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Abstract

Content-based image retrieval (CBIR) techniques have currently gained increasing popular-

ity in the medical field because they can use numerous and valuable archived images to

support clinical decisions. In this paper, we concentrate on developing a CBIR system for

retrieving brain tumors in T1-weighted contrast-enhanced MRI images. Specifically, when

the user roughly outlines the tumor region of a query image, brain tumor images in the data-

base of the same pathological type are expected to be returned. We propose a novel feature

extraction framework to improve the retrieval performance. The proposed framework con-

sists of three steps. First, we augment the tumor region and use the augmented tumor

region as the region of interest to incorporate informative contextual information. Second,

the augmented tumor region is split into subregions by an adaptive spatial division method

based on intensity orders; within each subregion, we extract raw image patches as local

features. Third, we apply the Fisher kernel framework to aggregate the local features of

each subregion into a respective single vector representation and concatenate these per-

subregion vector representations to obtain an image-level signature. After feature extrac-

tion, a closed-form metric learning algorithm is applied to measure the similarity between

the query image and database images. Extensive experiments are conducted on a large

dataset of 3604 images with three types of brain tumors, namely, meningiomas, gliomas,

and pituitary tumors. The mean average precision can reach 94.68%. Experimental results

demonstrate the power of the proposed algorithm against some related state-of-the-art

methods on the same dataset.

Introduction

In modern hospitals, a large number of medical images are produced, diagnosed, and archived

in picture archiving and communication systems every day. The use of stored visual data for

clinical decision support, radiologist training, and research in medical schools would be of

great clinical benefit. These demands have made CBIR an active research area in medicine.

Compared with text-based image retrieval, the CBIR can search query images from a database
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according to their visual content. Recent years have witnessed a growing interest in CBIR for

various medical images, such as MRI images [1–3], CT images [4], mammograms [5], and

pathology images [6]. In this paper, we focus on developing a CBIR system for retrieving MRI

images of brain tumors to assist radiologists in the diagnosis of brain tumors.

Accurate diagnosis is important for the successful treatment of brain tumors. However, the

diagnosis of the brain tumor is challenging because even brain tumors of the same class can

have large variations in their shape, margin, size, and texture because of the severity, age, or

some other factors. And conversely, tumors belonging to different pathological types may

exhibit similar appearances. Example images are shown in Fig 1.

Conventional diagnoses of brain tumor images are made by human interpretation, which

heavily relies on the experience of radiologists who review and analyze the characteristics of

the images. Consequently, interobserver and intraobserver variability are inevitable. Neverthe-

less, the CBIR-based computer-aided diagnosis system can easily solve this problem in a sys-

tematic manner. When the radiologist is uncertain of the diagnosis of a brain tumor case, he

can search the database of past resolved cases for images that have the most similar visual

features to those of the query image. Based on the associated diagnostic information of the

retrieved set, the radiologist can make a diagnostic decision.

The key factors for the development of CBIR systems of high retrieval accuracy are dis-

criminative features and a suitable similarity/distance metric. The feature extraction is a fun-

damental step. First-order statistics (e.g., the mean, standard deviation, and skewness) and

second-order statistics derived from gray level co-occurrence matrix, shape, and Gabor filters

are frequently used low-level features [1,7–11]. Unfortunately, the power of these low-level

features is limited because of the complex texture presented in the tumor region. In addition

to these low-level features, there are some more effective alternatives such as bag-of-words

(BoW) model [12–14] and Fisher vector (FV) [15,16], both of which aggregate local features

into a single vector representation and are commonly used in the computer vision commu-

nity. Briefly, BoW representations can be extracted in two steps. First, a visual vocabulary is

built by clustering the feature space populated with local features extracted from image (or

ROI) set. The clustering centroids are the visual words in the visual vocabulary. Second, the

local features of an image are extracted and quantized, and then the image is represented as a

vector of visual word occurrences. Compared with BoW, FV usually show much better perfor-

mance for general image classification and retrieval tasks [15,17,18]. Moreover, FV is cheaper

to compute because less visual words are required. FV represents a sample by its deviation

from the generative model. The deviation is measured by calculating the gradient of the sam-

ple log-likelihood with respect to the model parameters. In this paper, in terms of brain tumor

retrieval, we compared Bow and FV representations, and also verified that FV is vastly supe-

rior to BoW.

Note that medical images are distinctly different from general images, such that some kinds

of local features that work well for general images may not apply to medical images. For

instance, the scale-invariant feature transform (SIFT) descriptor, a well-known local feature

that is typically extracted from key points, has demonstrated its excellent robustness and dis-

criminative power in natural image classification and retrieval tasks [15,19–21]. This descriptor

is usually combined with the bag-of-words (BoW) model and Fisher kernel framework to gen-

erate an image-level signature. However, its performance in retrieving brain tumor images is

inferior according to the results reported by Yang [1]. Two main reasons may account for this.

First, key points exist in natural images while there may be few meaningful key points existing

in the brain tumor region. Second, the gradient information used in a SIFT descriptor may not

have as much information as the intensity values in medical images. In view of the abovemen-

tioned analyses, we choose to use raw image patches as local features.
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Several medical researchers have been engaged in CBIR. Quellec et al. [22] described a

method that used wavelet transform for CBIR in medical databases. Jiang et al. [5] proposed

the use of scalable image retrieval for computer-aided diagnosis of mammographic masses.

Specifically, for a query mammographic region of interest (ROI), SIFT descriptors are extracted

and searched in a vocabulary tree. The retrieved ROIs are used to determine whether the query

ROI contains a mass. Several studies have used the BoWmodel to retrieve brain tumor images.

