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Abstract. The Infrared Atmospheric Sounding Interferome-

ter (IASI) is an ultra-spectral satellite sensor with 8461 spec-

tral channels. IASI spectra contain high information con-

tent on atmospheric, cloud, and surface properties. The in-

strument presents a challenge for using thousands of spec-

tral channels in a physical retrieval system or in a Numeri-

cal Weather Prediction (NWP) data assimilation system. In

this paper we describe a method of simultaneously retriev-

ing atmospheric temperature, moisture, and cloud properties

using all available IASI channels without sacrificing compu-

tational speed. The essence of the method is to convert the

IASI channel radiance spectra into super-channels by an Em-

pirical Orthogonal Function (EOF) transformation. Studies

show that about 100 super-channels are adequate to capture

the information content of the radiance spectra. A Princi-

pal Component-based Radiative Transfer Model (PCRTM)

is used to calculate both the super-channel magnitudes and

derivatives with respect to atmospheric profiles and other

properties. A physical retrieval algorithm then performs an

inversion of atmospheric, cloud, and surface properties in

the super channel domain directly therefore both reducing

the computational need and preserving the information con-

tent of the IASI measurements. While no large-scale val-

idation has been performed on any retrieval methodology

presented in this paper, comparisons of the retrieved atmo-

spheric profiles, sea surface temperatures, and surface emis-

sivities with co-located ground- and aircraft-based measure-

ments over four days in Spring 2007 over the South-Central

United States indicate excellent agreement.
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1 Introduction

Modern satellite sensors such as Atmospheric Infrared

Sounder (AIRS), Infrared Atmospheric Sounding Interfer-

ometer (IASI), and Cross-track Infrared Sounder (CrIS) all

have two orders of magnitude more spectral channels relative

to traditional operational sounders such as the High Resolu-

tion Infrared Radiation Sounder (HIRS) and the Geostation-

ary Operational Environmental Satellites (GOES) sounder.

These modern sensors represent major advances in the at-

mospheric sounding capability. Radiance spectra measured

by these new sounders can be inverted to provide high res-

olution atmospheric temperature profiles, humidity profiles,

cloud properties, and surface properties. They also provide

improved weather and climate observations and forecasting.

AIRS is a grating instrument with 2378 spectral channels that

was launched on 4 May 2002 aboard of the NASA Earth Ob-

serving System (EOS) Aqua satellite. It measures thermal

emission from the Earth’s atmosphere and the Earth’s sur-

face (Chahine et al., 2001; Pagano et al., 2003; Aumann et

al., 2003; Goldberg et al., 2003). IASI is an ultra-spectral

resolution infrared sounder aboard of the Metop-A satel-

lite and was launched on 19 October 2006. The IASI in-

strument is a Michelson interferometer with 8461 spectral

channels, which measures the top of atmospheric (TOA) in-

frared radiance (Klaes et al., 2007; Blumstein et al., 2004;

Schluessel et al., 2005a). CrIS is the next generation National

Polar-orbiting Operational Environmental Satellite System

(NPOESS) sounder with 1305 spectral channels and also

measures atmospheric and surface emissions (Moncet et al.,

2001). The first CrIS instrument will be launched on NASA’s

NPOESS Preparatory Project (NPP) satellite. The NPOESS

and the EUMETSAT Polar System (EPS) will form the Initial
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Joint Polar System capable of providing global soundings

with different equator crossing times (Klaes, 2007). Explor-

ing high information content contained in these high spectral

resolution spectra is a challenging task due to computational

effort involved in modeling thousands of spectral channels.

Usually, only very small fractions (4–10 percent) of the avail-

able channels are included in a real-time physical retrieval

system or a numerical weather prediction (NWP) satellite

data assimilation system (Rabier et al., 2002; Collard, 2007;

Crevoilier et al., 2003; Prunet et al., 1998; Fourrie and Thep-

aut, 2002, 2003). For example, the AIRS level 2 physical

retrieval algorithms and NWP data assimilation systems use

only a few hundred channels for the inversion of atmospheric

and surface properties (Chahine, 2001; Suskind et al., 2006,

2003; Le Marshal et al., 2005). Scientists at various satel-

lite data assimilation and NWP centers have shown positive

impact on the weather forecast using only a few hundred

spectral channels of AIRS data (Le Marshall et al., 2005a,

b, 2006). Collard (2007) has selected 300 IASI channels for

use in numerical weather predictions applications. Scientists

at the European Centre for Medium-range Weather Forecasts

(ECMWF) routinely monitor 366 IASI channels and assim-

ilate 168 IASI channels, from which they have shown posi-

tive impacts on NWP for both Southern and Northern Hemi-

spheres (Collard and McNally, 2008). The aim of this paper

is to demonstrate an efficient way to use all the information

from thousands of channels offered by ultra-spectral resolu-

tion satellite sounders. We will focus our study on the IASI

instrument because it has 8461 channels, which presents a

great challenge.

There are several ways to use more channels. One of them

is to increase the computational speed of the radiative trans-

fer model needed by the inversion process. There are lots of

efforts devoted to the development of fast radiative transfer

models for simulating hyper-spectral or ultra-spectral radi-

ances (Strow et al., 2003, 2006; Saunders et al., 2000, 2007;

Matricardi, 2003; Matricardi and Saunders, 1999; Moncet et

al., 2001; Liu et al., 2003; Edwards et al., 2000; McMillin et

al., 1995, 1997; Barnet et al., 2000). These models are orders

of magnitude faster than line-by-line radiative transfer mod-

els. Because these fast forward models deal with one spectral

channel at a time, it is still challenging to incorporate thou-

sands of channel radiances into data assimilation systems.

Even if the forward models are fast enough, the Jacobian

and channel covariance matrices are so large that it is time

consuming to perform matrix operations in an inversion pro-

cess. Another way to use these thousands of channels is to

transform them into some kind of super channels. Because

all of these spectral channels are not totally independent of

each other, it will be beneficial to explore the correlations

between them. By combining channels with similar proper-

ties into a super channel, random instrument noises tend to

be minimized in this averaging process. McMillin proposed

a method for selecting super channels based on the shape

of the weighting functions (McMillin, 2004). The resulting

super channels span a relative large frequency domain; there-

fore the fast forward model has to handle the non-linearity of

the Planck function carefully. Schluessel (2005b) developed

a method for selecting super channels by clustering chan-

nels with high correlation coefficients. The super channel

is produced by a linear combination of the other channels

within that cluster. Aoki (2004, 2005) described a method of

compressing high resolution infrared spectra into a few hypo-

thetical channels using a regression matrix and EOFs derived

from weighting functions. A great compression ratio can be

achieved but the forward model has to store a large amount

of information at numerous linearization points. The super

channel approach we take in this paper is by an EOF transfor-

mation of the ultra-spectral radiance spectra. The EOFs are

derived from a large ensemble of radiance spectra weighted

by the instrument noise. The EOF transformation approach

has been used to compress spectra and to improve signal-to-

noise ratios (Huang and Antonelli, 2001). One difficulty in

using EOF transformed super channels in a retrieval process

is that it needs a fast radiative transfer model that does for-

ward modeling in the EOF domain. Liu et al. (2005, 2006)

have developed a principal component-based radiative trans-

fer model (PCRTM) specifically for hyper and ultra spectral

remote sensing applications. The forward model treats the

whole spectrum together, therefore removing many redun-

dant calculations that are needed for channel-based radiative

transfer models. The PCRTM forward model is capable of

producing both the super channel magnitudes and the deriva-

tives of the super channel with respect to retrieved parameters

(Jacobian). Therefore there is no need to perform EOF trans-

formations to convert super channels back to spectral space

at each iteration step for a variational retrieval or a NWP data

assimilation system. In Sect. 2 of this paper, we will describe

the basic principles of the PCRTM forward model and how

the forward model performs cloud radiative transfer calcula-

tions. In Sect. 3, we will describe a physical retrieval algo-

rithm using super channels and the PCRTM forward model.

