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Abstract 

This paper describes a method for retrieval-by- 

unification (RBU) operations, especially unification- 
join, on a relational knowledge base. The relational 
knowledge base is a conceptual model for a knowledge 
base. In this model knowledge is represented by term 
relations. Terms in the term relations are retrieved 
with operation called RBUs (i.e., unification-join and 
unification-restriction). To perform unification-join in 
the simplest manner, all possible pairs of tuples in term 
relations should be checked to see if each pair of terms 
in the tuples is unifiable or not. This would result in an 
extremely heavy processing load. We propose a method 
which involves ordering terms and, as result, omitting 
some pairs from this processing. The paper also de- 
scribes a method for implementing the unificaiion en- 
gine (UE), that is, hardware dedicated to the RBU op- 
erations. 

1 Introduction 

The Fifth Generation Computer Systems (FGCS) 
project in Japan aims to develop inference and knowl- 
edge base mechanisms to implement a knowledge in- 
formation processing system. To create a large-scale 
system for knowledge information processing it is nec- 
essary to make a subsystem which efficiently manages 
and shares knowledge, like the database management 
system in data processing. In this paper, the machine 
that efficiently realizes the above subsystem is called a 
knowledge base machine. Development of a knowledge 
base machine is one of the goals of the four-year inter- 
mediate stage (1985 to 1988) of the project. 

The knowledge, base machine will be used by a va- 
riety of users and host computers, so a flexible con- 
ceptual schema is desirable. The relational knowledge 
base suggested in (Yokota BG] is an extremely flexible 
conceptual model of a knowledge base. Knowledge is 
represented by term relations, which can include a set 
of Horn clauses or of semantic networks. However, the 
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amount of processing by the machine becomes enormous 
when the retrieval-by-unification (RBU for short) oper- 
ations proposed in [Yokota 861 is performed in a simple 
manner. 

This paper describes how to process the RBU op- 
erations. Section 2 provides necessary information on 
the relational knowledge base and the RBU operations. 
Section 3 proposes an efficient method for processing 
the RBU operations. Finally, Section 4 introduces a 
method for implementing the unification engine (UE), 
that is, dedicated hardware for performing RBU opera- 
tions. 

2 A Relational Knowledge Base 

One reason why database systems have prospered is 
that sets of data can be shared by a number of appli- 
cations as a result of the establishment of data inde- 
pendence based on data models., It is important for a 

knowledge base system to supply a number of applica- 
tions with more complex structures than the data stored 
in databases. Thus, we must set up a knowledge model 
for uniformly treating knowledge among suppliers and 
users of the knowledge. We proposed a relational knowl- 
edge base in [Yokota 861 as such a common model. 

2.1 Basic Concept 

The relational data model is suitable for treating sets 
of data mathematically. Let U = {Al,Az,. . . , A,} be 
a set of attributes, then a domain D; = dom(Ai) (i = 
1 ,‘.‘I n). Formally, relation R(AI, AZ,. . . ,A,) on U is 
defined as follows: 

RCD,xDzx...xDn. 

P E R(A,, A,. . - , An) is called a tuple. If it is necessary 
to distinguish the disjoint sets of attributes X and Y 
among the attributes, we use the notation R(X, Y,. . .). 
For example if X = {AI,Az} and Y = {As, A,, A,}, the 
tuple (z, y, . . .) stands for (al, az, ~3, ad, ~5,. . .). 

Now in the relational data model, domains are re- 
stricted to sets consisting of nothing but constants. In 
the relational knowledge base, on the other hand, do- 
mains are expanded to sets of terms. A term is a kind 
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of structure capable of containing a number of con- 
stants and variables. A subset of the Cartesian prod- 
uct of tern1 domains K,, K2,. . . , K,, is called, a term 
relation[Yokota 861 on U. 

Relational calculus is non-procedural while relational 
algebra is procedural. Thus, it is easy to model real 
operations op data using relational algebra. 

T c K, x Kz x . . . x K, 

where K; is a set of terms. p E T(U) is also called a 
tuple (over U). 