In the work on brain tumor retrieval by Yang [1], the intensity profiles were extracted along

the normal of tumor boundary and aggregated into a feature vector using the BoWmodel.

Moreover, a DML algorithm, named MPP, was designed to maximize the smooth approxi-

mated mean average precision (mAP) and improve the retrieval performance. One disadvan-

tage of Ref. [1] is that the spatial information of local features was completely disregarded.

Inspired by the spatial pyramid [19], Huang et al. [2] characterized brain tumors with region-

specific BoW histograms, that is, they applied BoWmodel to tumor region and tumor margin

region separately. Densely sampled raw image patches were used as local features in their work.

Compared with the work by Yang [1], the retrieval performance is improved. In another work

by Huang [3], a bounding box covering the brain tumor was used as the ROI, and a learned

region partition method was applied. The raw image patches were used as local features and

pooled per subregion with a BoWmodel. A new DML algorithm aimed at minimizing rank

error was adopted. Compared with Ref. [2], the retrieval performance is slightly improved.

For clarity, the specific contributions of this paper are summarized as follows:

• We augment the tumor region and use the augmented tumor region as the ROI to incorpo-

rate informative contextual information. The knowledge of the acquired medical images and

disease characteristics is necessary to extract more informative features. For instance, brain

tumors of the same pathological type are often found in similar places, which indicates that

both tumor region and tumor-surrounding tissues can provide important clues for the iden-

tification of tumor types.

• We employ the adaptive spatial pooling strategy proposed in Ref. [23] to automatically split

the ROI into subregions based on intensity orders. In this case, both spatial information and

intensity distributions are considered, thereby making the final feature representations more

discriminative.

• We investigate the power of the FV to retrieve brain tumor images of the same pathological

type and compare it with BoW. Experimental results show that FV significantly outperform

BoW. The main drawback of BoW is that it normally requires a large-sized visual vocabulary

to obtain good performance, especially for datasets with large variation. The descriptor

Fig 1. Both (a) and (b) are meningiomas, but they have very different appearances. Although (c) is a pituitary
tumor, it exhibits similar appearances to (a). Red arrows indicate tumors.

doi:10.1371/journal.pone.0157112.g001
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quantization is a lossy process as outlined by Boiman et al. [21]. A small vocabulary leads to

large quantization error, thereby making the final feature representation less discriminative.

The rest of this paper is organized as follows. Section 2 introduces the image data and the

details of each component of the proposed method. Section 3 presents the experimental results.

Section 4 gives the discussion. Finally, Section 5 summarizes the conclusion of this work.

Materials and Methods

Ethics statement

The Ethics Committees of Nanfang Hospital and General Hospital,Tianjin Medical University

approved all study procedures. Patient records/information was anonymized and de-identified

prior to analysis, and written informed consent was obtained from all participants.

Image data

The proposed method is based on 2D slices. In clinical settings, usually only a certain number

of slices of brain contrast-enhanced MRI (CE-MRI) with a large slice gap are acquired and

available. Therefore, the development of a 2D image-based CBIR system for clinical applica-

tions is more practical. The dataset of brain T1-weighted CE-MRI images consists of 3064

slices from 233 patients, including 708 meningiomas, 1426 gliomas, and 930 pituitary tumors,

which are publicly available (http://dx.doi.org/10.6084/m9.figshare.1512427). Representative

slices that have large lesion sizes are selected to construct the dataset. In each slice, the tumor

boundary is manually delineated by radiologists.

Overview of methods

A CBIR system typically consists of two phases: offline database building and online retrieval.

In the offline database building phase, brain tumor images undergo a series of processing steps,

including tumor segmentation, feature extraction, and distance metric learning. Features of

these images, with class labels and some other meta-data associated with diagnostic informa-

tion, are indexed and stored in the database. In the online retrieval phase, when given a query

image, we extract the features of the query image in the same way and compare it with the

image features in the database via the learned distance metric. The most similar images are

returned and can be used by a radiologist to aid diagnosis.

The three-step workflow of the proposed feature extraction framework is shown in Fig 2.

First, by considering the informative contextual information, we augment the tumor region and

use the augmented tumor region as the ROI (the tumor region is manually delineated in this

paper, but actually we only need to roughly outline its location because we use the augmented

tumor region as the ROI). Second, based on the intensity orders, the ROI is split into several

subregions; within each subregion, we extract raw image patches as local features and then

reduce their dimension by principal component analysis (PCA). Third, by inheriting the princi-

ple of a spatial pyramid [19], Fisher vectors (FVs) are computed per subregion; the resulting

FVs are concatenated to form the final feature representation. A closed-formmetric learning

algorithm is adopted for distance metric learning; this algorithm is simple and effective [2,24] to

measure the similarity/distance between the query image and the database images.

Tumor region augmentation

As pointed out in Refs. [25,26] with regard to feature region detection, capturing a certain

amount of context around a detected feature benefits by enlarging the descriptor measurement
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region. This approach can also help with the feature extraction in brain tumor images because

the tissues surrounding the tumor can provide a basis for the diagnosis of the brain tumor. For

example, meningiomas are usually adjacent to the skull, gray matter, and cerebrospinal fluid.

Gliomas typically involve white matter. Pituitary tumors are adjacent to sphenoidal sinus,

internal carotid arteries, and optic chiasma. In the work by Yang [1], the tumor margin infor-

mation was leveraged by sampling the intensity profiles along the normal of tumor boundary

and applying the BoWmodel to aggregate the intensity profiles into a feature vector. However,

in this paper, we simply augment the tumor region via image dilation with a disk-shaped struc-

turing element of radius R and use the augmented tumor region as the ROI. This procedure is

illustrated in Fig 2. An appropriate R can be determined by testing several different values.

