic-specif-

ic vocabulary and language model (e.g., medical transcription)

and then allowing the user to add new vocabulary items as need-

ed. In the absence of human supervision, it may still be possible

to predetermine a topic-specific vocabulary and language model

in some cases. For example, academic lectures could be classi-

fied into broad topics based on accompanying metadata such as

the title of the academic subject.

If the topic of the audio content is unknown, an automated

solution to determining the topic may be possible. In this sce-

nario, the data is first passed through a topic-independent rec-

ognizer. An analysis of the first-pass recognition result is

conducted to determine the topic, from which a new topic-spe-

cific vocabulary and language model is created. The new topic-

specific recognizer performs a second recognition pass over the

data to formulate a new set of recognition hypotheses. This

approach can yield improved recognition accuracies at the com-

putational cost of performing an additional recognition pass.

OUT-OF-VOCABULARY WORD MODELING

Even with topic-specific vocabularies, OOV words are still possi-

ble. As a fall-back position, an ASR system can attempt to detect

when an OOV word occurs and then represent the OOV region

by a sequence or network of phonetic units. This can be accom-

plished by building an independent OOV model from subword

units (e.g., syllables or phones) that is examined in parallel with

the existing vocabulary items during the ASR search and

hypothesizing an OOV word when the OOV model scores better

than the words in the known vocabulary [2]. The resulting

search lattice can then be postedited to replace any detected

OOV word in the lattice with the underlying phonetic elements

that represent it [3].

While word-based recognition is generally acknowledged to

produce the most accurate information for audio indexing,

another school of thought has suggested that the problem can be

attacked by ignoring words entirely during the ASR search.

Instead the ASR system would only produce a phonetic represen-

tation of the speech. Information retrieval of keywords would

then be performed by locating audio files containing the phonet-

ic sequences which match the pronunciations of the keywords

[4]. This approach conceivably eliminates the ASR OOV problem,

and the ASR engine can run with far greater efficiency (both in

memory and speed) if it only has to produce phonetic hypothe-

ses. However, the post-recognition indexing and retrieval stages

necessarily become more complex under this approach.

EVALUATION METRICS

Before discussing methods for speech retrieval, it is important

to understand the problem and the method in which potential

solutions will be evaluated. When discussing speech information

retrieval applications, the basic scenario assumes that a user will

provide a query and the system will return a list of rank-ordered

documents. The query is generally assumed to be in the form of

a string of text-based words (though spoken queries may be used

instead of text in some applications). The returned documents

are audio files purported by the system to be relevant to the

query. This scenario is often referred to as SDR.

[FIG2] Example speech recognition lattice.
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An extremely important aspect when developing an SDR

application is the evaluation methodology. The obvious choice is

to use human judges for annotating the degree of relevance of a

document to a given query. Since the aim is to bridge the gap

between text and speech search technology, one other possibility

is to take as reference the output of a text retrieval engine that

runs each query on the manually transcribed documents, rather

than the spoken ones. Finally and surely the most relevant is

user satisfaction in a deployed system that is being actively used

and improved.

Document retrieval performance can be evaluated via vari-

ous metrics. Precision-recall rates and F-measure are relatively

familiar metrics. Roughly speaking, precision is the fraction of

returned documents from the collection that are relevant to

the query, and recall is the fraction of relevant documents in

the collection that are returned. The F-measure is

F = (2 × Precision × Recall)/(Precision + Recall) .

Related metrics are mean average precision (MAP), 

R-precision, and precision-at-N [5]. We can roughly describe

them as follows: for computing MAP, precision values are

calculated at each of the recall values (0.0, 0.1, 0.2, . . . , 1.0)

by traversing the ranked list of results from most to least

relevant; the area under this P-R curve is then averaged over

all queries in the test set. Precision-at-N is the precision

measure of the top N returned documents (where N = 10 is

a common choice). R-precision is similar to precision-at-N,

only that N varies for each given query q and is set to the

total number of relevant documents, R(q). A shortcoming of

this family of metrics is that they assume document rele-

vance to be binary valued, which implies that all possible

rankings of the relevant documents on the reference side are

considered to be equivalent.

