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25 Abstract 

26 The vertical distribution of aerosols and their capability of serving as cloud condensation nuclei 

27 (CCN) are important for improving our understanding of aerosol indirect effects. Although 

28 ground-based and airborne CCN measurements have been made, they are generally scarce, 

29 especially at cloud base where it is needed most. We have developed an algorithm for profiling 

30 CCN number concentrations using backscatter coefficients at 355, 532, and 1064 nm and 

31 extinction coefficients at 355 and 532 nm from multi-wavelength lidar systems. The algorithm 

32 considers three distinct types of aerosols (urban industrial, biomass burning, and dust) with 

33 bimodal size distributions. The algorithm uses look-up tables, which were developed based on the 

34 ranges of aerosol size distributions obtained from the Aerosol Robotic Network, to efficiently find 

35 optimal solutions. CCN number concentrations at five supersaturations (0.07–0.80%) are 

36 determined from the retrieved particle size distributions. Retrieval simulations were performed 

37 with different combinations of systematic and random errors in lidar-derived extinction and 

38 backscatter coefficients: systematic errors range from -20% to 20% and random errors are up to 

39 15%, which fall within the typical error ranges for most current lidar systems. The potential of this 

40 algorithm to retrieve CCN concentrations is further evaluated through comparisons with surface- 

41 based CCN measurements with near surface lidar retrievals. This retrieval algorithm would be 

42 valuable for aerosol-cloud interaction studies for which virtually none has employed CCN at cloud 

43 base because of the lack of such measurements. 



44 1. Introduction 

45 Atmospheric aerosol particles affect climate indirectly by acting as cloud condensation nuclei 

46 (CCN) [Carslaw et al., 2010; Paasonen et al., 2013]. CCN are those aerosol particles on which 

47 cloud droplets form when the supersaturation in a cloud is high enough for the particles to grow 

48 by water condensation until  they reach a  critical  radius, beyond which  condensational  growth 

49 continues  spontaneously  unless  the  supersaturation  decreases  rapidly  [Nenes  et  al.  2001b; 

50 Mamouri and Ansmann, 2016]. Anthropogenic emissions of aerosol particles are a major source 

51 of CCN, which influence cloud microphysical and radiative properties, and consequently climate 

52 change [Boucher et al., 2013]. Therefore, an accurate knowledge of the spatial distribution of 

53 aerosols and their capability of serving as CCN is fundamental to understanding aerosol indirect 

54 effects. As emphasized by Fan et al. [2016], obtaining concurrent measurements of aerosol 

55 properties and cloud microphysical and dynamic properties over a range of temporal and spatial 

56 scales is critical to advance our understanding of aerosol-cloud interactions. 

57 CCN can be measured in situ from the ground [Feingold and Grund, 1994; Roberts and Nenes, 

58 2005] and from aircraft [Rosenfeld et al., 2008; Li et al., 2015a, b], or inferred from satellite 

59 observations [Grandey and Stier, 2010; Gryspeerdt et al., 2014; Shinozuka et al., 2015; Rosenfeld 

60 et al., 2016]. Long-term monitoring of CCN properties at different observation sites has been 

61 chiefly made on the ground. Other than limited horizontal cover and many other issues 

62 [Paramonov et al., 2013], near-surface CCN properties could be significantly different from CCN 

63 properties near the cloud base due to vertical aerosol inhomogeneities, especially air pollution 

64 under stable atmospheric boundary conditions. Except for Rosenfeld et al. [2016], satellite-based 

65 CCN estimations mainly use aerosol optical depth as a proxy for aerosol loading to take advantage 

66 of its global coverage. It is still challenging and highly uncertain [Andreae, 2009; Liu and Li, 2014] 

67 with many other limitations such as a lower temporal resolution, cloud contamination, and aerosol 

68 swelling in the moist environment near clouds [Koren et al., 2007]. Airborne measurements can 

69 provide CCN measurements near cloud base, but are expensive to collect and are limited to a few 

70 field experiments [Feingold et al., 1998; Li et al., 2015a, b]. The capability of routinely measuring 

71 new CCN at cloud base to study aerosol-cloud-precipitation interactions effectively is still lacking 

72 [Burkart et al., 2011]. 