In Sect. 4, we will show some results of applying the PCRTM

retrieval system to IASI data observed by the Metop-A satel-

lite. Finally, we will present our summary and conclusions

on the super channel retrieval approach.

2 Forward modeling of super channels under clear and

cloudy sky conditions

2.1 General description PCRTM forward model

A super channel is defined as the dot product (or projection

coefficient) of a channel radiance spectrum and an EOF or

a Principal Component (PC) derived from a large number

of hyper or ultra spectral resolution spectra. The EOFs are

computed for a wide range of satellite zenith angles ranging

from 0 to 66.4 degrees. Because EOFs are orthogonal to each

other, they contain highly compressed information content
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of the original radiance spectra. The redundant spectral in-

formation (i.e. spectral correlation between channels) is cap-

tured via the EOF representation. For an instrument such

as IASI with 8461 channels, only about 100 highest-ranking

EOFs are needed to regenerate original spectra to an accu-

racy equivalent to the instrument noise level. The number of

super channels is determined by linearly combining various

numbers of EOFs and comparing the differences between the

regenerated and the original IASI spectra with the instrument

noise. Aires et al. (2002) found that for the IASI instrument,

an EOF number of 30 for each of the three bands (or 90 to-

tal) will give the best compression/de-noising statistics. We

have reached a similar conclusion in our studies here and in

Liu et al. (2007). These super channels essentially contain all

the information content of 8461 IASI channels, while having

84 times less data volume. Unlike traditional fast radiative

transfer models, which either predict channel radiances or

transmittances, the PCRTM predicts the super channels of

the spectrum. The relationship between the super channels

and the predictors, i.e. monochromatic radiances, is derived

from the properties of eigenvectors and instrument line shape

(ILS) functions. Because super channel magnitudes are lin-

ear combinations of the channel radiances with eigenvectors

as the weights and the eigenvectors are invariant from one

spectrum to another, the super channel, Yi , is proportional to

channel radiance. Therefore it contains the same information

content as the original channels spectrum. The channel radi-

ance is calculated via a convolution of the instrument line-

shape function (ILS) with monochromatic radiances (Rmono
k )

within the frequency span of the ILS:

Rchan
i =

N∑

k=1

φkR
mono
k (1)

where φ is the normalized ILS. The super channel is lin-

early related to a set of monochromatic radiances because

both eigenvectors and instrument line-shape functions do not

vary from one spectrum to another.

Yi =

N∑

k=1

akR
mono
k (2)

Because the monochromatic radiances at various frequencies

are highly correlated, only a few hundred of them are needed

to accurately predict the super channels. Liu et al. (2005,

2006) have described a method for clustering monochro-

matic radiances and thereby removing redundant information

in the monochromatic radiances. The basic idea is to clus-

ter monochromatic radiances with similar properties together

and only select a subset of these monochromatic radiances

for generating Yi in Eq. (2). The non-linear relationship be-

tween super channels and the atmospheric temperature, H2O,

O3, CH4, N2O, and CO profiles, cloud properties, surface

properties, and observation geometry is captured via rigor-

ous monochromatic radiative transfer calculations. The super

channels are simply linear combinations of these monochro-

matic radiances, making the PCRTM a physically based ra-

diative transfer model. The coefficients ak are determined

by a regression process. Thousands of monochromatic and

channel radiance spectra are calculated using a line-by-line

radiative transfer code under various atmospheric and sur-

face conditions. Super channels are calculated by projecting

the calculated channel spectra onto a set of EOFs. ak are ob-

tained by solving thousands of linear equations according to

Eq. (2).

Unlike some of the super channel approaches mentioned in

the introduction, the PCRTM radiative transfer model makes

it very easy to calculate channel radiances from the super

channels. The channel spectrum can be obtained simply by

linearly combining the pre-stored eigenvectors with the super

channel magnitudes as weights:

Rchan
=

NPC∑

i=1

YiU i (3)

where Npc is the number of significant PCs or EOFs, U i is

the i-th eigenvector, representing the radiance spectra.

The derivatives of super channels with respect to the state

vector (Jacobian) are calculated by calculating the derivatives

of monochromatic radiance with respect to state vectors first.

Equation (4) is then used to transform the monochromatic

derivatives to super channel derivatives. The dimension of

the super channel Jacobian matrix is much smaller than that

of the channel radiances, an ideal situation for an inversion

process.

∂Yi

∂Xj

=

N∑

k=1

ak

∂Rmono
k

∂Xj

(4)

IASI has a spectral coverage from 645 to 2760 cm−1 with

a spectral resolution of 0.5 cm−1 after applying a Gaussian

apodisation. The spectral spacing between adjacent channels

is 0.25 cm−1. Although the spectral coverage is continuous,

an IASI spectrum consists of three spectral bands measured

by 3 separate detectors. The first spectral band has 2261

channels and covers spectral range from 645–1210 cm−1, the

second band has 3160 channels and covers 1210–2000 cm−1,

and the third band has 3040 channels and covers 2000–

2760 cm−1. We decided to generate our EOFs separately

for each of the IASI bands. The numbers of super chan-

nels chosen for each of the three bands are 40, 30, and 30,

respectively. As mentioned before, these numbers are de-

termined by projecting IASI spectra onto EOFs and then re-

generating the IASI spectra using a various number of PC

scores. Our results show that using 100 super channels, we

can re-generate IASI spectra with RMS errors less than the

instrument noise levels (see the bottom plot in Fig. 3). If we

calculate PCs using channels from all three IASI bands to-

gether, the number of PCs needed to provide good compres-

sion/denoise statistic is also around 100. Choosing separate
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(a)

(b)

(c)

Fig. 1. The first 5 eigenvectors for each of the 3 IASI spectral bands.
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Fig. 2. Top panel: Example of LBLRTM (red line) and PCRTM

(blue line) calculated IASI spectra. Bottom panel: Difference be-

tween the two spectra shown in top panel.

PCs for each of the IASI bands offers the flexibility of drop-

ping a whole band from the inversion process, e.g. improving

computational efficiency when the solar portion of the spec-

trum is not used in the inversion. Figure 1 shows the first 5

eigenvectors for each of the 3 bands.

The accuracy of the PCRTM forward model has been

compared to a Line-By-Line Radiative Transfer Model

(LBLRTM, Clough and Iacono 1995), which is the model

used for training. Figure 2 shows an example of the IASI

radiance spectra calculated by the LBLRTM code and by the

PCRTM fast radiative transfer model. The differences be-

tween the two spectra are less than ±0.05 K. Figure 3 shows

the accuracy of the PCRTM forward model relative to line-

by-line radiative transfer model. The RMS errors are typi-

cally less than 0.05 K and bias errors are less than 0.02 K.

The bottom panel in Fig. 3 is a plot of the IASI instrument

noise in brightness temperature unit at 280 K scene temper-

ature. The PCRTM errors relative to line-by-line radiative

transfer calculations are much smaller than the instrument

noise at the respective spectral positions.