Because improved accuracy of the ASR system can lead to

improved retrieval performance, metrics for evaluating the

ASR system are also commonly examined. For example, the

OOV rate for a recognizer’s vocabulary on new, previously

unseen, data is often measured. Also of particular interest to

spoken retrieval systems is the query-OOV rate, measuring

the rate at which query words provided by users are not cov-

ered by the vocabulary of the ASR system. The ASR system’s

accuracy is also typically monitored. The standard metric for

evaluating ASR performance is the word error rate (WER)

metric, which measures the percentage of errors an ASR sys-

tem makes relative to the actual number of spoken words.

When working with ASR lattices, it is common to evaluate

the lattice-WER—the minimum WER along some path in the

lattice, irrespective of its likelihood.

A related application area to SDR is spoken term detection

(STD). In STD applications, the goal is to find all spoken exam-

ples of a specific word or phrase. In this case, specific returned

hits are either clearly correct or incorrect and no subjective

determination of relevance is needed. An example metric for

STD evaluation is the actual term-weighted value (ATWV),

which is defined in the NIST STD 2006 Evaluation Plan (see

http://www.nist.gov/speech/tests/std/) as

ATWV = 1 −
1

Q

Q∑

q=1

{Pmiss(q) + β PFA(q)} (2)

where β is a user defined parameter (set to 1,000 in the 2006

NIST STD evaluation) and where

Pmiss(q) = 1 −
C(q)

R(q)
PFA(q) =

A(q) − C(q)

Tspeech − C(q)
(3)

with Tspeech being the total duration of the speech in the collec-

tion. Here the definitions of R(q), C(q), and A(q) refer to the

specific individual examples of the query phrase q in the audio

data and not to whole documents, i.e., R(q) is the total number

of times the specific query phrase q actually appears (word for

word) in the audio collection, A(q) is the number of purported

examples of q returned by the system, and C(q) is the number of

these purported examples of q that are actually correct. This met-

ric specifically measures the system’s ability to locate query key-

words within audio files relative to perfect audio transcriptions.

PREVIOUS WORK

Many of the prominent research efforts aimed at SDR were cen-

tered around the SDR portion of the TREC evaluations conducted

in 1999 and 2000 (also known as TREC-8 and TREC-9) [5]. While

the TREC-SDR evaluations mark a significant milestone in the

speech retrieval field, a large body of SDR research existed previ-

ously, including notable contributions of [5] and [6]. Significant

recent contributions utilizing a wide variety of speech sources

have also been made, including audio from public Web sites

(SpeechBot [8]); voice mail (SCANMail [9]); oral history interviews

(MALACH [10]); the National Gallery of the Spoken Word (NGSW)

consisting of speeches, news broadcasts, and recordings that are of

significant historical content (SpeechFind [11]); and lectures [12].

One problem encountered in work published prior or outside

the TREC-SDR community is that it does not always evaluate per-

formance from a document retrieval point of view—using a metric

like MAP or similar—but rather uses word-spotting measures,

which are more technology-centric rather than user-centric.

Depending on the application, the document retrieval performance

may be more important, whereas the word-spotting accuracy is an

excellent indicator for how an SDR system might be improved.

The TREC-SDR evaluations focused on using broadcast news

speech from various sources: CNN, ABC, PRI, and Voice of

America. About 550 hours of speech were segmented manually

into 21,574 stories each comprising about 250 words on the

average. The preexisting approximate manual transcriptions (or

closed captions for the video case) used for the SDR system

comparison with text-only retrieval performance had fairly high

WER: 14.5% for video and 7.5% for radio broadcasts. ASR sys-

tems tuned to the broadcast news domain were evaluated on

accurate manual transcriptions at 15–20% WER, not far from

the accuracy of the approximate manual transcriptions. (The

distribution of errors in manual transcriptions or closed cap-

tions can be very different from the ASR errors and may have a

very different impact on retrieval performance.)
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To evaluate the accuracy of retrieval systems, search queries

(created based on general “topics”) along with binary relevance

judgments were compiled by human assessors for each of the

21,574 retrieval documents. SDR systems indexed the ASR one-best

output and their retrieval performance (measured in terms of MAP)

was found to be flat with respect to ASR WER variations in the

range of 15–30%. The most significant finding was that no severe

degradation in retrieval performance was observed when evaluating

with the ASR outputs in comparison with the approximate manual

transcriptions. As a result, NIST’s final report on the TREC-SDR

evaluations declared the research effort “a success story” [5].