Assume that Var is a set of variables and fini 
(i = 0,1,2,. . .) is a set of i-place function symbols. 

ui=0,1,2,... fini is denoted by fin. Elements of fin0 are 
called constants. We assume that fin n Var = 4. Now, 
terms on fin u Var are recursively defined as follows: 

In the process of extending the relational data model 
to the relational knowledge base model, operations of 
conventional relational algebra, such as join and restric- 
tion, are extended to operations based on unification. 
In other words, equality-check operations between con- 
stants .are enhanced to unification operations between 
terms. Thus (equi)join and, restriction are extended to 
unification-join and unification-f&?triction, respectively. 

The projection of a (term) relation T(X, Y) over a set 
of attributes X is defined by T[X] = { z 1 3y (z, y) E 

T)- 
1. Any constant a E fins and any variable z E Var 

are terms. 
Let w1 and w2 be attributes or terms, and p be a tuple 

of a term relation. Let take-term(wrl,p) be defined as 

2. If t, , tl, . . . , t, are terms and 
f E fin. is an n-place function symbol, 
then f(t,, ts, . . . , tn) is&o a term. 

3. All terms are generated by applying the above 
rules. 

Let Term be a set of terms on fin u Var. A subs& 
tution 8 : Var + Term is represented by a finite set of 
ordered pairs of terms and variables 

{ {ti/zi} 1 f; E Term,zi E Var 

wl o w2 represents the condition for the tuple p such 
that take7term(w1, p) and lake-term(w,, /.I) are unifi- 
able. Let F be a formula Vtzl,..., n(Aj=l,..., mr.(Aij,+owj+)), 
where Aij,& is an attribute and wj,k is a term or an at- 
tribute, and A and v mean conjunction and disjunction. 
The unification-restriCtion of term relation T, wiitten 
trFT, is defined as 

Und if i#j then Zi# Zj} 

Applying a substitution 8 to term t, we represent the 
resulting term by to. t0 is called an instance of t. 
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A substitution 6 is called a unifier for tI and tz, if and 
only if t10 = tzO. We also say that tl and t2 are unifiable 
when there is a unifier for them. 

Let X, Y, 2, w be sets of attributes, The unification-join 
of T; ,and T,, written T,(X, Y) ,,Tz T2(Z, W), is defined 
as the term relation on X U Y U W: 

A unifier B is said to be the most general unifier 
(mgu), if and only if for any tinifier 8’ of the set there 
is a substitution 0” such that 8’ = 0 o B”, where o is 
composition of substitutions. We write the mgu of tI 
and tz as mgu(tl,h). 

A substitution 0 is called a simultaneous unifier for 
the set of pairs of terms {(ti, ui) 1 i = 1,. . . , n) if and 
only if ti8 F.Ui8 for all i. 

A simultaneous unifier 0 is said to be the .most gen- 
eral simultaneous unifier (mgsu), if and only if for any 
simultaneous unifier 0’ of the set there is a substitu- 
tion 0” such that 8’ = ~9 o 0”. The mgsu for the set of 
pairs of terms {(ti, ui) 1 i = 1,2,. . . , n} is denoted by 

mssu({(~l,%), . . f , (L 4)). 

2.2 RBU Operations 

Data manipulation languages for relational databases 
are basically grouped into two types: relational alge- 
braic languages and relational calculus-based languages. 

Where W f~ X = 4. Attributes are renamed if neces- 
sary. Note that p[Y) can be regarded as a term even if 
Y is set of attributes (Murakami 851. 

In the relational knowledge base, knowledge is rep- 
resented as term relations. Term relations stored in a 
certain format may be regarded as a set of Horn clauses 
(Figure 1). [Yokota 861 showed that input resolution 
can be performed using RBU operations. 

The relational knowledge base is also expected to be 
capable of other types of knowledge representation such 
as frames and semantic networks. A common model 

if wI is an attribute; 
if UI, is a term. 

upT = { p0 13~ E T, 3, 

fl = mgsu({(ILIAij,,],take-.term(wj,&,C1))I 
j= l,...,mk}). 



ancestor(X,Y) V -parent(X,Y) 
ancestor(X,Y) V -pwent(X, 2) V -ancestor(Z, Y) 
parent(smith, dark) 
parent(elark, turner) 

Figure 1. Example of term relations. 

to handle various types of knowledge representation is 
necessary to create a shared knowledge base. The rela- 
tional knowledge base is a promising candidate for such 
a model. 

A mathematical foundation for formal. semantics of 
relational knowledge bases was studied in [Murakami 851. 