The computational efficiency of the forward model de-

pends on many factors such as the way the computer codes

are written, the computer platform, and compiler optimiza-

tions. We have performed a preliminary comparison of

the computational efficiency of the PCRTM model with the

channel-based radiative transfer model RTIASI (Matricardi,

2003). The computer platform is a Linux system with a

1.5 GHz Intel Itanium processor and an Intel Fortran com-

piler. The RTIASI code takes 0.39 s to calculate 8461 IASI

channel radiances. This special version of the RTIASI code

does not have a function to calculate the derivatives. It usu-

ally takes 2–3 times more computational effort to perform

calculations of radiance derivatives relative to atmospheric

Fig. 3. Top panel: The RMS error between the LBLRTM and

PCRTM. Middle panel: The bias errors between the LBLRTM and

PCRTM. Bottom panel: The IASI instrument noise at 280 K.

Fig. 4. Cloud reflectance and transmittance for ice clouds at differ-

ent effective particle sizes.

and surface parameters. The PCRTM takes 0.045 s to calcu-

late both the 8461 IASI channel radiances and the 100 super

channels. It takes 0.038 s to calculate 100 super channels

and associated derivatives. If we perform retrievals using su-

per channels, it should take much less time in the forward

model portion of the inversion process. Up to now, we have

not made any code optimization with regards to the compu-

tational speed of the PCRTM model.

2.2 Radiative transfer calculation under cloudy

conditions

Based on estimations from data of satellite instruments

such as GOES-sounder, HIRS, AIRS, CERES, MODIS and

www.atmos-chem-phys.net/9/9121/2009/ Atmos. Chem. Phys., 9, 9121–9142, 2009
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Fig. 5. Cloud reflectance and transmittance for water clouds at dif-

ferent effective particle sizes.

GOES-imager, the likelihood of having no cloud in a pixel

with a ground footprint size of 14 to 20 km is typically

less than ten percent globally (Smith et al., 1996). A re-

trieval algorithm either has to explicitly retrieve cloud prop-

erties (Eyre, 1989; Zhou et al., 2005, 2007; Li et al.,

2005; Menzel et al., 1983) or remove cloud spectral con-

tributions to the total radiance by using some kind of es-

timates of clear sky radiances (Suskind et al., 2003, 2006;

Chahine, 1974, 1977; Smith, 1968). Some cloud retrieval

algorithms such as the CO2-slicing assumes black clouds;

therefore ignoring multiple scattering effects of clouds com-

pletely. It is highly desirable to have a forward model, which

handles the radiative transfer calculations in cloudy atmo-

spheres efficiently. Because PCRTM is a physically based

forward model which performs radiative transfer calcula-

tions monochromatically, it is easy to incorporate a multi-

ple scattering scheme such as the Discrete Ordinate Radia-

tive Transfer (DISORT) or a adding-doubling (Stammes et

al., 1988; Moncet, 1997, Zhang et al., 2007); however such

a change will increase computational time and make ana-

lytical Jacobian calculations impractical. Here we adopt a

method that performs cloud radiative transfer calculations us-

ing pre-computed cloud transmittance and reflectance (Yang

et al., 2001; Wei et al., 2007; Huang et al., 2006; Niu et al.,

2007). By assuming that the cloud scattering is isotropic,

one can parameterize cloud scattering properties (effective

cloud transmittance and reflectance) as a function of cloud

optical depth, cloud particle size, and the satellite zenith an-

gle. The effective reflectances and transmittances have been

calculated using DISORT (Stammes et al., 1988) and sin-

gle scattering properties calculated by Yang et al. (2001),

Wei et al. (2007), Huang et al. (2006), Niu et al. (2007).

The complex refractive indexes of ice are taken from War-

ren (1984) with his 1995 update. The complex refractive in-

dexes of water are taken from Segelstein (1981). The indi-

vidual ice cloud particle size distributions are derived from

various field campaigns as described by Baum et al. (2007).

The single-scattering properties of individual non-spherical

ice particles are derived from the composite method (finite-

difference time domain method, improved geometric optics

method, and Lorenz-Mie theory). A gamma size distribu-

tion is assumed for water clouds. Various populations of

droxtals, 3-D bullet rosettes, solid columns, plates; hollow

columns, and aggregates are assumed in the particle size dis-

tributions for the ice clouds (Baum et al., 2007). The cloud

optical depth is referenced to a visible wavelength at 550 nm.

The infrared cloud optical depth can be related to the visible

cloud optical depth according to the following formula:

τ(ν) =
Qe(ν)

Qe(vis)
τ (vis)=

Qe(ν)

2
τ(vis), (5)

where τ is the optical thickness at an infrared frequency ν or

at the visible frequency (vis), Qe is the mean extinction effi-

ciency at a particular frequency. In the visible spectral region

near 550 nm, the mean cloud extinction efficiency is assumed

to be close to the geometric optics asymptotic value of 2 be-

cause the cloud particle sizes are much larger than 550 nm.

The effective particle size is defined as the ratio of the volume

to the projected area for a given particle size distribution (Niu

et al., 2007). For water clouds, the effective particle size is

represented by the effective diameter. Figures 4 and 5 show

examples of the ice and water cloud reflectance and trans-

mittance calculated in the IASI spectral range for different

cloud effective particle sizes. The visible cloud optical depth

is fixed at a value of 1.0 and the satellite zenith angle is set to

0.0 for the above calculations. Figures 4 and 5 indicate that

the frequency dependencies of ice and water clouds are quite

different when particle sizes are small. As the cloud particle

size increases, the spectral features become less distinct from

each other. The shapes and magnitudes of the cloud transmit-

tance and reflectance can be used to determine cloud phase,

cloud optical depth and cloud particle size. In this study,

only a single-layer cloud is modeled. The cloud tempera-

ture is calculated using the information of cloud top pressure

and the atmospheric temperature profile. Because PCRTM

calculates monochromatic radiances recursively, adding one

cloud layer only adds a slight computational burden. To ob-

tain Top of Atmosphere (TOA) radiance, we start from the

surface layer and calculate layer radiation successively. For

an atmospheric layer without cloud, the radiance emerging

from that layer (Rl+1,v) is calculated according to:

Rl+1,v = Rl,vtl,v +(1− tl,v)B(Tl,v), (6)

where Rl,v is the radiation below the atmospheric layer l at

frequency ν. The term tl,v is the layer transmittance. B is the

Planck function calculated at frequency ν for a given layer

temperature Tl . When a cloud layer is reached, the radiance

emerging from the top of the cloud layer is given by:

Rl+1,v = Rl,vtl,v +(1− tcloud,v −rcloud,v)B(Tcloud,v)

Atmos. Chem. Phys., 9, 9121–9142, 2009 www.atmos-chem-phys.net/9/9121/2009/
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Fig. 6. Top: Observed IASI cloudy spectrum and the PCRTM mod-

eled ice cloud spectrum. Bottom panel: Difference between ob-

served and calculated IASI spectra (blue curve) and the IASI instru-

ment noise converted to brightness temperature unit (red curves).

+rcloud,vRdown, (7)

where tcloud,v and rcloud,v are the cloud transmittance and re-

flectance, respectively. Tcloud is the cloud temperature, and

Rdown is the downwelling radiance at the cloud top. The

whole radiative transfer calculation is very similar to a clear

sky TOA radiance calculation, making the PCRTM very fast

when dealing with clouds.