Having a common task and an evaluation-driven collaborative

research effort represents a huge gain for the community, but

there are shortcomings to the TREC-SDR framework: the speech

recognizers were heavily tuned for the domain, leading to very

good ASR performance. In general it is unrealistic to expect error

rates in the 10–15% range, especially when decoding speech is

mismatched to the training data. It is not uncommon to observe

WER values of 30–50% (e.g., MALACH [10] and NGSW [11]).

The large vocabulary ASR systems used in the TREC studies

had very low OOV rates, typically below 1%. Since the queries

were long and stated in plain English rather than using the key-

word search scenario, the query-side OOV (Q-OOV) was very low

as well, an unrealistic situation in practice. A study in [13] eval-

uates the effect of Q-OOV rate on retrieval performance by

reducing the ASR vocabulary size so that the Q-OOV rate comes

closer to 15%, a much more realistic figure since search key-

words are typically rare words. The study showed severe degra-

dation in MAP performance—50% relative, from 44 to 22.

The ability to effectively deal with OOV query words is an

important issue. The most common approach is to represent

both the query and the spoken document using subword

units—typically phones or phone n-grams—and then match

sequences of such units. The work in [4] shows the feasibility of

subword SDR and advocates for tighter integration between ASR

and IR technology. This approach was to index phone n-grams

appearing in ASR N-best lists. This work also focused on broad-

cast news speech, thus benefiting from good ASR performance.

Similar conclusions are drawn by the excellent work in [14].

As pointed out in [15], word-level indexing and querying is

still more accurate and thus more desirable, if not for the OOV

problem. The authors argue in favor of a combination of word

and subword level indexing. Another problem pointed out by

[15] is the abundance of word-spotting false-positives in the sub-

word retrieval case, somewhat masked by the MAP measure.

Similar approaches are taken by [16]; one interesting feature

of this work is a two-pass system whereby an approximate match

is carried out on the entire set of documents after which the

costly detailed phonetic match is carried out on only 15% of the

documents in the collection.

More recently, [17] proposes an approach that builds an

inverted index from ASR lattices—word or phone (subword)

level—by storing the full connectivity information in the lat-

tice; retrieval is performed by looking up strings of units. This

approach allows for exact calculation of n-gram expected

counts but more general proximity information (distance-k

skip n-gram, k > 0) is hard to calculate.

The work in [14], [17], and [18] shows that making use of

more than just the one-best information—N-best lists or ASR

lattices—improves retrieval accuracy significantly.

For browsing long spoken communications, it becomes

important to locate the portion that is actually relevant to the

query. From the SDR point of view, this can be achieved by seg-

menting the documents into topics and locating topics. When

dealing with spoken communications where these segments are

short or when they consist of short utterances, the task becomes

that of spoken utterance retrieval (SUR) [17]. The purpose of

SUR is to find all the utterances containing the query.

Applications include browsing broadcast news, telephone con-

versations, teleconferences [17], and lectures [3].

More recently, the NIST STD 2006 Evaluation introduces the

task of locating the exact occurrence of a query in large hetero-

geneous speech archives—broadcast news, telephone conversa-

tions, and roundtable meetings. The evaluation also included

Arabic and Mandarin in addition to English and attracted many

sites [19], [20], [21]. One notable technique is setting the detec-

tion thresholds in a term-specific fashion so as to maximize the

ATWV metric [21], resulting in significant improvements.

OVERVIEW OF TEXT INDEXING AND SEARCH

VECTOR SPACE MODELS FOR INFORMATION RETRIEVAL

Probably the most widespread model for text retrieval is the

term-frequency, inverse document frequency (TF-IDF) vector

model [22]. For a given query Q = q1 . . . qi . . . qQ and docu-

ment Dj one calculates a similarity measure by accumulating

the TF-IDF score wi, j for each query term qi:

S(Dj,Q) =

Q∑

i =1

wi, j , wi, j = fi, j · idfi (4)

where fi, j is the TF of word qi in document Dj, and

idfi = log(N/ni) is the IDF, ni/N being the fraction of docu-

ments containing qi.