Region division

We adopt the region division method proposed in Ref. [23] to divide the ROI into multiple

subregions. Specifically, all the pixels in the ROI are first sorted by their intensities in ascending

order. Subsequently, these pixels are divided equally into n bins, where pixels in the same bin

form a subregion. Fig 2 illustrates an example of intensity order-based region division.

After region division, the raw image patches, which are centered at each pixel in each of the

n subregions, are pooled by the Fisher kernel framework. The resulting FVs for these subre-

gions are concatenated to form the representation of the brain tumor image.

The division based on intensity orders is not limited to the shape of the ROI. A spatial pyra-

mid with fixed grid partitioning was introduced by Lazebnik et al. [19] to take into account the

rough geometry of a scene. This approach was shown to be effective for scene recognition [19].

However, the fixed grid partitioning method is unsuitable for direct application to ROIs with

Fig 2. Workflow of the proposed feature extraction framework.

doi:10.1371/journal.pone.0157112.g002
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large variations in shape. The ROIs used in this paper are the cases. Division based on the

intensity orders naturally bypasses this problem, which is spatially adaptive and more flexible.

Fisher vector

In this section, we provide a self-contained representation of the Fisher kernel framework

[15,16], which is a powerful technique to convert a variable-size set of independent samples

into a fixed-size vector representation. The Fisher kernel characterizes a sample by its deviation

from the generative model. The deviation is measured by computing the gradient of the sample

log-likelihood with regard to the model parameters. This approach produces a vectorial repre-

sentation that we refer to as FV. In this paper, the samples are vectorized raw image patch

descriptors. We choose a Gaussian mixture model (GMM) as generative model, which can be

understood as a “probabilistic visual vocabulary.” Subsequently, we will describe how to com-

pute a FV for an image.

Let X = {xt, t = 1. . .T} be the set of d-dimensional local features extracted from an image, for

example, a set of image patches extracted from one subregion in this paper. The generation

process of X can be modeled by a probability density function ul ¼
X

K

k¼1

wkuk, which is a GMM

of K components with parameters λ = {wk, μk, ∑k, k = 1,. . ., K} where wk, μk, and ∑k are the mix-

ture weight, mean vector, and diagonal covariance matrix, respectively, of Gaussian uk. Jaak-

kola and Haussler [16] proposed to represent X with the following vector:

GX
l
¼ 1

T
rllogulðXÞ: ð1Þ

The gradient of the log-likelihood describes how the parameters of the generative model should

be modified to better fit the data X. Note that the dimensionality of GX
l
depends only on the

number of parameters in λ and not on the sample size (T). A natural kernel on these gradients

is the “Fisher kernel” [16]:

KðX;YÞ ¼ GX
l
F�1

l
GY

l
ð2Þ

where Fλ is the Fisher information matrix of uλ:

Fl ¼ Ex�ul
½rllogulðxÞrllogulðxÞ

T�: ð3Þ

Given that Fλ is positively semi-definite; thus, Fλ has a Cholesky decomposition:

F�1

l
¼ LT

l
Ll. Therefore, the Fisher kernel K(X, Y) can be rewritten as a dot-product between

normalized vectors (gλ), which are obtained as

gX
l
¼ LlG

X
l
: ð4Þ

We refer to this normalized gradient vector as the FV of X.

Subsequently, we will give explicit expressions of the gradients. The parameters of GMM

are estimated on a large training set of local features by maximum likelihood estimation. We

use the diagonal closed-form approximation of the Fisher information matrix proposed in

Ref. [17]. In this paper, the gradients with respect to the mean and variance are used. Let γt(k)

denote the soft assignment of xt to the Gaussian k, which is also known as the posterior

Retrieval of Brain Tumors

PLOS ONE | DOI:10.1371/journal.pone.0157112 June 6, 2016 6 / 15



probability:

gtðkÞ ¼
wkukðxtÞ

X

K

i¼1

wiuiðxtÞ
: ð5Þ

Let gXuk and g
X
sk
denote the d-dimensional gradients with respect to the mean μk and variance σk,

respectively, of Gaussian k, where σk is the variance vector, that is. the diagonal of ∑k. After

standard mathematical derivations, we obtain

gXuk ¼
1
ffiffiffiffiffi

wk

p
X

T

t¼1

gtðkÞ
xt � uk

sk

� �

; ð6Þ

gX
sk
¼ 1

ffiffiffiffiffi

wk

p
X

T

t¼1

gtðkÞ
1
ffiffiffi

2

p ðxt � ukÞ
2

s2

k

� 1

� �

; ð7Þ

where the division and exponentiation should be understood as term-by-term. The final FV is

the concatenation of the gradients gXuk and g
X
sk
for k = 1,. . ., K; thus, the FV is of dimension 2dK.

Compared with BoW, FV only needs 2d times fewer visual words to obtain a signature of the

same length. In Section 3, experiments demonstrate that excellent results can be obtained even

with a small number of visual words ranging from K = 16 to K = 128.

As mentioned in previous work [15,27], two measures are required to ensure that FV has

excellent performance. The first measure is PCA dimensionality reduction; the second is nor-

malization. Before applying the Fisher kernel framework, the dimensionality of local features is

reduced by PCA. Two reasons may explain the positive effect of PCA [15]. First, PCA provides

a better fit to the diagonal covariance matrix assumption because of the decorrelation effect of

PCA. Second, the GMM estimation is noisy for less energetic components. Normalization con-

sists of two steps. First, power normalization is performed to each component of the FV with

the following operator:

f ðzÞ ¼ signðzÞjzja ð8Þ

where α is typically set to 0.5. Second, the power-normalized FV is L2-normalized.