‘&gure 1 dhows an example of te;m relations and RBU 
operations. Here X, Y,.Z, W and S E Var, ancestor and 
parent E Fun2 and smith, dark and turner E RID,. 
KBI (A,, AZ) is an example of a term relation. KB2 7 

~AIo[n,lrc,lor(,milh,W)]KB1, ad KB3 = KB2,$, KBI. 

Unification-restriction can be, achieved by using 
unification-join. For example, suppose T(A,, AZ, Al, A,) 
is a term relation, f = (A, o t, A A2 o As) v (AZ o a,) and 
X = {Ali AZ, AB,A,}, where tl and al are terms and 
zi,j are variables. Let a term relation T’(A1, AZ, As, A,) 
be 

Where the tuple (tl, $,z, zl,sr zr,,) is corresponding 
to the condition, (A, o tl A A2 o A,), and the tuple 

(z z,r, zz,*, a,, zz,,) ,is corresponding to (A3 o al). 

3 A Processing Method for RBU Operations 

The relational data model provides -users with a flex- 
ible data model, but it requires a large amount of pro- 
cessing. In particular, performing join operations with 

large relations requires a tremendous amount of compu- 
tation. Several algorithms for’implementing join have 
been proposed and studied [King 80][Merrett 831. The 
Delta machine [Kakuta 851 employed dedicated hard- 
ware relational algebra engines to improve efficiency. 

In the relational knowledge’base,:unification-join pro- 
cessing is likely to generate very large computation 
loads. In this section, we propose a method to process 
RBU operations, especially unification-join. 

In Section 4, we propose a method to realize this in 
hardware. 

3.1 Ordering of Terms 

We assume that a very large amount of knowledge will 
be stored in the knowledge base machine, so we further 
assume these terms are stored in secondary storage (e.g. 
moving head disks). 

To perform unification-join in the simplest manner, 
all possible pairs of tuples in term-relations should be 
checked to see if each pair of terms in the tuples is 
unifiable or not. Generating all possible pairs, however, 
would result in extremely heavy processing loads. One 
way of preventing it involves ordering terms and, as a 
result, omitting some pairs. 

To arrange terms in order, we introduced the concept 
of generality as follows[Yokota 861: 

Suppose II and t2 are terms. If tz is an instance oft,, 
then t, is more general than t2. That is, 

tl 2 t2 ifI 38 t2 = t,B (0 is a substitution). 
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if\ 
19\ a 

x b 

Family order: (12) (92) (2) (b0) (a0) 
Level order: (f 2) (92) (a0) (2) (a0) 

Figure 2. A tree and character strings representing term 

f (g(z, b), 4). 

This generality drder, however, is a partial order. All 
terms should be ordered thoroughly keeping the order 
of generality. Terms can be’ represented by trees (Fig- 
ure 2), which can then be linearized to character strings. 
Since trees can be linearized in various ways, such as 
family-order and level-order methods[Knuth 73a], there 
are many character string representations. The charac- 
ter string representation of method m of term t is de 
noted by rep,(t). Note that each chtiacter corresponds 
to elements of Var U fin. The corresponding elements 
of Var U fin of the&character c is denoted by node(c). 

The length of string s is denoted by length(s). We 
write the substring from the i-th character through the 
j4h character of the character string s by s[i; j], where 
i 5 j, and especially when i > j it denotes the null- 
string (length( s[ 1; O]) = 0). The position of a first vari- 
able in character string s is denoted by posu(s) and 
the position in which variable 3: appears first is denoted 
by posu(s,z). If there are no variables in s then we 
define posu(s) = length(s), and if there are no vari- 
ables z in s’ then we also define posu(s, z) = length(s). 

s[l;posu(s) - l] is denoted by prefu(s). We define 

difpos(s,, sz) as 

[ 1; if sl[l; l] # &[l; l] or, 

difpos( sl, 92) = 
s1 or s2 is null-string; 

12, if sJl;n- l] =‘sZ[l;ia-‘11, 

1. node(a~[n;n]),node(s~[n;n]) E Vat, 

2. node(sl[n;n]) E Var,node(az[n;n)) E Fun. 
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We define a lexicographic order of character string rep- 
resentations of terms as follows: 

s, > s2 if add only if n = difpos(sl, s2), and 

(a) posu(al, node(sl[n; n])) > posu(s~, node(sz[n; n])). 