The main criticism to the TF-IDF algorithm is that the query

terms are assumed to be independent. Proximity information is

not taken into account at all. For example, the fact that the words

LANGUAGE and MODELING occur next to each other in a given

document is not used for relevance scoring, although the occur-

rence of the bigram LANGUAGE MODELING is more relevant

than the combined occurrences of LANGUAGE and MODELING

as unigrams. Moreover, the ability to evaluate proximity of query

terms in the document becomes critical if one wishes to enhance

the query language such that it allows phrase matching function-

ality, e.g., returning only documents that contain “LANGUAGE

MODELING.” Adjacency information could indeed be captured by

extending the terms in the TF-IDF model to include 2-grams,

however this comes at a large cost in storage requirements since

the number of index terms increases drastically. Moreover, more

refined proximity features that have been deemed quite important



in practice (see [23, sect. 4.5.1]), e.g., “do LANGUAGE and MOD-

ELING co-occur within a window of 5 words?” are not captured.

When working with richer documents, query terms may be

encountered in different contexts in a given document: title,

abstract, author name, font size, etc. For hypertext document

collections even more context information is available, with

anchor text (text describing the hypertext link pointing to the

given document/Web page) and various HTML sections of a

given document being just a few examples. TF-IDF can be

extended to incorporate such information as well, at the cost of

increasing the term set and implicitly the index size.

LANGUAGE MODELING APPROACH

One can rank using the pointwise mutual information between

the query and some document:

S(Dj,Q) = log
P(Q, Dj)

P(Q)P(Dj)
∝ log P(Q|Dj). (5)

This amounts to building a language model P(W |Dj) from each

document and then using it to score the query P(Q|Dj). If the

language model is an n-gram with order higher than one, then

this solution will indeed take into account word adjacency, or

even more general proximity features depending on the lan-

guage modeling approach being used.

EARLY GOOGLE APPROACH

Aside from the use of PageRank (which is query independent

and derived from the WWW connectivity graph), the early

Google approach also uses both word proximity and context

information heavily when assigning a relevance score to a given

document; see [23, sect. 4.5.1].

For each given query term qi one retrieves the list of hits in

document D; hits can be of various types depending on the con-

text in which they occurred: title, anchor text, etc.; each type of

hit has its own type weight. For a single word query, the ranking

algorithm takes the inner product between the type-weight vec-

tor and a vector consisting of count weights (tapered counts

that discount the effect of large counts) and combines the

resulting score with PageRank in a final relevance score. For

multiple word queries, terms co-occurring in a given document

are considered as forming different proximity types based on

how close the hits are, from adjacent to “not even close.” Each

proximity type comes with a proximity weight and the relevance

score includes the contribution of proximity information by tak-

ing the inner product over all types.

INVERTED INDEX

Of essence to fast retrieval on static document collections of

medium to large size is the use of an inverted index. The invert-

ed index stores a list of hits for each word in a given vocabu-

lary—the indexing terms.

For the TF-IDF model, the inverted index is the term-

document co-occurrence matrix itself (wi j) i=1,V
j=1,D

. In the “early

Google” approach, the hits are grouped by document; the list of

hits for a given index term must include position—needed to

evaluate counts of proximity types—as well as all the context

information needed to calculate the relevance score of a given

document using the scheme outlined previously; for details, the

reader is referred to [23, sect. 4].

The language modeling approach does not immediately lend

itself to inverted indexing, and storing an n-gram language

model for each document becomes prohibitively expensive for

large collections of documents. However, the advantage over

TF-IDF and other vector space-retrieval techniques due to bet-

ter use of proximity may become very important when sequenc-

ing of index terms is critical to good retrieval performance,

such as when using subword indexing units for being able to

deal with OOV words. A good solution for storing a very large

set of small n-gram models—one per document—would make

this approach very appealing for many problems.

SOFT INDEXING

As highlighted in the previous section, position information is

taken into account when assigning relevance score to a given

document. In the spoken document case, however, we are faced

with a dilemma. On one hand, using one-best ASR output as the

transcription to be indexed is suboptimal due to high WER,

which is likely to lead to low recall: query terms that were spo-

ken are wrongly recognized and thus not retrieved. On the other

hand, ASR lattices (Figure 2) do have much better WER—[18]

reports one-best WER of 55% whereas the lattice WER was

30%—but the position information is not readily available: it is

easy to evaluate whether two words are adjacent but much hard-

er to determine whether two query words co-occur within a

window of K words, which is important for relevance scoring.