73 Vertically-resolved aerosol measurements offered by lidars provide the potential to measure 

74 CCN near cloud base. Feingold et al. [1998] developed an approach that used a combination of 

75 several remote sensing instruments, such as the Ka-band Doppler radar, the microwave radiometer, 

76 and the lidar, to derive the activation of CCN as a function of supersaturation level. However, this 

77 approach is based on the Junge power-law aerosol size distribution [Junge, 1952] that is only 

78 applicable for a clean troposphere and stratosphere. Ghan and Collins [2004] and Ghan et al. [2006] 

79 developed a technique to estimate CCN at cloud base based on the relationship between the aerosol 

80 extinction from lidar and CCN concentrations from near-surface measurements. However, their 

81 methods rely on the assumption that the aerosol composition and the shape of the aerosol size 

82 distribution at the surface are representative of the vertical column. Thus, their retrievals may have 

83 high uncertainties if the vertical profile of the shape of the aerosol size distribution differs 

84 markedly from that at the surface. In addition to their common use in profiling atmospheric 

85 temperature and humidity [Wandinger, 2005], multi-wavelength Raman lidars and High Spectral 

86 Resolution Lidars (HSRL) have been increasingly used in recent years to retrieve aerosol and CCN 

87 properties [Müller et al., 1999; Chemyakin et al., 2014; Mamouri and Ansmann, 2016]. This type 

88 of lidar allows for independent inferences of particle backscatter and extinction coefficients 

89 without the need for assuming any atmospheric parameters. Multi-wavelength Raman lidars can 

90 thus be used to quantify the main aerosol microphysical parameters and CCN properties with fewer 

91 a priori assumptions. The retrieval of aerosol microphysical properties is mainly based on the 

92 regularization algorithm [Müller et al., 1999, 2000, 2014; Veselovskii et al., 2002, 2004, 2013; 

93 Chemyakin et al., 2014, 2016]. Most of these early studies focused on aerosol size distribution and 

94 total aerosol concentration retrievals, and used the regularization technique, which lead to higher 

95 sensitivities with a 1-sigma value of 61.4–95.2% for different aerosol types [Pérez-Ramírez et al., 

96 2013]. This is because total aerosol concentration is very sensitive to aerosols with diameters 

97 smaller than 50 nm and lidar observations offer almost no constraint for them. To our knowledge, 

98 limited attempts have been made to quantify CCN concentrations from multi-wavelength lidar 

99 measurements. Feingold and Grund [1994] explored the potential of using multi-wavelength lidar 

100 measurements, but they only performed a simulation by using the theoretical wavelengths of 289, 

101 532,1064, 2020 and 11150 nm that some wavelengths are not available in real measurements. 

102 From the simulation, they only provided some relationships between multi-wavelength backscatter 

103 coefficients with the median radius and did not quantify any aerosol or CCN parameter. 



i




104 In this paper, we propose a retrieval approach to estimate CCN number concentrations from 

105 multi-wavelength lidar extinction and backscatter coefficients. The approach is implemented with 

106 look-up tables (LUTs) to provide stable and efficient retrievals. CCN number concentrations at 

107 five critical supersaturation ratios (Scs, 0.07–0.80%) are determined from the retrieved aerosol size 

108 distributions. The retrieval accuracies are evaluated using simulated lidar extinction and 

109 backscatter coefficients with both random and systematic errors. Since CCN retrievals are less 

110 sensitive to uncertainties in very small particles (nucleation-mode particles), it leads to much 

111 smaller errors in the retrievals of CCN number concentration than those focusing on total aerosol 

112 number concentrations as was done by most early studies due to little information on fine-mode 

113 aerosols from available lidar measurements. In Section 2, the inversion methodology is described. 