Instead of showing simulated TOA radiance spectra which

contain ice and water clouds, we will show two examples

of cloudy radiance spectra observed by the IASI instrument

on 15 April 2008 over Angra Dos Reis, Brazil. In addition,

we will show how well the PCRTM with the cloud model

described above can fit the spectra to a very good accuracy

for these cases. The top panel in Fig. 6 contains two IASI

brightness temperature spectra, one observed by the IASI

and the other calculated using cloud parameters retrieved by

the physical retrieval algorithm discussed in this paper. The

retrieval algorithm identifies the cloud phase as ice. The

retrieved cloud top pressure is at 273 hPa. The cloud ef-

fective size is 38 µm and the cloud visible optical depth is

0.462. The bottom panel of the figure shows the difference

between the observed and the calculated IASI spectra. They

agree with each other within the IASI instrument noise lev-

els (shown in red lines) in most of the spectral regions. In the

spectral range from 1200 to 1550 cm−1, the IASI instrument

has excellent noise performance, we had to relax the weight-

ings for channels in this spectral region to account for errors

such as forward model (relative to real observation, not rela-

tive to LBLRTM) and not knowing the atmospheric concen-

trations of CH4, N2O, and other trace gases. Figure 7 shows

another case of IASI observed and calculated spectra con-

Fig. 7. Top: Observed IASI cloudy spectrum and the PCRTM mod-

eled water cloud spectrum. Bottom panel: Difference between ob-

served and calculated IASI spectra (blue curve) and the IASI instru-

ment noise converted to brightness temperature unit (red curves).

taining water clouds. The retrieval algorithm identifies the

cloud phase as water, and the retrieved cloud top pressure is

523 hPa, which is located at much lower altitude relative to

the ice clouds shown in Fig. 6. The effective cloud particle

diameter is 45 µm and the cloud visible optical depth is 0.19.

Again, the bottom panel of the figure shows the differences

between the observed and the calculated IASI spectra, which

are smaller than instrument random noise in most of the spec-

tral regions. The 45 µm effective diameter seems to be too

large for water clouds. This could be caused by crosstalk

between the cloud parameters and other parameters, such as

surface emissivity, during the retrieval process. It is also pos-

sible that the algorithm incorrectly identifies the ice cloud as

water cloud giving large cloud size. As seen from Figs. 4 and

5, for similar cloud particle size, the ice cloud has a larger

slope in the spectral region from 800 to 1000 cm−1. The

40 µm water cloud has similar effective transmittance and

reflectance as the 60 µm ice cloud. Validation of retrieved

cloud parameter products is an ongoing effort and, with the

availability of coincident truth data, will be the subject of

studies to be reported on in the future. Even prior to valida-

tion of our cloud parameters, cloud-detection stand-alone is

valuable for interpretation of our confident thermodynamic

retrievals.

www.atmos-chem-phys.net/9/9121/2009/ Atmos. Chem. Phys., 9, 9121–9142, 2009
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Fig. 8. Temperature weighting functions of the first, the 11th, and the 21st super channels with respect to atmospheric temperature for each

of the three IASI spectral bands.

3 Description of a super channel based retrieval

algorithm

The objective of an inversion algorithm is to retrieve a state

vector. We define our state vector as atmospheric tempera-

ture vertical profile, moisture and trace gas vertical profiles,

cloud properties, surface skin temperature, and surface emis-

sivities. As mentioned in the previous section, the super

channels contain all the information of the original channel

spectrum but with a much smaller dimension. Using super

channels has an advantage over selecting a small fraction of

radiance channels in reducing random instrument noises. By

inverting the super channels directly, we retain all the infor-

mation with regard to the state vector while saving computa-

tional time.

Figure 8 shows three weighting functions of the first, the

11th, and the 21st super channels with respect to atmo-

spheric temperature for each of the three IASI spectral bands.

The first eigenvector contains information of broad atmo-

spheric features, especially the temperature information near

the Earth’s surface. It also has the highest signal-to-noise ra-

tio. In general, the weighting function magnitudes decrease

while the vertical structures increase for those super chan-

nels that correspond to higher order eigenvectors with finer

spectral signatures. It is noted that some of the super-channel

weighting functions appear to be correlated between differ-

ent atmospheric levels, indicating that one eigenvector may

contain temperature information for several atmospheric lev-

els. By performing an EOF transformation, these weighting

functions can be easily converted to channel-based weighting

functions.

Because the weighting functions with fine atmospheric

vertical structures have smaller signal-to-noise ratios as com-

pared to those with large structures (see example Figs. 8 and

9), it is difficult to find a unique solution for the inversion

process. Many solutions with different fine vertical structures

(such as oscillatory profiles) can satisfy the radiative transfer

equation and produce super channels or spectral radiances

that agree with the IASI observations to within noise level.

Therefore, the inversion of atmospheric profiles is an inher-

ently ill-posed problem. From the radiative transfer model-

ing point of view, we need numerous atmospheric layers in

order to accurately represent thermal emissions from the in-

homogeneous atmosphere. From the retrieval point of view,

having too many layers may produce a degenerate Jacobian

matrix (e.g. two layers with same weighting functions) that in

turn will cause the instability in the inversion process. We try

to regularize the solution two fold. We first transform atmo-

spheric temperature, moisture, ozone, and CO profiles from a

101 vertical level pressure grid to a much smaller dimension

by EOF transformation. We then use maximum-likelihood

methods with a climatology covariance matrix to constrain

our solution. Table 1 shows the original pressure grid for

various components of the state vector and the dimensions
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Fig. 9. Logarithm of the atmospheric moisture weighting functions of the first, the 11th, and the 21st super channels with respect to

atmospheric temperature for each of the three IASI spectral bands.

Table 1. Comparison of state vector dimensions before and after EOF compression.

State vector Pressure or frequency grid Number of EOF used

Atmospheric temperature profile 101 25

Atmospheric moisture profile 101 20

Atmospheric ozone profile 101 15

Atmospheric CO profile 101 3

after the EOF compression. The atmospheric temperature

and moisture profile EOFs were generated from global ra-

diosonde databases and ECMWF profiles. The ozone profiles

EOFs are generated from ozone radio-soundings and satellite

measurements. The CO profile EOFs are generated from the

NCAR Mozart model (Kinnison et al., 2007).

For the surface emissivity retrieval, we compress the sur-

face emissivity into PC scores as well (Zhou et al., 2007;

Liu et al., 2007). Since the spectral features of the surface

emissivity are broad, there is no need to retrieve them at each

channel frequency. The surface emissivity EOFs were gen-

erated from an ensemble of surface emissivities calculated

using an ocean emissivity model (Musuda, 1988; Wu and

Smith, 1997) and selected from the Salisbury emissivity li-

brary (Salisbury et al., 1992). In addition to atmospheric tem-

perature, moisture, ozone and carbon monoxide vertical pro-

files, surface skin temperature and surface emissivity; cloud

optical depth, cloud particle size and cloud height are also

retrieved. The retrieval methodology for cloud parameter re-

trieval has been discussed in our previous papers (Zhou et al.,

2005, 2007, 2009). The cloud phase is determined from the

retrieved cloud height and temperature profile (Zhou et al.,

2005, 2007).