To simplify the discussion let’s consider that a text-document

hit for some word consists of (document id, position)—a pair of

integers identifying the document and the position of the index

term in the document, respectively. For speech content, the

occurrence of a word in the lattice is uncertain and so is the posi-

tion at which it occurs. However, the ASR lattice does contain

the information needed to evaluate proximity information, since

on a given path through the lattice we can easily assign a posi-

tion index to each link/word. Each path occurs with some poste-

rior probability, easily computable from the lattice, so in

principle one could index soft hits which specify the (document

id, position, posterior probability) for each word in the lattice. A

simple dynamic programming algorithm which is a variation on

the standard forward-backward algorithm can be employed for

performing this computation. The computation for the backward

pass stays unchanged, whereas during the forward pass one

needs to split the forward probability αn arriving at a given node

n according to the length l of the partial paths that start at the

start node of the lattice and end at node n. For details on the

algorithm and the resulting position specific posterior probabili-

ty lattices (PSPLs, see Figure 3) the reader is referred to [18].

Soft indexing for speech content could easily use other repre-

sentations of the ASR lattices such as confusion networks (CN, see

Figure 4) developed by [24], where lattice links are approximately

IEEE SIGNAL PROCESSING MAGAZINE [44] MAY 2008



binned based on the time span of the link. Both approaches result

in approximate word proximity and adjacency representations of

the original lattice but have the advantage of compressing it. The

PSPL representation guarantees that all N-grams present in the

original lattice (with arbitrarily large N as allowed by the lattice)

will also be present in the PSPL lattice; nonemitting ǫ arcs may

complicate the evaluation of proximity and adjacency features in a

CN, in particular when using subword units such as phones. This

is an active area of research; for a comparison of PSPL and CN the

reader is referred to [25]. It is important to note that the manual

transcription for the spoken content, as well as any text metadata

available can be represented as a lattice with a single path or

equivalently a PSPL/CN with exactly one word per position bin

and posterior probability 1.0.

Also noteworthy is that the PSPL/CN representation enables

porting of any text information retrieval algorithm to the SDR

case: instead of simply counting the number of occurrences of

various features in a given document, one now has to calculate

expected counts according to the posterior probability distribu-

tion P(W |A) as approximated by the PSPL/CN. 

The effects of various approximations of hit proximity informa-

tion, PSPL, CN, or other methods, deserve a more careful evalua-

tion and comparison. The experiments in [18] show a 15–25%

gain in MAP when indexing ASR lattices instead of one-best out-

put; similar results were reported in [14] and [17].

One aspect specific to soft indexing—whether one-best

hypothesis with word-level confidence scores or word alternates

with posterior probabilities—is the ability to allow for different

precision-recall operating points of the SDR system, a feature

that is not available when indexing only the one-best word

sequence; Figure 5 shows a typical P/R curve. Indexing word

alternates as opposed to one-best increases the support of the

posterior probability distribution and may be valuable in sce-

narios where recall is at a premium.

INDEXING OF WEIGHTED AUTOMATA

Soft indexing can also be implemented by representing lattices

as weighted transducer and building an index of all (or a

restricted subset) of the possible substrings (called factors) con-

tained in the automata [26]. Under this general framework, the

index itself is a weighted automaton that allows efficient

retrieval using string and even regular expression queries. The

procedure consists of turning each automaton into a transducer

where the inputs are the original labels (e.g., words) and the

outputs are the index labels (e.g., utterance number or position

in an archive). Next, these transducers are combined by taking

their union. The final transducer is determinized, resulting in

optimal search complexity, linear in the length of the query

string. The weights in the index transducer correspond to

expected counts that are used for ranking. 

SPOKEN DOCUMENT RANKING

IN THE PRESENCE OF TEXT META-DATA

Spoken documents rarely contain only speech. Often they have a

title, author, and creation date. There might also be a text

abstract associated with the speech, video, or even slides in some

standard format. Saving hit context information (type of content

where the hit occurred) emerges as a natural way to enhance

retrieval quality: e.g., a hit in the title deserves different treat-

ment compared to a hit in some other part of the document.