Closed-form metric learning

In the retrieval phase, the similarities are computed between the query image and database

images. An appropriate distance metric is crucial to a CBIR system of good performance. The

power of traditional rigid distance functions, such as the Euclidean distance and cosine similar-

ity, is limited because of the complexity of the image content and the sematic gap between low-

level visual features and high-level human interpretation [28,29]. To alleviate this problem,

numerous distance metric learning algorithms can be applied [1,3,30–33]. The primary idea of

distance metric learning is to find an optimal metric that keeps intraclass samples close while

separating interclass samples as much as possible.

A major branch of metric learning is to learn the Mahalanobis distance. In literature, the

(squared) Mahalanobis distance refers to the generalized quadratic distance, which is defined
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as:

dMðxi; xjÞ ¼ ðxi � xjÞ
T
Mðxi � xjÞ

¼ ðxi � xjÞ
T
LTLðxi � xjÞ

¼ ðLxi � LxjÞ
TðLxi � LxjÞ

ð9Þ

where xi 2 Rn,M 2 Rn×n, andM is a positive semi-definite (PSD) matrix. From this equation,

we can see that ifM is low-rank, a linear projection of the data is induced into a space of lower

dimensions. Therefore, a more compact representation of the data with cheaper computational

cost is produced. Some researchers propose to optimize an objective function with respect toM

while others perform optimization with respect to L. Optimization with respect toM often

needs the projection ofM to the PSD cone by setting the negative eigenvalues to zero at each

iteration [30,33]. However this procedure is extremely time-consuming especially for high-

dimensional features because of the eigen-decomposition on a large matrix. Optimization with

respect to L can reduce the need for costly projections on the PSD cone. Based on these consid-

erations above and the fact that the FV is typically high-dimensional, we adopt the closed-from

metric learning algorithm (CFML) proposed by Alipanahi et al. [24]. The same algorithm was

used by Huang [2] to retrieve brain tumor images.

Subsequently, we briefly introduce the closed-form metric learning algorithm. Suppose that

the class labels are provided. We can then construct two sets of image pairs:

S ¼ fðxi; xjÞjlabelðxiÞ ¼ labelðxjÞg
D ¼ fðxi; xjÞjlabelðxiÞ 6¼ labelðxjÞg

ð10Þ

where label(xi) denotes the class label of the image representation xi. The optimization problem

is expressed as

argmin
L

TrðLðMS �MDÞLTÞ

s:t: LMSL
T ¼ I

ð11Þ

where

MS ¼
1

jSj
X

ðxi ;xjÞ2S
ðxi � xjÞðxi � xjÞ

T
; ð12Þ

MD ¼ 1

jDj
X

ðxi ;xjÞ2D
ðxi � xjÞðxi � xjÞ

T
; ð13Þ

and Tr() denotes the trace of a square matrix, and I is an identity matrix.

The CFML algorithm tries to minimize the squared Mahalanobis distances between intra-

class points while maximizing the squared Mahalanobis distances between interclass points.

The closed-form solution is provided by the matrix of eigenvectors corresponding to the largest

eigenvalues of the matrixM�1

S MD. Similar to the previous work [2,4], we also use a regulariza-

tion form of CFML in this paper by replacing LMSL
T = I with L(MS+λI)L

T = I where λ is a

small positive value that was empirically set to 1.5e-4.
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Results

Experimental settings

Following the experimental setup in Refs. [1,3], we randomly split the 233 patients into 5 sub-

sets of roughly equal size. Partitioning according to the patient ensures that slices from the

same patient will not simultaneously appear in the training set and test set. For all the experi-

ments, fivefold cross-validation is used. In fivefold cross-validation, one subset is sequentially

used as the test set (query images), whereas the remaining four subsets are used as training set

(database).

To evaluate the retrieval performance, we adopt the mAP and top-n retrieval precision

(denoted as prec@n). We report the final results as the mean of the results of five runs. Below,

we will introduce how to compute mAP and prec@n. Precision and recall can by calculated by:

precision ¼
X

K

i¼1

Ti=K;

recall ¼
X

K

i¼1

Ti=
X

N

i¼1

Ti;

ð14Þ

where Ti = 1 if query image xq and database image xi are relevant (namely they contain tumors

of the same type); otherwise, Ti = 0, K = 1,2,. . .N is the number of retrieved images, and N is

the number of images in the database. Given a query image, the images in database are ranked

according to their distances to the query image in ascending order. Prec@n is the precision at

the position where the n most similar database images are returned. The average precision

(AP) is the average of the precisions at the positions where a relevant image exists in the rank-

ing list. Finally, the mAP is just the mean AP over all the query images.

For the PCA dimensionality reduction on local features, we randomly choose 300 K local

features from the training set to learn the PCA projection matrix. Then the dimensionality of

all the local features extracted from training set and test set is reduced by multiplying the pro-

jection matrix. The reduced dimensionality is determined such that the preserved components

explain at least 99% of all variability.

For FV computation, we use the released code from the VLFeat toolbox [34].