Because super channels are non-linearly related to the

state vector, an iterative approach is needed to solve the

non-linear equation. A Levenberg-Marquardt method (Mar-

quardt, 1963; Press et al., 1992) is used to deal with the non-

linearity in the maximum-likelihood inversion:

Xn+1 −xa = (KT S−1
y K +λD+S−1

a )−1KT S−1
y [(ym −yn)

+K(xn −xa)], (8)

where the subscripts n and a represent iteration number and

a priori, respectively. ym is the super channels of the mea-

sured radiance spectrum. yn is the forward model calculated
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Fig. 10. Left: Averaging kernel for atmospheric temperature pro-

files at selected pressure levels. Right: The integrated area of the

temperature-averaging kernel at each atmospheric pressure level.

super channels using the state vector obtained from the n-th

iteration. Sy and Sa are error covariance matrices associated

with y and background state vector xa , respectively. x0 is

the first guess used in the retrieval process. D is a diago-

nal matrix whose elements are determined by the diagonal

elements of the KT S−1
y K matrix. λ is the Lagrange multi-

plier whose value is adjusted according to the values of the

cost function during the iteration process. Sy is obtained by

EOF transformation of the IASI instrument noise covariance

matrix (SRad):

Sy = UT
·SRad ·U. (9)

U is a matrix that contains the radiance eigenvectors.

The cost function is defined as:

C = (yn −ym)S−1
y (yn −ym)+(xn −xa)S

−1
a (xn −xa). (10)

We can start the iteration with an x0 either equal to the cli-

matology background xa or a first guess which comes from

a regression retrieval. The details of the EOF regression re-

trieval has been discribed by Zhou et al. (2005). The starting

value of λ is selected based on how close the initial guess

of the state vector is to the final solution. If the initial guess

of the state vector is from a regression retrieval, the starting

value of the λ is on the order of 0.01. If the initial guess is

from climatology, the starting value of the λ is set to a larger

number (e.g. 0.5). During the iteration process, if the cost

function decreases, a new forward model calculation will be

done using the updated state vector. The value of the λ will

be decreased by a factor of 5. If the cost function increases,

the value of λ will be increased and no forward model calcu-

lation will be done for the next iteration. The iteration will

stop if any of the following three conditions are satisfied:

(1) relative change in cost function is less than 5 percent,

Fig. 11. Left: Averaging kernel for atmospheric moisture pro-

files at selected pressure levels. Right: The integrated area of the

temperature-averaging kernel at each atmospheric pressure level.

(2) relative change in the state vector is less the 5 percent,

and (3) maximum number of iterations exceeds 6. The value

of the cost function at the last iteration can be used for control

of the retrieved product. In theory, the cost function should

be close to the number of super channels used in the retrieval

(e.g. 100). If the cost function is too large (e.g. 500), the re-

trieval is considered not converged. This large cost function

could be caused by bad IASI spectra, complex cloudy scenes,

or inhomogeneous surface conditions within the IASI field

of view. We can output the EOF compressed state vector,

PCRTM calculated super channel magnitude, and error co-

variance matrix associated with the retrieval. The dimension

of the retrieval error covariance matrix is small because we

compress state vectors into EOF space. The retrieval error

covariance matrix is defined as:

Sx = (KT
·S−1

y ·K +S−1
a )−1. (11)

Having smaller dimensions for various matrices is an implicit

advantage of the PCRTM retrieval algorithm. The retrieved

state vector is converted into a normal pressure grid or fre-

quency grid via EOF transformations to obtain atmospheric

profiles or surface emissivities. If radiance spectra are de-

sired, a radiance-based EOF transformation of the PCRTM

calculated super channel vector would be performed. The in-

version computational efficiency depends on the size of the

K matrix and how fast a forward model can calculate the

y vector. Since we only need 100 super channels (as com-

pared to 200–8461 channels for the standard channel-based

method), the K matrix is much smaller in our case. Therefore

the inversion portion of the retrieval system should be faster

relative to using all IASI spectral channels.
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Fig. 12. Flow diagram of the PCRTM IASI retrieval process.

To characterize the vertical resolution of the retrieved at-

mospheric temperature and moisture profiles, the averaging

kernel can be calculated (Rodgers, 1976, 2002):

AVx = (KT
·S−1

y ·K +S−1
a )−1KT

·S−1
y ·K. (12)

Again, the dimension of the averaging kernel is small. Most

of the quantities needed for the averaging kernel calculation

are already calculated during the physical inversion process.

Figures 10 and 11 are examples of typical averaging ker-

nels for atmospheric temperature and moisture, and only se-

lected levels are shown for clarity. The peaks of the averag-

ing kernels correspond well with the pressure levels where

the atmospheric profiles are perturbed relative to the truth.

The integrated area of the averaging kernel should give a

good indication where the information is coming from. For

those levels with the area values close to 1.0, one hundred

percent of the information comes from the measurement, i.e.

observed IASI spectrum. For a level with the integrated area

value of α (where α is a number less than 1 and greater than

0), only a fraction α of the information is from the measure-

ment. The remaining fraction of information is from a pri-

ori. It is clear from Fig. 10 that the retrieved temperature

information at almost all the altitudes is basically from IASI

measurements. Only 10 percent of the information is from

the a priori for the near-surface altitudes. It should be men-

tioned that the shape, the resolution, and the area of the aver-

aging kernel depend on many of factors such as the structure

of the atmospheric profiles, the thermal contrast between air

temperature and the surface skin temperature, and the instru-

ment noises. For some other profiles, the retrieved air tem-

perature near the Earth’s surface could be solely determined

from the IASI spectrum without contribution from a priori

information. The half-width of the averaging kernel is a very

good measure of the vertical resolution of the retrieval sys-

tem. Figures 10 and 11 show that the retrieval system has

a better vertical resolution for the atmospheric temperature

than the atmospheric moisture. As the altitude increases, the

vertical resolution for temperature decreases. Figure 11 does

not include moisture averaging kernels above 200 hPa. The

high altitude H2O averaging kernels seem to peak at lower

altitudes as they should be. For high altitudes above 200 hPa,

about 5 to 50 percent of the information is from a priori, as

indicated by the integrated area of the H2O averaging ker-

nels. This result could be caused by the fact that the climatol-

ogy covariance matrix for H2O above 300 hPa is not realistic

because the statistics of moisture profiles from radiosondes

measurements are not good. It is well known that radioson-

des either have no values or have poor quality measurements
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Fig. 13. Cross sections of the temperature in unit of Kelvin (top) and

relative humidity in unit of percent (bottom) retrieved from IASI

spectra taken on 19 April 2007 (see text).

above 300 hPa. H2O values above 300 hPa are sometimes

generated by a regression from the lower altitudes or by a

simple extrapolation. Therefore the H2O covariance matrix

above 300 hPa is highly correlated and the retrieval system

may overly constrain the solution towards the a priori. The

integrated areas of the H2O averaging kernel are close to 1

for an altitude range from 200 hPa to 800 hPa, indicating that

the retrieval has good sensitivity in this altitude range. It

should be emphasized that even though the weighting func-

tions shown in Figs. 8 and 9 are not localized to a particular

altitude and appear to be correlated between different lev-

els, the retrieval system does provide nicely peaked averag-

ing kernels. The result confirms that the EOF transformation

of the radiance spectrum into super channels preserves the

information content of the IASI instrument.

4 Retrieval results from METOP-A IASI observations

In this paper, we will mainly show results obtained from

the Joint Airborne IASI Validation Experiment (JAIVEx).