[FIG3] Position-specific posterior probability lattice derived from ASR lattice; similar to a text document, each “soft-token” (list of words
with associated probability) occurs at some integer position in the document.
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As mentioned above, PSPL/CN lattices can be used to repre-

sent text content as well and consequently to naturally integrate

the text metadata in a unified search framework. As a data point,

the experiments in [18] use a simple linear interpolation scheme

for combining text metadata and speech relevance scores. When

placing all the weight on metadata segments and ignoring the

speech content, there is a significant drop in MAP performance;

looking at it the other way, the performance gain obtained by

adding speech content instead of only indexing text metadata is

302% relative, despite the fact that the ASR system operates at

about 50% WER. This dramatic improvement can be easily

explained by the fact that the metadata constitutes only about

1% of the amount of words in the transcription of speech con-

tent, a situation representative for many other scenarios.

SUBWORD UNITS

Words are the most natural and most common units used for

ASR and retrieval. However certain limitations of word-based

systems have forced many researchers to investigate subword

units both for recognition and retrieval. Although very large

vocabulary ASR systems are becoming more common, typically

the vocabulary is limited for practical reasons as well as due to

limited amount of training data. Since query words are chosen

to be discriminative, they tend to be low frequency words. This

means that a typical query word is likely to be either an OOV

word or a word for which the language model probability has

not been well estimated due to data sparseness. Morphologically

rich languages pose related challenges for ASR systems. For

agglutinative languages such as Finnish and Turkish, it has been

shown that subword-based language models yield better accura-

cies than word based language models. In addition, subwords

obtained by morphological analysis or simply by stemming

improve retrieval performance.

A wide range of subword units for language modeling and

retrieval have been proposed, including linguistically motivated

units such as phones, syllables, and morphemes as well as data

driven units called multigrams, particles, and morphs. For

retrieval, indexing fixed length sequences of these subword units

(typically phones) has also been proposed. 

The smallest typical linguistic units are phonetic. These are

the counterpart of using letters in text retrieval. Letters or

graphemes have also been proposed as subword units for speech

retrieval. Although using phones completely solves the OOV

problem, the performance of phone recognition is inferior to

word recognition even when the OOV rates are very high. This

can be explained by the short acoustic duration of these units as

well as by poor language model predictability. Syllables have

been proposed since they are considered to be stable acoustical-

ly, but they still yield poor language models. Morphemes, being

the smallest meaningful units, provide better language model-

ing but can be hard to distinguish acoustically. An alternative

that proved successful in agglutinative languages groups all the

suffixes in a word together to yield a stem-ending decomposi-

tion of a word. Stem-endings result in acceptable OOV rates

while keeping acoustically long and distinguishable segments.

Linguistically motivated units require knowledge about spe-

cific languages and may be costly to extract, especially in the

case of morphologic analysis. Data-driven units are derived by

utilizing statistical and information theoretic principles. Phone

multigrams [4] are nonoverlapping, variable-length, phone sub-

sequences with some predefined maximum length. These are

found using an unsupervised iterative algorithm maximizing

the likelihood of the training data under the multigram lan-

guage models. Similarly, particles [15] are selected in a greedy

fashion so as to maximize the leave-one-out likelihood of a

bigram language model. Statistical morphs [27] are based on

[FIG5] Effects of using lattices, subword units, and hybrid (cascade) methods on various tasks. (a) A precision versus recall curve on
three English tasks with varying ASR accuracies showing the effectiveness of lattices and word/phone hybrids [17].(b) A precision
versus recall curve on Turkish Broadcast News illustrating the use of words and subwords as well as their combination [29].

0 20 40 60 80 100
0

20

40

60

80

100

Precision

R
e
c
a
ll

Teleconferences

Switchboard

Broadcast News

1-Best Word Hypotheses
Word Lattices
Word and Phone Lattices

40 50 60 70 80 90 100
40

50

60

70

80

90

100

Precision

(a) (b)

R
e
c
a
ll Word

Morph

Hybrid

IEEE SIGNAL PROCESSING MAGAZINE [46] MAY 2008



IEEE SIGNAL PROCESSING MAGAZINE [47] MAY 2008

the minimum description length (MDL) principle, which means

that in addition to the corpus representation given by the data

likelihood, the lexicon representation is also taken into account.