(1)) posu(a~, node(sr[n; n])) = poau(a2, node(az[n; n])), 
ul[n + l;length(el)] > dz[n + l;length(s2)]. 

3. node(sl[n;n]),node(az[n;n]) E Fun, 

nodc(.ql[n;n]) > node(a2In;n)) in arbitrary order in 
Full 

INPUT : Two sets of terms 2’1 and T2. 
OUTPUT: All the possible pairs of terms. 

Step 1: Set fs +- null-rtring, classi + 4 
fori=lor2andk=0,1,2 ,.... 

Step 2: Take a term t E Ti, (i = 1 or 2), 
such that t 2 t’ for all t’ E T, U T2. 
And let Ti + Ti - {t}. 
If there are no terms in Tl U T2, then stop. 

Step 3: Set p + pre/u(rep,(t)), and n 6 di/pos(p, fe). 

Step 4: Let claasl(k) +- 4, and classz(k) +- ~4 for k > n, 
Let fs +-p. 

Step 5: Output all pairs (t,t’), 
where t’ E classi( 1 5 k 5 n-&j # i, (i = 1 or 2). 

skp 6: Let &6#;(hgth(p)) +- ChWi(hgth(p)) U {t} 
and go to step 2. 

: 
Figure 3. The pair generation algorithm. 

We use the lexicogr?phic order (of method m) to or- 
der the terms. That is, 

t, >-m 12 ,iff wb$J > reh(t2) 

In this paper, the method of ordering of terms which 
corresponds to the family-order representation is called 
the left-most method. Similarly, the method of ordering 
of terms corresponding to the level-order representation, 
is called the outer-most method. 

Note that, in both of the linearized methods, family- 
order and level-order, the ‘father’ node appears before 
it’s ‘son’ nodes. So for substitution & = {{t,/q}} 

and term t, let sl,s2 and k be rep,(t),rep,(tOl) and 
posu(sI, q), respectively. Then s1 and s2 have a com- 
rxion identical substring sl[l;k] and node(sJk; k]) E 
Var, node(s2[k; k]) E &nu Var. So rep,,,(t) 1 rep,(tO,j. 
(Note that when node(s,[k; k]) E Var, posu(sl,q) = k 
and posu(i~~, tl) 5 k.) 

Therefore, for term t and substitution 

fl = { {ti/xi)i=l,...,n} 

rep,(t) 2 rep,(tQ 

Where rep,,,(f) = rep,(M) hold when B is a renaming 
substitution (i.e., 0 = {{ti/zi}} then ti E Var for all i 

and if i # j then.ti, # tj). Thus both of these ordering 
methods maintain the order of generality (i.e., if tl 2 t2 
then tl 2 t2). The order introduced in [Yokota 861 is an 
instance of the left-most method. 

3.2 A Processing Method for Unification-Join 

In a set of terms ordered in the above way (i.e., left- 
most method or outer-most method), character strings 



of terms which can be unified should have a common 
identical substring preceding a variable. 

Let us consider a pair of terms 1, and t,. Suppose a, = 

w,(h), 32 = rep,(h), k 7 min(poau(a,),poau(a~)). 
If tr and t2 are unifiable, then there exists 0 = 
mgu(tr,&) and t,fl = tar?, so,‘rep,(t& = rep,(t@), and 
rep,(f,e)p;k] = ar[l;k] = rep,(t20)[l;k] = aa[l;k]. 
That is, 

aI[l;k] = az[l;k] 

where k = min(poau(a,),poau(a2)). 

Therefore, only such terms should be paired and checked 
as unifiable or not. It is easy to select such pairs, when 
character strings are sorted. 

Figure 3 shows a pair generation algorithm. Here we 
maintain the set classi as a set of terms such that 
prefu( t) is fa[ 1; k]. 

Generated pairs in each case (left-most method and 
outer-most method) are represented as shown in Fig- 
ure 4, with terms on both vertical and horizontal axes. 
Internal points (black squares, white squares and dia- 
monds) represent the pair, where a black square indi- 
cates a unifiable pair, a diamond indicates a pair the 
algorithm can omit, and a white square indicates a pair 
which is not unifiable but can not omited. 