Parameter selection

There are five parameters in our method: (1) the radius (R) of the disk-shaped structuring ele-

ment used to dilate the tumor region, (2) the number (N) of pooling regions created by the

intensity order-based division method, (3) the size (W) of raw image patches that are used as

local features (i.e.,W×W square patch), (4) the number (K) of vocabulary size (i.e., the number

of Gaussians in a GMM), and (5) the reduced dimensionality (D) in new space induced by the

projection matrix (L) learned in CFML, namely the number of rows of L. Given that trying

every possible parameter combination is impractical, we choose to observe the effect of one

parameter each time while keeping the other parameters fixed. In addition, we consider only

the effect of the parameters R, N, andW in this section. The effect of parameters K and D will

be presented in the subsequent section.

Radius of disk-shaped structuring element. We set the parameters N,W, K, and D to 1,

7, 64, and 2, respectively, and let R range from 0 to 32. Retrieval results with different R are

shown in Table 1. R = 0 indicates we only the tumor region as the ROI without augmentation.

From R = 0 to R = 8, the mAP value is significantly improved, which proves our previous state-

ment that tumor-surrounding tissues can also provide important clues for the identification of
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brain tumor types. The best result is obtained at R = 24. When R equals 24, the performance

begins to decrease, which is expected because too much normal tissues are included. In our

subsequent experiments, we set R to 24.

Number of pooling regions. We set the parameters R,W, K, and D to 24, 7, 64, and 2,

respectively, and let N range from 1 to 8. Table 2 shows that the retrieval performance is consis-

tently improved with the increasing number of pooling regions. However, we do not try values

greater than 16 because of the computational cost. Considering that from R = 8 to R = 16, the

improvement is slight and that we will observe the effect of other parameters in the following

experiments, we set N to 8 in the subsequent experiments.

Patch size. We set the parameters R, N, K, and D to 24, 8, 64, and 2, respectively, and let

W range from 5 to 9. As shown in Table 3, the retrieval performance is improved as theW

increases from 5 to 9, but the improvement fromW = 5 toW = 7 is more obvious than that

fromW = 7 toW = 9. This difference may be attributed to the texture of larger patches, which

contain more variability than that of small patches. Thus, a larger vocabulary and a larger train-

ing set of local features are needed to exert the largest effect. Section 3.3 shows that when a

larger vocabulary is used, the performance can be further improved. In the following experi-

ments, we setW to 9.

Comparison with BoW

We compare two local feature aggregation methods: the BoW and FV representations. For the

BoW representation, a k-means clustering algorithm is used to generate the visual vocabulary.

Note that we use the same feature extraction framework for BoW and FV. That is, we use the

augmented tumor region as the ROI, divide it into subregions, apply the local feature aggrega-

tion method to each subregion, and finally concatenate the per-region representations. The

parameters R, N, andW are set to 24, 8, and 9 respectively according to Section 3.2. We let K

range from 16 to 128, and let D range from 1 to 10. For a given vocabulary size K, we report the

best result of different D values.

The mAP performance in Fig 3 is a function of the visual vocabulary size. Comparing

BoW and FV using the same vocabulary size may be unfair to BoW since the length of FV is

2d (d is the dimensionality of the local features) times as long as BoW. We use different

vocabulary size for BoW and FV to make the feature vectors of BoW and FV have the same

length. Fig 4 shows the mAP performance as a function of feature dimensionality. The

Table 2. Evaluation of mAP performance with differentN (mean ± std %).

N 1 2 4 8 16

mAP 88.33±1.36 90.27±0.99 92.38±0.78 93.50±0.53 94.01±0.46

doi:10.1371/journal.pone.0157112.t002

Table 3. Evaluation of mAP performance with differentW (mean ± std %).

W 5 7 9

mAP 90.37±1.19 93.50±0.53 93.91±0.63

doi:10.1371/journal.pone.0157112.t003

Table 1. Evaluation of mAP performance with differentR (mean ± std %).

R 0 8 16 24 32

mAP 84.01±1.68 86.31±1.74 87.74±1.46 88.33±1.36 87.88±0.97

doi:10.1371/journal.pone.0157112.t001
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following observations can be made. First, as the vocabulary size or feature dimensionality

increases, the retrieval performance of both BoW and FV is improved. Second, for a given

vocabulary size, FV significantly outperforms BoW. This trend is to be expected because for a

given vocabulary size, the dimensionality of FV is much higher than that of BoW. The differ-

ence is especially pronounced when the vocabulary size is small. Third, for a given number of

Fig 3. Retrieval performance of the BoW and FV as a function of vocabulary size.

doi:10.1371/journal.pone.0157112.g003

Fig 4. Retrieval performance of the BoW and FV as a function of feature dimensionality.

doi:10.1371/journal.pone.0157112.g004
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dimensions, the FV also performs much better than the BoW. These results demonstrate the

power of the FV representation.

We also show the effect of different values of D on the BoW and FV in Fig 5. The feature

dimensionality for BoW and FV is 24 576. As can be seen, the best results for both BoW and

FV are achieved when D is equal to 2. When D is greater than 2, the mAP performance nearly

remains unchanged. These results indicate that the CFML is robust for the reduced dimension-

ality D. Furthermore, achieving good retrieval performance at such low dimensionality can

significantly reduce the computational cost in the retrieval phase. In our experiments, we

observed the effect of parameter D for other feature dimensionalities has similar curves, so we

list only one example for brevity here.

Retrieval performance of the proposed method

Compared with the mixed-type retrieval performance, we evaluate the retrieval performance of

the proposed method for different tumor types in this section. The parameters R, N,W, K, and,

D are set to 24, 8, 9, 128, and 2, respectively. Table 4 summarizes the results. The retrieval per-

formance of meningiomas is much lower than those of gliomas and pituitary tumors. One pos-

sible reason is the data imbalance between different tumor categories.