SUBWORD UNITS FOR RECOGNITION, 

INDEXING, AND RETRIEVAL

Depending on the structure of the language, the amount of OOV

words, and language model mismatches, ASR systems based on

subword units may improve the recognition accuracy. In addi-

tion to improving ASR performance by decreasing or eliminat-

ing OOVs, in certain cases subword units can also be used solely

at the indexing and search stage. Even when there is no

improvement in accuracy, the additional information provided

by the subword units is often beneficial for retrieval. In fact, in

those cases where word-based ASR is more accurate than sub-

word based ASR, converting the output of word based ASR into

subwords improves the retrieval performance on OOV terms.

This technique was shown to be effective for phone based index-

ing [15], where the phone index is obtained by converting the

words in the lattice into phone sequences. At retrieval time,

when an OOV query is encountered, the query is converted into

a phone sequence and the phone index is used for retrieval. The

conversion is performed using a grapheme-to-phoneme map-

ping module typically found in text-to-speech systems. This step

can be bypassed by using graphemes as the subword units. The

ASR system substitutes OOV words with similar sounding words

which means that the phonetic sequence corresponding to the

query may be present in the phone lattice used for indexing. In

languages where homophones (words that sound the same but

written differently) or homophonic word sequences (as in the

classical example: recognize speech versus wreck a nice beach)

are common, using phonetic units in retrieval makes it possible

to retrieve OOV words. 

Using subwords for indexing requires efficient methods for

indexing and retrieving sequences. Proposed methods range

from indexing fixed length subsequences such as triphones [28]

to full indexing of lattices represented as weighted automata

[26]. Some of these methods were explained earlier.

QUERY AND DOCUMENT EXPANSION 

FOR SPEECH RETRIEVAL

Query and document expansion are techniques used in text-

based information retrieval to reduce the mismatch between the

queries and documents. These techniques also have their coun-

terparts in speech retrieval. One approach to the OOV problem is

to expand the queries into similar in-vocabulary phrases [15].

The expansion utilizes a phone confusion matrix to represent the

acoustic confusion between words. The selection is also guided

by a language model so that reasonable phrases are chosen.

Stemming can also be considered as query expansion, in that

words with the same root are considered equivalent. Query

expansion might also use semantic similarity. For the case of

speech retrieval, using alternate hypotheses in addition to the

one-best hypothesis could be viewed as document expansion.

These hypotheses may be represented as lattices or confusion

networks. Similar to the query case, an expansion of these rep-

resentations can be achieved by adding similar words.

HYBRID AND COMBINATION METHODS

In many scenarios it is necessary to use both words and subword

units for speech retrieval. The combination can be done at dif-

ferent stages of the process and using different strategies.

Hybrid language models with both words and subwords have

been utilized with success for different tasks. These models can

be structured or flat. In the structured case, the subword lan-

guage model—used to model OOV words—is embedded in the

word language model. In flat models, there is no embedding and

the recognition units can be mixed arbitrarily. In both cases, the

recognition output contains both words and subwords. 

Word-based indexing and subword-based indexing have dif-

ferent strengths and weaknesses. Word-based approaches suffer

from OOV words and as a result have lower recall. Subword-

based approaches result in higher recall at the expense of lower

precision. Hence a combination of both methods yields the best

performance. One way to achieve this is combined indexing

resulting in a joint index [3], [16]. Other strategies keep the

word and subword indexes separate and use both for retrieval.

When each index has a score associated with each entry, it is

possible to combine the results returned via score combination.

However, this approach requires determining some parameters

such as interpolation weights or normalization constants. A

simpler and more effective approach is using word-based and

subword-based retrieval in cascade. Since the word based

retrieval is more accurate, the word index is the default. One

cascade alternative (vocabulary cascade) uses the subword index

only for OOV words, while another (search cascade) uses the

subword index whenever word retrieval returns no answers. The

latter was shown to be slightly better [17]. Figure 5 illustrates

the effects of using lattices, subword units, and hybrid methods

on various tasks.

BROWSING SEARCH RESULTS

While this article has largely focused on the technology required

to index, search, and retrieve audio documents, it is important

not to overlook the final utility to the end user. For an applica-

tion to be truly useful, the interface must enable users to search

for and browse audio documents quickly and efficiently. One can

imagine that an audio document search can be initiated in

much the same way as a text search, i.e., the user enters a set of

key words in a search field and is returned a set of putative hits.