JAIVEx was conducted from 14 April to 4 May 2007 to

under-fly and gather validation datasets for the IASI obser-

vations. Flights were made over the Gulf of Mexico and over

the US Department of Energy Oklahoma ARM-CART (At-

mospheric Radiation Measurement – Cloud And Radiation

Test-bed) site. Radiosondes and dropsondes were launched

from the ARM-CART site and from the BAE-146 aircraft

during Metop-A overpasses.

Figure 12 shows a flow diagram of how we perform su-

per channel retrievals using IASI data. The algorithm starts

by reading in forward model parameter files, cloud property

Fig. 14. Cross sections of the temperature and relative humidity

retrieved from IASI spectra taken on 29 April 2007.

files, climatology covariance matrix and associated back-

ground vector, and the sensor information such as instrument

noise. The IASI super channels are generated by project-

ing the observed IASI spectrum onto eigenvectors shown in

Fig. 1. The PCRTM forward model is used to convert state

vector into calculated super channels. Equation (8) is fol-

lowed to update the state vector and fit the IASI super chan-

nels. The iterative retrieval continues until one of the exit

criteria is reached.

4.1 Retrieved three-dimensional atmospheric

structures

The plots in Fig. 13 show the cross sections of the atmo-

spheric temperature and relative humidity retrieved from

IASI spectra taken on 19 April 2007 using the PCRTM re-

trieval algorithm. The altitude range shown in the figure

is between 5 and 6 km. The color variation represents the

deviation of the temperature from the mean or the relative

humidity. The white gaps are due to complex cloud scenes

where the algorithm failed to converge. Due to the high in-

formation content of the IASI spectra and the ability to use

all IASI channels, fine details of atmospheric structure are

well captured. These fine spatial details appear to be very

coherent even though the retrieval was done on individual

IASI Field Of Views (FOVs) without taking into considera-

tion correlations between adjacent FOVs. It is clear that the

moisture field has much finer spatial variations as compared

to the temperature field, indicating that moisture is a good

tracer for atmospheric motions. The detailed circulation pat-

terns of the moisture field should provide useful information

for weather prediction models to forecast cloud formations.

In contrast to the cross sections retrieved from 19 April

2007, the horizontal atmospheric structures are more uniform

for 29 April 2007. Figure 14 shows the atmospheric temper-

ature deviation from the mean and the relative humidity in
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Fig. 15. Surface skin temperature; cloud optical depth, cloud height, and cloud particle size retrieved from IASI spectra taken on 29 April

2007.

the altitude range from surface to 18 km. Again, the color

variation represents the deviation of the temperature from

the mean or the relative humidity. There is a lot of infor-

mation on the retrieved three-dimensional atmospheric struc-

tures. For example, the upper atmosphere is warm and dry in

the northwest side of the image, while the lower troposphere

is cold with two moist layers moving horizontally.

4.2 Cloud and surface properties

The plots in Fig. 15 show retrieved surface skin tempera-

ture, cloud optical depth, cloud height, and cloud particle

size from IASI spectra taken on 29 April 2007. The color

scales are displayed in the figure. The white areas in the fig-

ure indicate the retrieval algorithm fails to converge due to

multi-layer clouds or strong sun glint. Figure 16 shows the

brightness temperature image of the IASI-integrated Imaging

System (IIS). The IIS is an instrument that makes IR radiance

measurements in the spectral range from 10.3 to 12.5 µm. In

contrast to the IASI sounder which has 2 by 2 fields of view

within a cell size of 45 km, the IIS has 64 by 64 pixels within

the same cell size. Because of the high spatial resolution,

the IASI imager brightness temperature provides good infor-

mation on cloud occurrences. Overall, the retrieved cloud

field from the IASI sounder compares well with the observa-

Fig. 16. Brightness temperature measured by the high spatial reso-

lution IASI imager taken on 29 April 2007.

tions from a collocated the IIS. For example, the altocumu-

lus clouds near West Virginia (near 38◦ latitude, −79◦ longi-

tude) as seen by the imager are well captured by the physical
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Fig. 17. Blue line: Surface emissivity retrieved from IASI spectra and taken on 19 April 2007. Cyan line: land surface emissivity over

DOE-CART ARM site derived from the low flying ARIES instrument.

Fig. 18. Blue line: Surface emissivity retrieved from IASI spectra over the Gulf of Mexico on 30 April 2007. Cyan line: surface emissivity

derived from the low flying ARIES instrument.

retrieval algorithm. The retrieved cloud height is around

5 km with visible optical depth around 0.15. The cloud op-

tical depth is effective because the clouds in this region may

not cover the whole IASI FOVs, The surface skin tempera-

tures under those altocumulus clouds are in the range of 284–

288 K, which is colder than the surrounding areas. This ob-

servation is consistent with the surface level air temperatures

from radiosonde measurements in that area. The IASI mea-

surements should see the surface in these area based on the

imager data and on the retrieved small cloud optical depths.

The cloud features near the Nebraska and Kansas state line

(near 40◦ N latitude, 97◦ W longitude) seem to be high cir-

rus clouds (5–13 km) with a retrieved visible optical depths

ranging from 0.1 to 0.2. The retrieved skin temperatures are

similar to those of surrounding areas, again indicating that

the physical retrieval system is capable of retrieving accurate

surface properties in the presence of thin cirrus clouds. As

mentioned in Sect. 2.2, we have not performed any cloud re-

trieval validation due to the lack of quantitative truth data.

The primary focus herein is on clear-air retrievals, and cloud

parameter retrievals are included to show corresponding ap-

plicability of PCRTM methodology.

Table 2 tabulates a quantitative comparison of the re-

trieved surface skin temperature from the IASI spectra with

those measured by the UK Met Office’s Airborne Research

Interferometer Evaluation System (ARIES) instrument for

19 April, 29 April, 30 April, and 4 May 2007. ARIES

is an FTIR thermal emission radiometer with a 1 cm−1
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Table 2. Comparison of the PCRTM retrieved surface skin temperature from the IASI spectra with those measured by the ARIES instrument

for 19 April, 29 April, 30 April, and 4 May 2007.

Date Location Surface pressure Latitude/longitude Satellite overpass Skin temperature Skin temperature

(hPa) (degree) time (UTC) from ARIES (K) from IASI (K)

19 Apr 2007 Land 972.0 88.5◦ W/26.5◦ N 03:35 284.7 284.8

29 Apr 2007 Ocean 1021.7 90.5◦ W/26.9◦ N 15:50 297.8 297.6

30 Apr 2007 Ocean 1017.5 88.5◦ W/26.5◦ N 15:29 298.6 298.1

4 May 2007 Ocean 1009.9 92.0◦ W/27.5◦ N 15:46 297.4 297.1

wavenumber maximum spectral resolution over the range

600 to 3000 cm−1 wavenumbers. The method for deriving

surface skin temperatures from the ARIES instrument is de-

scribed by Newman et al. (2005). The agreement between

the PCRTM retrieved and the ARIES measured skin temper-

atures is better than 0.5 K with a mean difference of 0.18 K.

It should be noted that the footprint sizes of IASI and ARIES

are different in the cross-track direction because the ARIES

only makes NADIR measurements.