114 In Section 3, we present the numerical simulations. In Section 4, a real case study is presented. 

115 Conclusions are given in Section 5. 
 

116 2. Methodology 

117 2.1 Aerosol size distributions 

118 As demonstrated by Baars et al. [2016], aerosol types can be identified by combining their 

119 Ångstrom exponent, lidar ratio, and depolarization ratio from multi-wavelength HSRL or Raman- 

120 polarization lidar measurements [Burton et al., 2012; Groß et al., 2013]. Therefore, our study 

121 assumes known aerosol types for CCN retrievals for the sake of tackling other more challenging 

122 tasks in retrieving CCN profiles. 

123 Initially, three common and distinct aerosol types are considered in this study: urban industrial 

124 aerosols (Type 1), biomass-burning aerosols (Type 2), and dust aerosols (Type 3). Although 

125 particle size distributions are not always bimodal in each measurement case, their size distributions 

126 can be treated as a combination of fine and coarse modes with lognormal distributions, as widely 

127 used in aerosol remote sensing studies [Veselovskii et al., 2004; Remer et al., 2005; Schuster et al., 

128 2006]. Multi-wavelength HSRL or Raman lidar measurements provide feasible constraints on 

129 these size parameters: 
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131 where Nti is the total particle number concentration of the ith mode and r n is the median radius for 

132 the aerosol size distribution with n representing the number concentration distribution. The index 





133 i = f, c refers to the fine mode and coarse mode, respectively. The term lnσi is the mode width of 

134 the ith mode. This general aerosol size distribution shape is adopted in this study to improve the 

135 accuracy of the CCN retrieval. The sensitivity test regarding the response of CCN to the 

136 assumption of bimodal size distributions is presented in Section 3.2. 
 

137 Table 1 lists the typical ranges of the bimodal distribution parameters of the three types of 

138 aerosols derived using measurements from sun and sky-scanning ground-based automated 

139 radiometers at 12 selected Aerosol Robotic Network (AERONET) sites from 1993 to 2000 

140 [Dubovik et al., 2002; Veselovskii et al., 2004]. Parameters representing the volume concentration 

141 can be transformed to parameters for the number concentration through the following relationships 

142 [Horvath et al., 1990]: 
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145 As shown in Table 1 and Fig. 1, the main difference between the three aerosol types is the ratio 

146 of the volume concentration of the fine mode to the volume concentration of the coarse mode. 

147 Both urban industrial and biomass-burning aerosols have a predominance of fine-mode fractions 

148 while the coarse mode dominates for dust aerosols. 
 

149 2.2 Inversion technique for aerosol size distribution parameters 

150 The first step in estimating CCN concentrations is to retrieve aerosol size distributions from 

151 backscatter coefficients at 355, 532, and 1064 nm (β355, β532, β1064) and extinction coefficients at 

152 355 and 532 nm (α355, α532). These can be retrieved from multi-wavelength Raman lidar [Ansmann 

153 et al., 1992] or HSRL measurements [Shipley et al., 1983]. Aerosol type, which can be identified 

154 from lidar measurements [Burton et al., 2012; Groß et al., 2013; Baars et al. 2016] provides the 

155 mean complex refractive index (Table 1). Thus, retrieving six parameters (σf, Ntf, rf, σc, Ntc, rc) for 

156 a bimodal size distribution from five known quantities  (β355, β532, β1064, α355,  α532)  is still an  ill- 

157 defined problem. Observations [Dubovik et al., 2002] indicate that the variation of the mode width 

158 of the coarse mode (lnσc) is small for a given aerosol type and that the contribution of the coarse 

159 mode to the total aerosol number concentration is relatively low. Therefore, we assume that lnσc 





160 is a known quantity (Table 1). The retrieval errors from this assumption are examined in Section 

161  3.3. 