In tree representation, variables appear only at leaves 
of a tree. Since the level-order method lists the nodes 
from left to right, one level at a time, leaves appear 
later in repk,do,.&t) than in rep/-+orbr(t). Since we 
check only prefu(rep,(t)), the outer-most (level-order) 
method omits more pairs of terms than the left-most 
(family-order) method in general. 

(left-most method) (outer-most method) 

Contra1 Bus 

MPPM 

Figure 4. Example of combination of terms. 

J 

CP : Coulrol processor UE : UnilicaLion engine 
MM: Main memory of CP DKS : Disk sysLem 
IOP : l/O Processor MPPM : Multiport page- 

memory 

Figure 5. A Knowledge machine configuration. 

4 Design of the UE 

In the initial stage of the FGCS project, we devel- 
oped a relational database engine to be used in the rela- 
tional database machine Delta[Kakuta 85][Sakai 841. In 
the knowledge base machine, we also aim at improving 
efficiency by creating hardware dedicated to the RBU 
operation. 

A relational knowledge base system architecture was 
proposed in (Yokota 8G][Monoi 861. Here we propose 
dedicated hardware called a unification engine ( UE for 
short) for performing retrieval-by-unification operations 
as fast as possible. 

Figure 5 shows a configuration of a knowledge base 
system [Monoi 861. We assume that a very large amount 
of knowledge will be stored in the several disk systems. 
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PRU :Preprocess unit 
SU :Sort unit 
PGU :Pair .generation unit 
UNU :Unification unit 
POU :PostProcess unit 

Figure 6. Unification engine configuration. 

In order to enlarge bandwidth between disk sys- 
tems and UE’s, disk systems and UE’s are connected 
with the multiport page-memory. A multiport page- 
memory[Tanaka 841 is a kind of shared memory de- 
signed to be able to access the same page from several 
ports at the same time. The control processor controls 
the data flow and the parallel execution environment 
among UE’s and disk systems. More details on architec- 
ture are given in [Yokota 861, and on control technique 
in [Monoi 861. . 

The following describes a method to realize this ded- 
icated hardware UE is based upon the RBU processing 
method proposed in Section 3. 

4.1 Unification Engine Configuration 

The unification engine retrieves terms from term re- 
lations. Figure 6 shows a unification engine configura- 
tion. A unification engine uses three channels, two for 
input data streams to it and one for output datastreams 
from it. It processes data streams by pipeline process- 
ing, while it gets the data stream from input channels, 
process it and put the results on the output channel. 

The unification engine consists of the following five 
units: 

preprocess unit: This unit extracts an object item 
(term) from a tuple and sends out only that item 
to the sort unit. 

sort unit: The sort unit sorts sets of terms into order. 

pair generation unit: This unit accepts two strings 
of sorted terms, then generates pairs of possibly 
unifiable terms. 

unification unit: The unification unit obtains the 
most general unifier (mgu) of generated term 

from the! 
TS 

sort uniti 
i tothe 

4 i E t 
ou i 

CMP :Comparator 
FS :Functor stack 
TS :Term stack 
OU :Output unit 

Figure 7. Pair generation unit configuration. 

pairs. 

postprocess unit: The postprocess unit applies the 
mgu to the original tuples. 

4.2 Sort Unit 

We show that it can perform the unification-join effi- 
ciently by sorting terms in some order of generality. 

Several sorting algorithms have been proposed and 
studied[Knuth 73b]. The relational database engine of 
Delta employed a sorter which adopted the two-way 
merge sort algorithm[Todd 771. If we number variables 
left-to-right in character strings of terms, we can ob- 
tain the lexicographic order by variable length charac- 
ter sort. So we adopt the variable-length two-way merge 
sort method. We use a TRIE representation of variable- 
length character strings to avoid readjusting compari- 
son starting points. This representation is used in a 
pipelined heap sorter proposed in [Tanaka 851. 

4.3 Pair Generation Unit 

The pair generation unit generates all pairs of terms 
(tr,ta) such that rep,(tr)[l; k] = rep,(&)[l; k], where 
k = min(posu(rep,(fl)),posu(rep,(f~))). 