Fig 5. Evaluation of mAP performance with different D for the BoW and FV.

doi:10.1371/journal.pone.0157112.g005

Table 4. Retrieval performance of the proposedmethod for different types of brain tumors
(mean ± std %).

Tumor type mAP Prec@10 Prec@20

Meningioma 88.77±3.07 86.33±4.04 86.30±3.96

Glioma 97.64±0.67 95.98±0.96 96.05±1.01

Pituitary tumor 94.82±3.42 92.76±4.69 92.77±4.68

doi:10.1371/journal.pone.0157112.t004
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Comparison with related works

To demonstrate the power of the proposed method, we compare it with three other brain

tumor retrieval methods [1–3]. A brief overview of the three methods can be found in Section

1. In all four methods, the same dataset is used with fivefold cross-validation. The comparison

results are shown in Table 5. The retrieval results of the three compared methods are directly

extracted from the corresponding original papers. The mAP of our method significantly out-

performs those of the other three methods.

Discussion

In this paper, we address the problem of retrieving brain tumor images in archives that have

the same pathological type as the query image. The retrieved images with diagnostic informa-

tion can be used by radiologists to provide decision support. The success of image retrieval

systems heavily relies on good feature representations and suitable distance metrics. The effec-

tiveness of the three components of our feature extraction method is demonstrated in our

experiments. Besides, instead of using traditional rigid distance functions like Euclidean dis-

tance, a suitable distance metric is indispensable to obtain good retrieval performance. For

example, using CFML, we can achieve a mAP as high as 94.68%, while replacing the learned

distance metric with Euclidean distance we obtained a mAP of 59.64%.

In addition, the best results with our method are obtained when we apply the CFML algo-

rithm to project the feature representations into a new space of two dimensions. This feature is

beneficial for computational and memory efficiency. Another potential advantage is that low-

dimensional feature vectors can facilitate the indexing techniques (e.g., KD-tree, R-tree, R�-tree,
and quad trees [35]) for a large-scale database. The indexing techniques only compare the query

image with a portion of the database images to improve the retrieval efficiency. However, the

performance of all these indexing structures is reduced by high-dimensional feature vectors.

Future endeavors to improve the CBIR system for brain tumor retrieval will be devoted to the

following two aspects. First, semiautomatic or fully automatic methods can be integrated into

the retrieval system to reduce the workload of the radiologists although the tumor region does

not need precise segmentation in this paper. Second, multiple types of features, such as intensity,

texture, shape, BoW, and FV, can be utilized. To this end, one possible solution is to simply con-

catenate all these features. However, this naive concatenation approach may suffer from two

drawbacks: (1) some types of features may significantly dominate the others in the DML task;

thus, the potential of all features cannot be fully exploited; (2) the resulting high-dimensional

feature space will make the subsequent DML task computationally expensive. To overcome

these drawbacks, we can employ the scheme of multi-modal DML [36], which learns to optimize

a separate distance metric for each type of feature space and simultaneously learns to find opti-

mal combination weights of different distance metrics on multiple types of feature space.

Conclusion

In this paper, a new CBIR system for retrieving three types of brain tumors (meningiomas, gli-

omas and pituitary tumors) in T1-weighted contrast-enhanced MRI images is presented,

which can serve as a tool for computer-aided diagnosis. Using the augmented tumor region as

Table 5. Comparison of our method with three relatedmethods (%).

Methods Yang et al. [1] Huang et al. [2] Huang et al. [3] Ours

mAP 87.3 91.0 91.8 94.68

doi:10.1371/journal.pone.0157112.t005
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ROI, we find that tumor-surrounding tissues can provide valuable information for brain tumor

categories. An intensity orders based region division method is applied to make the feature rep-

resentations more discriminative, which can capture both spatial information and intensity

distributions. Finally we use the powerful FV to aggregate local features of each subregion

into a feature vector. The performance of the proposed CBIR system provides a substantial

improvement against three closely related methods, achieving a mAP of 94.68%.

Author Contributions

Conceived and designed the experiments: JC WY QF. Performed the experiments: JC WYMH.

Analyzed the data: JCWH JJ YZ. Contributed reagents/materials/analysis tools: RY JZ YFWC.

Wrote the paper: JC QF.

References
1. YangW, Feng Q, Yu M, Lu Z, Gao Y, Xu Y, et al. Content-based retrieval of brain tumor in contrast-

enhanced MRI images using tumor margin information and learned distance metric. Med Phys. 2012;
39: 6929–42. doi: 10.1118/1.4754305 PMID: 23127086

2. Huang M, YangW, Yu M, Lu Z, Feng Q, ChenW. Retrieval of brain tumors with region-specific bag-of-
visual-words representations in contrast-enhanced MRI images. Comput Math Methods Med. 2012;
2012. doi: 10.1155/2012/280538

3. Huang M, YangW, Wu Y, Jiang J, Gao Y, Chen Y, et al. Content-Based Image Retrieval Using Spatial
Layout Information in Brain Tumor T1-Weighted Contrast-Enhanced MR Images. PLoS One. 2014; 9:
e102754. doi: 10.1371/journal.pone.0102754 PMID: 25028970

4. YangW, Lu Z, Yu M, Huang M, Feng Q, ChenW. Content-based retrieval of focal liver lesions using
bag-of-visual-words representations of single- and multiphase contrast-enhanced CT images. J Digit
Imaging. 2012; 25: 708–19. doi: 10.1007/s10278-012-9495-1 PMID: 22692772

5. Jiang M, Zhang S, Li H, N MD. Computer-Aided Diagnosis of Mammographic Masses Using Scalable
Image Retrieval. IEEE Trans Biomed Eng. 2015; 62: 783–792. doi: 10.1109/TBME.2014.2365494
PMID: 25361497