Unfortunately, unlike text, audio is a linear medium which is

not easy to browse once the hits are returned. It would be highly

inefficient for a user to have to listen to each hit to determine its

relevance to his query.

To allow visual browsing, the interface could approximate

text-based browsing by providing a snippet of the automatically

transcribed speech produced by the ASR system. Even if ASR

errors corrupt the transcription, users should be able to deter-

mine the relevance of the hit as long as the error rate of the

transcription is not excessively high. Human comprehension of



errorful transcripts is generally not degraded for lower error

rates (i.e., <= 15%) [30], and identification of the general topic

is generally possible even for higher error rates. Comprehension

can be aided by incorporating ASR word confidence information

into the interface, i.e., highlighting confident words and graying

out words with low confidence.

Once a relevant document is identified, it is important to

provide the user with the capability to easily traverse the audio

file to listen to the specific regions that are of interest. The abili-

ty to speed up or slow down an audio recording during playback

can be helpful toward this end. At the very least the browser

should allow the user to listen to the audio region immediately

surrounding keywords hits.

For long audio files, it is also desirable to segment the file

into shorter segments that represent specific topics of discussion

within the file (e.g., different stories in a news broadcast). This

would allow users to jump to the start of relevant audio seg-

ments and not just to the points where specific keywords occur.

As an example interface, Figure 6 shows a screen shot of the

MIT lecture browser, a system designed to allow searching and

browsing of academic lectures recorded at MIT [12]. This brows-

er was designed to provide users with a range of methods to effi-

ciently search for and browse through lectures. The browser

enables the user to type a text query and receive a list of hits

contained within the indexed lectures. Queries can be con-

strained by allowing users to specify a topic category from a

pull-down menu before searching. An automatically derived seg-

ment structure for each lecture is displayed graphically as a

series of Play buttons along a time line, with segments contain-

ing query word hits highlighted in yellow. The individual query

word hits within each segment can be displayed together with

their surrounding context in the transcript. The user can play

the video starting at any displayed word, utterance, segment, or

lecture that is shown on the screen. Accompanying the stream-

ing video is a scrolling window displaying the synchronized text

transcript. Individual words in the transcript are underlined as

they are played, providing easier access for hearing-impaired

users. The user can also scroll the text transcript window and

begin playing the video starting from any specific word.

CONCLUSIONS

In this article we have examined recent research efforts in the

areas of spoken document processing for retrieval and browsing.

To conclude, we wish to highlight a few key points.

Experimental evidence shows that using the spoken content

in an audio collection provides a significant improvement in

performance with respect to using only accompanying text

metadata for retrieval, even when the word-error-rate is as high

as 50%. The audio content and text metadata can also be used

jointly for further improvements in retrieval performance.

SDR poses new challenges for the core ASR technology, in

particular for large and nonhomogeneous document collec-

tions where tuning an ASR system to narrow “domains” (e.g.,

Wall Street Journal, Broadcast News, or Switchboard) is not a

scalable approach; universal ASR technology that is able to

control the variance in WER across such “domains” becomes

desirable in this context. 

As we attempted to outline in our article, current approaches

focus on mitigating ASR limitations by a variety of means. Soft-

indexing provides better retrieval performance than using the

one-best ASR output in scenarios with high WER. In such cases

the one-best document representation has in fact high variance

and by taking into account the confidence of the ASR system in

its output, as well as the possible alternatives, the ASR lattice

better represents the document content. Soft hits also allow the

precision-recall operating point to be adjusted to the needs of a

given application or user.

Next, a variety of methods for handling

the OOV word problem using subword

units have demonstrated improved

retrieval performance, in particular when

they are used in conjunction with existing

word-based methods. 

These remain active areas of research,

and new techniques will hopefully con-

tinue to surface.

Finally, though system developers often

focus on the technical issues of performing

accurate search and retrieval, it is vital not to

overlook the importance of the user inter-

face. Only through a careful integration of

speech search technology with user-friendly

interface design will end-to-end systems

actually allow users to efficiently search for,

retrieve and browse audio content.

Important for this aim is the adoption of an

evaluation framework that assesses the abili-

ty of users to achieve their objectives.
[FIG6] A screen shot of the MIT Lecture Browser, available at http://web.sls.csail.
mit.edu/lectures.
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