The pair generation unit puts terms in the stack until 
all possibilities for unification are exhausted. Compar- 
ing these terms with the input term, the unit outputs 
all pairs of terms apart from irrelevant pairs of terms. 
That is, the pair generation unit omits pairs of terms 
corresponding to diamonds in Figure 4. Then unifica- 
tion unit selects pairs of terns corresponding to black 
squares in Figure 4 from the %quares” pairs of terms. 

-57- 



.‘&I 1: set k = o,W, = W, and ok = E. 

a%cp 2.’ If wk is a singkton, Stop; 

ok iS most gC1leral Wdk?r for w. 
Othcrwisc, find the disagreement set Dk of wk. 

.%p 3: If there CXiSt Ckmt?ntS Vk and tk in Dk 
such that uk is a variable that does not occur in ik, 
go to step 4. 
Othrrwise, stop; W is not unifiable. 

.%?,I 4: Let &+I = Ok{tk/Uk} and wk+, = Wk{tk/uk}. 
(Note that wk+r = W@k+r.) 

Step 5: Set k = k + 1 and go to Step 2. 

Figure 8. Unification algorithm [Robinson 651 

Figure 7 shows the configuration of the pair generation 
unit. 

The pair generation unit consists of four components, 
a comparator, two term stacks, a functor stack and an 
output unit. The term stacks and thefunctor stack are 
corresponding to ‘class’ and ‘fs’ in Figure 3, respec- 
tively. 

The comparator sends out streams of two terms to be 
input one by one in order. Term stacks store terms while 
possibilities of unification remain and the functor-stack 
indicates the order of current processing. The output 
unit control sends out streams of pairs of terms to be 
output to the unification unit. 

This unit accepts the TRIE representation, and 
marge two input stream, so it is easy to compute the 
difpos(p,‘fs) in Figure 3 (difpos(p,fs) equal to posi- 
tion number of first character of marged TRIE repre- 
sentation of p). 

The unification units process each pair of terms, so 
it is not appropriate that term be represented in TRIE 
representation. The pair generation unit need to reform 
the representation, and it does so using the functor- 
stack. 

4.4 Unification Unit 

Unification was first introduced by Robinson as the 
basic operation of resolution. Several unification algo- 
rithms have been studied[Yasuura 851. Most unifica- 
tion algorithms, structure shared methods or structure 
copy methods, use pointers to bind variables. However, 
pointers are not appropriate to data stream processing. 

Figure 8 shows one of the basic unification algorithms 
[Robinson 651. Here W is a set of terms. 

Let us consider the hardware for executing the repe- 
tition part of Figure 8 (step 2 + step 4) (we call this 
hardware a unification element.). Collecting unification 
elements in series (see Figure 9) allows pipeline process- 

Control information 
4 & 4 

i .-._._._._.- -.__._____._._._____-.-.-.-.-.-.-,~.-.-.-.~.-.~.~. j 

ue : Unification element 

Figure 9. Hardware for unification algorithm. 

I 

in ,I nI 
Ll’ 

La’ 

DEU: Disagreement extraction unit 
OCU: Occurrence check uniL 
SAU: Substitution apply unit 
USU: Unifier synthesize unit 
ECU: Equally check unit 

Figure 10. Unification element configuration. 

ing of pairs of terms from the pair generation unit. 

Figure 10 shows a configuration of the unification el- 
ements. The blocks corresponding to each ‘step’ in the 
algorithm processes character streams in the pipeline 
manner. 

If there are no limits set on the number of variables in 
terms, then an infinite number of unification elements 
would be required. This problem is easily solved by a 
modification of the configuration using circuit changing 
switches or a switching network as shown in Figure 11. 

6 Summary 

In this paper we proposed an RBU operation pro- 
cessing method and an approach to its implementation. 
Our method and unification engine applies not only to 
knowledge base machines, but also to other knowledge 
information processing systems. The ordering of terms 
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; i 
L ._._._ __,__._ __._._._._.__-.-.-.-.-.-.-.-.-. A L ._._._.__ _._._._._.-.-.-.-.-.-. .I 

SW :Circuit changing switches 
SWNW :Switching network 
Uei :Unification element 

Figure 11. Unification unit configurations. 

proposed in Section 3 can also be used fot a disk cluster- 
ing method, a kind of page indexing method, to narrow 
the search space. In the future, we plan to evaluate the 
proposed algorithm and engine by means of simulation. 
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