6. Zheng L, Wetzel AW, Gilbertson J, Becich MJ. Design and Analysis of a Content-Based Pathology
Image Retrieval System. IEEE Trans Inf Technol Biomed. 2003; 7: 249–255. doi: 10.1109/TITB.2003.
822952 PMID: 15000351

7. Rahman MM, Desai BC, Bhattacharya P. Medical image retrieval with probabilistic multi-class support
vector machine classifiers and adaptive similarity fusion. Comput Med Imaging Graph. 2008; 32: 95–
108. doi: 10.1016/j.compmedimag.2007.10.001 PMID: 18037271

8. Iakovidis DK, Pelekis N, Kotsifakos EE, Kopanakis I, Karanikas H, Theodoridis Y. A pattern similarity
scheme for medical image retrieval. IEEE Trans Inf Technol Biomed. 2009; 13: 442–450. doi: 10.1109/
TITB.2008.923144 PMID: 19273018

9. Greenspan H, Pinhas AT. Medical image categorization and retrieval for PACS using the GMM-KL
framework. IEEE Trans Inf Technol Biomed. 2007; 11: 190–202. doi: 10.1109/TITB.2006.874191
PMID: 17390989

10. Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Trans Syst
Man Cybern. 1973; 3. doi: 10.1109/TSMC.1973.4309314

11. Jiang J, Wu Y, Huang M, YangW, ChenW, Feng Q. 3D brain tumor segmentation in multimodal MR
images based on learning population- and patient-specific feature sets. Comput Med Imaging Graph.
Elsevier Ltd; 2013; 37: 512–21. doi: 10.1016/j.compmedimag.2013.05.007

12. Sivic J, Zisserman A. Video Google: a text retrieval approach to object matching in videos. Proc Ninth
IEEE Int Conf Comput Vis. Ieee; 2003; 1470–1477 vol.2. doi: 10.1109/ICCV.2003.1238663

13. Van Gemert JC, Veenman CJ, Smeulders AWM, Geusebroek JM. Visual word ambiguity. IEEE Trans
Pattern Anal Mach Intell. 2010; 32: 1271–1283. doi: 10.1109/TPAMI.2009.132 PMID: 20489229

14. Fei-Fei Li, Perona Pietro. A Bayesian Hierarchical Model for Learning Natural Scene Categories. 2005
IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2005; 2: 524–531. doi: 10.1109/CVPR.2005.16

15. Jégou H, Perronnin F, Douze M, Sánchez J, Pérez P, Schmid C. Aggregating local image descriptors
into compact codes. IEEE Trans Pattern Anal Mach Intell. 2012; 34: 1704–1716. doi: 10.1109/TPAMI.
2011.235 PMID: 22156101

Retrieval of Brain Tumors

PLOS ONE | DOI:10.1371/journal.pone.0157112 June 6, 2016 14 / 15

http://dx.doi.org/10.1118/1.4754305
http://www.ncbi.nlm.nih.gov/pubmed/23127086
http://dx.doi.org/10.1155/2012/280538
http://dx.doi.org/10.1371/journal.pone.0102754
http://www.ncbi.nlm.nih.gov/pubmed/25028970
http://dx.doi.org/10.1007/s10278-012-9495-1
http://www.ncbi.nlm.nih.gov/pubmed/22692772
http://dx.doi.org/10.1109/TBME.2014.2365494
http://www.ncbi.nlm.nih.gov/pubmed/25361497
http://dx.doi.org/10.1109/TITB.2003.822952
http://dx.doi.org/10.1109/TITB.2003.822952
http://www.ncbi.nlm.nih.gov/pubmed/15000351
http://dx.doi.org/10.1016/j.compmedimag.2007.10.001
http://www.ncbi.nlm.nih.gov/pubmed/18037271
http://dx.doi.org/10.1109/TITB.2008.923144
http://dx.doi.org/10.1109/TITB.2008.923144
http://www.ncbi.nlm.nih.gov/pubmed/19273018
http://dx.doi.org/10.1109/TITB.2006.874191
http://www.ncbi.nlm.nih.gov/pubmed/17390989
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1016/j.compmedimag.2013.05.007
http://dx.doi.org/10.1109/ICCV.2003.1238663
http://dx.doi.org/10.1109/TPAMI.2009.132
http://www.ncbi.nlm.nih.gov/pubmed/20489229
http://dx.doi.org/10.1109/CVPR.2005.16
http://dx.doi.org/10.1109/TPAMI.2011.235
http://dx.doi.org/10.1109/TPAMI.2011.235
http://www.ncbi.nlm.nih.gov/pubmed/22156101


16. Jaakkola TS, Haussler D. Exploiting generative models in discriminative classifiers. Adv Neural Inf Pro-
cess Syst. 1999; 487–493.

17. Perronnin F, Dance C. Fisher kernels on visual vocabularies for image categorization. Proc IEEE Com-
put Soc Conf Comput Vis Pattern Recognit. 2007; doi: 10.1109/CVPR.2007.383266

18. Perronnin F, Liu Y, Jorge S. Large-scale image retrieval with compressed Fisher vector. Proc IEEE
Comput Soc Conf Comput Vis Pattern Recognit. 2010; 3384–3391.

19. Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing
natural scene categories. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. 2006. pp. 2169–2178. doi: 10.1109/CVPR.2006.68

20. Yang M, Zhang L, Feng X, Zhang D. Sparse Representation Based Fisher Discrimination Dictionary
Learning for Image Classification. Int J Comput Vis. 2014; 109: 209–232. doi: 10.1007/s11263-014-
0722-8

21. Boiman O, Shechtman E, Irani M. In defense of nearest-neighbor based image classification. 26th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR. 2008. doi: 10.1109/CVPR.
2008.4587598

22. Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C. Wavelet optimization for content-based
image retrieval in medical databases. Med Image Anal. Elsevier B.V.; 2010; 14: 227–241. doi: 10.1016/
j.media.2009.11.004

23. Fan B, Wu F, Hu Z. Aggregating gradient distributions into intensity orders: A novel local image descrip-
tor. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2011; 2377–2384. doi: 10.1109/CVPR.
2011.5995385

24. Alipanahi B, Biggs M, Ghodsi A. Distance Metric Learning VS. Fisher Discriminant Analysis. Learning.
2008; 598–603.

25. Matas J, ChumO, Urban M, Pajdla T. Robust wide-baseline stereo frommaximally stable extremal
regions. Image Vis Comput. 2004; 22: 761–767. doi: 10.1016/j.imavis.2004.02.006

26. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman a., Matas J, Schaffalitzky F, et al. A comparison of
affine region detectors. Int J Comput Vis. 2005; 65: 43–72. doi: 10.1007/s11263-005-3848-x

27. Perronnin F, Sánchez J, Mensink T. Improving the Fisher kernel for large-scale image classification.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics). 2010. pp. 143–156. doi: 10.1007/978-3-642-15561-1_11

28. Mojsilovic a., Rogowitz B. Capturing image semantics with low-level descriptors. Proc 2001 Int Conf
Image Process (Cat No01CH37205). 2001; 1. doi: 10.1109/ICIP.2001.958942

29. Guan H, Antani S, Long LR, Thoma GR. Bridging the semantic gap using ranking svm for image
retrieval. Proceedings—2009 IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, ISBI 2009. 2009. pp. 354–357. doi: 10.1109/ISBI.2009.5193057

30. Xing E, Ng A, Jordan M, Russell S. Distance metric learning with application to clustering with side-
information. Adv Neural Inf Process Syst. 2003; 521–528. Available: https://papers.nips.cc/paper/
2164-distance-metric-learning-with-application-to-clustering-with-side-information.pdf

31. Weinberger K, Blitzer J, Saul L. Distance metric learning for large margin nearest neighbor classifica-
tion. Adv Neural Inf Process Syst. 2006; 18: 1473. Available: https://papers.nips.cc/paper/2795-
distance-metric-learning-for-large-margin-nearest-neighbor-classification.pdf

32. Alipanahi B, Biggs M, Ghodsi A. Distance Metric Learning vs. Fisher Discriminant Analysis. Proc
Twenty-Third AAAI Conf Artif Intell. 2008; 598–603.

33. Simonyan K, Vedaldi A, Zisserman A. Learning local feature descriptors using convex optimisation.
IEEE Trans Pattern Anal Mach Intell. 2014; 36: 1573–1585. doi: 10.1109/TPAMI.2014.2301163 PMID:
26353339

34. Vedaldi A, Fulkerson B. VLFeat: An Open and Portable Library of Computer Vision Algorithms [Inter-
net]. 2008. Available: http://www.vlfeat.org

35. Lu G. Techniques and Data Structures for Efficient Multimedia Retrieval Based on Similarity. IEEE
Trans Multimed. 2002; 4: 372–384. doi: 10.1109/TMM.2002.802831

36. Wu P, Hoi S, Zhao P, Xia H, Liu Z, Miao C. Online Multi-modal Distance Metric Learning with Applica-
tion to Image Retrieval. IEEE Trans Knowl Data Eng. 2015;PP. doi: 10.1109/TKDE.2015.2477296

Retrieval of Brain Tumors

PLOS ONE | DOI:10.1371/journal.pone.0157112 June 6, 2016 15 / 15

http://dx.doi.org/10.1109/CVPR.2007.383266
http://dx.doi.org/10.1109/CVPR.2006.68
http://dx.doi.org/10.1007/s11263-014-0722-8
http://dx.doi.org/10.1007/s11263-014-0722-8
http://dx.doi.org/10.1109/CVPR.2008.4587598
http://dx.doi.org/10.1109/CVPR.2008.4587598
http://dx.doi.org/10.1016/j.media.2009.11.004
http://dx.doi.org/10.1016/j.media.2009.11.004
http://dx.doi.org/10.1109/CVPR.2011.5995385
http://dx.doi.org/10.1109/CVPR.2011.5995385
http://dx.doi.org/10.1016/j.imavis.2004.02.006
http://dx.doi.org/10.1007/s11263-005-3848-x
http://dx.doi.org/10.1007/978-3-642-15561-1_11
http://dx.doi.org/10.1109/ICIP.2001.958942
http://dx.doi.org/10.1109/ISBI.2009.5193057
https://papers.nips.cc/paper/2164-distance-metric-learning-with-application-to-clustering-with-side-information.pdf
https://papers.nips.cc/paper/2164-distance-metric-learning-with-application-to-clustering-with-side-information.pdf
https://papers.nips.cc/paper/2795-distance-metric-learning-for-large-margin-nearest-neighbor-classification.pdf
https://papers.nips.cc/paper/2795-distance-metric-learning-for-large-margin-nearest-neighbor-classification.pdf
http://dx.doi.org/10.1109/TPAMI.2014.2301163
http://www.ncbi.nlm.nih.gov/pubmed/26353339
http://www.vlfeat.org
http://dx.doi.org/10.1109/TMM.2002.802831
http://dx.doi.org/10.1109/TKDE.2015.2477296