Figures 17 and 18 are plots of PCRTM retrieved surface

emissivity spectra and those measured by the ARIES instru-

ment for 19 April and 30 April. The ARIES instrument did

not measure surface emissivity on 29 April and 4 May. For

the purpose of measuring surface emissivity and surface skin

temperature, the ARIES instrument flew close to the Earth’s

surface at very low altitudes. The ARIES instrument mea-

sured both upwelling and downwelling radiation and these

radiances are then used to retrieve the surface emissivity and

skin temperature simultaneously. There are many spectral

regions where the ARIES does not provide surface emissiv-

ity retrievals because of the interferences from atmospheric

CO2, H2O, and solar radiation. For the case of 19 April over

the ARM-CART site, the IASI-retrieved emissivity agrees

with the ARIES measured emissivity within 0.01 units. This

agreement is good considering that the emissivity over the

ARM-CART site is highly dependent on the percent cover-

age of vegetation within a specific area. The IASI covers a

ground footprint of 12 km at nadir, while the ARIES instru-

ment only covers tens of meters when flying near the sur-

face. To minimize the difference due to spatial coverage,

ARIES emissivity data is spatially averaged along the flight

track during the IASI satellite overpass time. For 30 April

2007, the validation is during daytime and the IASI overpass

took place over ocean in Gulf of Mexico. There is no ARIES

emissivity retrieval at short wavelengths due to solar contam-

inations. The agreement between the ARIES measured and

the IASI-retrieved emissivity is much better (within 0.003)

because the ocean surface is more uniform relative to land.

4.3 Atmospheric temperature and moisture profiles

Section 4.1 has shown that the IASI instrument is capable of

providing very detailed atmospheric temperature and mois-

ture structures by using the PCRTM retrieval approach. In

this section, we will perform case studies for 19 April, 29

April, 30 April, and 4 May 2007 during the JAIVEx cam-

paign. The four cases were chosen based on coincidence of

the aircraft under flights and the drop sondes with the IASI

footprints. The location, the surface conditions and the time

of satellite overpasses are listed in Table 2. At this stage of

analysis, only clear FOVs are chosen for quantitative com-

parisons. Because the ARIES instrument only has NADIR

views, the IASI scan angles are all close to NADIR views as

well. We will show comparisons of the IASI-retrieved tem-

perature and moisture profiles with those measured by the

collocated dropsondes and the ECMWF model. We will an-

alyze the retrieval quality by looking at the associated aver-

aging kernels and the retrieval error covariance matrix.

Figure 19 shows comparisons of the retrieved tempera-

ture and moisture vertical profiles with collocated dropson-

des over the Oklahoma ARM CART site on 19 April 2007.

The METOP-A satellite over-passed the ARM site around

03:35 UTC. Dropsondes were launched by the FAAM BAE-

146 aircraft, which flew a north-south track in the vicinity

of the ARM-CART site near Lamont. Because the BAE-146

aircraft flew at an altitude of 12 km, ECMWF temperature

and moisture profiles were used and interpolated to the lo-

cation of the dropsondes for altitudes above the aircraft fly-

ing level. From the METOP-A AVHRR images, there were

no clouds above at all levels during the time of the satel-

lite overpass at 03:35 UTC. The climatology background was

used for the first guess in the retrieval and they are plotted as

black lines in Fig. 19. The IASI FOVs were selected based

on the closeness to the BAE-146 flight path. The differ-

ences between the dropsonde and the retrieval are shown in

the plots that are located in the second column of the figure.

The averaging kernels and their integrated area for tempera-

ture and moisture profiles are shown in plots located on the

right side of the first and second rows. The relative humid-

ity and difference plots are also shown on the left side of the

bottom row. The temperature and moisture error estimates
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Fig. 19. Top left panels: Temperature profiles of the dropsonde from the BAE-140 aircraft and the ECMWF model (blue line), the climatology

first guess (black line), and the PCRTM retrieval (red line) for 19 April 2007. The difference plot is between the dropsonde and the retrieval.

Top right panels: Temperature averaging kernels and the integrated area. Middle left panels: Moisture profiles of the dropsonde, the

climatology first guess, and the PCRTM retrieval. The difference plot is between the radiosonde and the retrieval in mixing ratio unit. Middle

right panels: Moisture averaging kernels in logarithm unit and the integrated area. Bottom left panels: Relative humidity profiles of the

dropsonde, the climatology first guess, and the PCRTM retrieval. The difference plot is between the radiosonde and the retrieval. Bottom

right panels: The temperature and moisture error estimates from the retrieval covariance matrix (Eq. 11).

from the retrieval covariance matrix are plotted on the bot-

tom right portion of the figure. The agreement between the

IASI-retrieved and the dropsonde/ECMWF temperature pro-

files are very good except near 90 hPa. The fine-scale error

pattern is due to the null-space error which the retrieval sys-

tem has no sensitivity. Typically, these fine-scale error fea-

tures are smaller than the half width of the corresponding av-

eraging kernel. It is evident from Fig. 19 that the integrated

area for the temperature averaging kernels are all close to 1.0,

indicating that the IASI measurement contains 100 percent

information relative to climatology background. In order to

resolve those fine vertical structures, other a priori informa-

tion such as NWP forecast error covariance matrix and the

associated forecast temperature profiles are needed. Because

the water vapor mixing ratio changes by two orders of mag-

nitude from surface to tropopause, the moisture profiles are

plotted in logarithmic scale. The averaging kernels and the

retrieval error estimates are also related to the logarithm of

water mixing ratio. The difference plot between the drop-

sonde and the retrieval is presented as mixing ratio in g/kg

since we cannot take a logarithm of the negative numbers. It

is therefore difficult to see the retrieval error in the difference

plot. In general, as the altitude increases the retrieval error

gets larger and the averaging kernel gets broader. As men-

tioned before, the integrated areas of averaging kernels for

pressure levels less than 200 hPa are smaller than one, indi-

cating that the climatology background contribute to the final

solution. The retrieval errors are largest above 200 hPa which

is consistent with the retrieval error estimate and the averag-

ing kernel area. For levels between the surface (972 hPa) and

800 hPa, the retrieved moisture profile also depends on the

shape of the first guess. Fortunately for this day, the moisture
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Fig. 20. Same as Fig. 19, except for 29 April 2007 over the Gulf of Mexico.

structure below 800 mbar is smooth and has similar shape as

the a priori moisture profile. The retrieval performance is

good for this case. The relative humidity plot shows more

clearly how the retrieval is able to capture the large struc-

ture of the moisture vertical profile. For this case the relative

humidity errors are less than 15 percent between the surface

and 100 hPa. The agreement between the IASI-retrieved and

the dropsonde/ECMWF temperature profiles are very good

except near 90 hPa. The fine-scale error pattern is due to the

null-space error which the retrieval system has no sensitiv-

ity. Typically, these fine-scale error features are smaller than

the half width of the corresponding averaging kernel. It is

evident from Fig. 19 that the integrated area for the tempera-

ture averaging kernels are all close to 1.0, indicating that the

IASI measurement contains 100 percent information relative

to climatology background. In order to resolve those fine

vertical structures, other a priori information such as NWP

forecast error covariance matrix and the associated forecast

temperature profiles are needed. Because the water mixing

ratio changes by two orders of magnitude from surface to

tropopause, the moisture profiles are plotted in logarithmic

scale. The averaging kernels and the retrieval error estimates

are also related to the logarithm of water mixing ratio. The

difference plot between the dropsonde and the retrieval is

presented as mixing ratio in g/kg since we cannot take a log-

arithm of the negative numbers. It is therefore difficult to see

the retrieval error in the difference plot. In general, as the

altitude increases the retrieval error gets larger and the av-

eraging kernel gets broader. As mentioned before, the inte-

grated areas of averaging kernels for pressure levels less than

200 hPa are smaller than one, indicating that the climatology

background contributes to the final solution. The retrieval er-

rors are largest above 200 hPa which is consistent with the

retrieval error estimate and the averaging kernel area. For

levels between the surface (972 hPa) and 800 hPa, the re-

trieved moisture profile also depends on the shape of the first

guess. Fortunately for this case, the moisture structure be-

low 800 mbar is smooth and has similar shape as the a priori

moisture profile. The retrieval performance is good for this

case. The relative humidity plot shows more clearly how the

retrieval is able to capture the large structure of the moisture

vertical profile. For this case the relative humidity errors are

less than 15 percent between the surface and 100 hPa.
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Fig. 21. Same as Fig. 19, except for 30 April 2007 over the Gulf of Mexico.

Figure 20 is the case study for 29 April 2007. The air-

craft flew a track running along the 90.5◦ W meridian over

the ocean in the Gulf of Mexico. The IASI overpass time is

at 15:50 UTC. For the region near 90.5◦ W and 26.9◦ N, the

sky is free of clouds as identified in METOP AVHRR im-

ages. Our retrievals also show that the cloud optical depth

is zero in this region (see Fig. 15). It can be seen that the

temperature difference between the IASI retrieved and the

dropsonde is large near the surface. The temperature averag-

ing kernel for altitude below 900 hPa is about 0.7, indicating

that the IASI spectrum does not provide 100 percent of the

temperature information in this altitude range. This dispar-

ity is caused by the very small thermal contrast between the

near surface air and the ocean surface. The dropsonde shows

that the near surface air temperature is 296.64 K while the

ocean surface temperature is 297.8 K. In addition to the low

surface to air thermal contrast, the dropsonde measurement

shows that the air temperature between 950 hPa to 1022 hPa

is almost isothermal. Due to the small thermal contrast, any

emissions and absorptions by the atmospheric CO2 and H2O

below 950 mbar will have very small signals, making it diffi-

cult to retrieve both temperature and moisture profile in this

narrow pressure range. The a priori profile (black line on

the top right panel in Fig. 20) does not help the retrieval to

get the isothermal structure since the background air temper-

ature monotonically changes with pressure near the surface.

For the case of 19 April, the near surface air temperature is

about 4 K higher than the surface skin temperature and the

air temperature increases with altitude; therefore the temper-

ature averaging kernel near the surface is close to 1.0. Errors

for the retrieved moisture profile for 29 April are larger than

that of 19 April. The dropsonde moisture profile shows very

fine vertical structures which are smaller than the half width

of the moisture averaging kernels. The retrieval does capture

the general shape of the moisture variation with the altitude.

The errors are larger for pressure levels less than 200 mbar

and for those levels between 800 mbar and the surface. This

result is consistent with the averaging kernel information.

For the altitude range between 500 mbar and 800 mbar, the

errors seem to be larger than what is expected from the aver-

aging kernels. This result may be due to too strong of regu-

larization applied to the non-linear inversion process and will

be studied further in the future.
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Fig. 22. Same as Fig. 19, except for 4 May 2007 over the Gulf of Mexico.

Figure 21 is the case study for 30 April 2007. The IASI

overpass time is at 15:29 UTC. The coincident measurements

were made in a region near 88.5◦ W and 26.5◦ N over the

ocean in the Gulf of Mexico. Figure 22 is the case study for

4 May 2007. The IASI overpass time is at 15:46 UTC. The

coincident measurements were made in a region near 92◦ W

and 27.5◦ N over the Gulf of Mexico as well. The retrieval

performance is very similar to that of 29 April 2007. The

temperature integrated areas of the averaging kernel for alti-

tude below 900 hPa are smaller than 1.0. For both of these

days, the thermal contrast between ocean surface and the

near surface air temperature is still small (less than 1 K). The

retrieved moisture profiles have captured the broad features

while they missed all the fine details. For the cases of 29

April, 30 April, and 4 May, the measurements were made

during the day-time and the retrievals do not use spectral re-

gion greater than 2000 cm−1 because handling solar radiation

is not yet included in the retrieval process. When the solar

zenith angle is less than 89 degrees, the magnitude of the so-

lar component in spectral region 1800–2000 cm−1 typically

varies from 0.1 K to 5 K in brightness temperature units, de-

pending on the atmospheric conditions. We account for this

error source by adding an equivalent of 10 K error (bright-

ness temperature calculated at 280 K) in this spectral region

when we generate the Sy error covariance matrix during the

inversion process. We will include the solar modeling and

other trace gases in our future studies.

5 Summary and conclusions

We have demonstrated that by converting IASI spectra into

super channels, we can retrieve atmospheric and surface

properties efficiently from a PCRTM-based inversion algo-

rithm. By performing the retrieval in EOF space, the algo-

rithm is essentially using all the available IASI spectral in-

formation, but with a much smaller dimensions and faster

speed. For a given state vector, the PCRTM model pro-

vides PC scores and associated Jacobian. The inversion ap-

proach is based on a maximum-likelihood method and uses

the Levenberg-Marguardt algorithm for dealing with non-

linearity of the radiative transfer equation. We plan to run

the PCRTM model in both the PC and the channel spaces

so that we can quantify the pros and cons of the PC-based
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methodology. In addition to atmospheric temperature and

moisture profiles, cloud properties such as cloud optical

depth, cloud particle size, cloud phase, and cloud top pres-

sure are retrieved directly. Unlike the cloud-clearing algo-

rithm, which relies on several FOVs in order to generate

cloud-cleared radiances, the PCRTM-based retrieval algo-

rithm is performed on a single IASI field of view (FOV) and

can be done for both clear and cloudy FOVs. Currently, we

have no quantitative validation of the retrieved cloud parame-

ters and we plan to validate our cloud retrieval methodology

by collocating IASI data with those from A-train data in a

future study.

We have applied the super channel retrieval algorithm to

IASI spectra taken during the JAIVEx field campaign in the

spring of 2007. The retrieval algorithm is capable of fitting

IASI radiances to within instrument noise level at most fre-

quency ranges. Currently, we set the “noise-level” as the

original IASI instrument noise specifications. Although the

radiance residuals in many spectral regions (most noticeably

in band 3) are much less than the native IASI noise, we de-

cided not to fit the radiance spectrum to the PC-filtered noise

level at this stage because we have not accounted for many

error sources such as uncertainty in spectroscopy and errors

caused by trace gases that are not currently retrieved in the

inversion process. Due to the high information content of

the IASI instrument, three-dimensional atmospheric struc-

ture can be effectively retrieved using the PCRTM-based re-

trieval algorithm. The retrieved cloud features compare well

with the collocated IIS data. The retrieved surface emis-

sivity data and surface skin temperatures compare well with

the measurements from the ARIES instrument. Quantitative

comparisons of the retrieved atmospheric temperature and

moisture profiles have been compared with airborne drop-

sonde measurements from the BAE-146 aircraft for 19 April,

29 April, 30 April, and 4 May. Averaging kernels corre-

sponding to those retrievals have been plotted to reveal the

insight of the vertical resolution of the retrieved temperature

and moisture profiles. The integrated areas and the peak lo-

cations of the averaging kernels provide the information con-

tent for each atmospheric level. In general, the retrieval er-

rors are consistent with the information content analysis and

the error estimate from the retrieval system. Although, ozone

and CO are already retrieved in our current algorithm, we

will validate the products in our future work. We plan to fur-

ther study the impact of a priori information and the effect of

not retrieving other trace gases on accuracy of temperature

and moisture retrievals.
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