162 The retrieval algorithm searches for the best combination of five values (σf, Ntf, rf, Ntc, rc) to 

163 match inputs (β355, β532, β1064, α355, α532) by minimizing the following function: 
 
 

sum 
g  g, 

164      i i   , i  1,...,5 , (4) 
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165  where g
i represents input optical data (β355, β532, β1064, α355, α532), and , is optical data (β’355, 

166 β’532, β’1064, α’355, α’532) calculated from Mie theory and size distribution parameters. Note that 

167 using the Mie theory for irregular-shaped dust aerosols can introduce potential systematic errors. 

168 It is a simplification for this simulation study. For future real-case applications, an improved 

169 optical  database  for  dust  aerosols  will  be  developed  following  more  advanced  scattering 

170 calculations [Nousiainen, 2009; Liu et al., 2015]. Additionally, including depolarization 

171 measurements improves not only the ability to distinguish dust, but also overall dust retrievals 

172  [Luo et al., 2015]. 

173 To search for the optimal solution, look-up tables (LUTs) for each type of aerosol are 

174 constructed. To reduce the LUT size and its dimensions, each LUT consists of two parts. The size 

175 distribution shown in Eq. (1) can be rewritten as 
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177 where Bf and Bc refer to the data bank pre-computed with (σf, rf, r) and (σc, rc, r), respectively, 

178 where the intervals of σf, rf, and rc are fixed at 0.01, 0.002, and 0.01 µm, respectively, and where 

179 σc is assumed known and taken from Table 1. The range of r in the calculations is limited to 0.01– 

180 10 µm with a fixed bin size of 0.002 defined on a logarithmic-equidistant scale. These intervals 

181 are set as a compromise between accuracy and computation time. 

182 Since the range of Ntf is usually large, the successive approximation method [Kantorovitch, 

183 1939] is adopted: 

gi





184 Step 1: Calculate the corresponding optical data (β’355, β’532, β’1064, α’355, α’532) from the data bank 

185 (Bf, Bc) and Ntf, Ntc (the step widths of Ntf and Ntc: 100 and 0.1 cm-3, respectively). Search for an 

186 approximate solution based on the criterion in Eq. (4). 
 

187 Step 2: Determine a smaller solution space of Ntf based on the approximate solution obtained in 

188 Step 1. Repeat the procedure in Step 1 except use a smaller step width of 10 cm-3 for Ntf. Search 

189 for the optimal solution of five parameters (σf, Ntf, rf, Ntc, rc). 
 

190 2.3 CCN estimations 

191 The ability of aerosols to act as CCN is mainly determined by three factors: aerosol particle 

192 size distribution, chemical composition, and mixing state. Several studies have suggested that it is 

193 controlled  more  by  the  aerosol  size  distribution  than  the  chemical  composition  [Junge and 

194 McLaren, 1971;  Fitzgerald,  1973;  Dusek  et al., 2006], however, for  some  specific  areas  and 

195 meteorological conditions, both factors are important [Mamouri and Ansmann, 2016]. If no 

196 suitable chemical composition data are available, using mean chemical composition information 

197 for each aerosol type denoted by a single value of κ is feasible to estimate the CCN number 

198 concentration. In reality, the uncertainty of using the mean value of κ to estimate the CCN number 

199 concentration varies with atmospheric conditions. Most studies show that the uncertainty is within 

200 10% [Jurányi et al., 2010; Deng et al., 2011; Wang et al., 2018]. The hygroscopicity parameter κ 

201 describes the relationship between the particle dry diameter and CCN activity when compositional 

202 data are not available [Petters and Kreidenweis, 2007]. Wang et al., [2018] found that the 

203 sensitivity of the estimated CCN concentration to κ depends strongly on the variability of the shape 

204 of the aerosol size distribution. The sensitivity of CCN concentration to κ becomes weaker with 

205 increasing supersaturations, suggesting that chemical composition becomes less important in CCN 

206 concentration estimates at larger supersaturations. In addition, this study also suggested that using 

207 the mean value of κ ≈ 0.3 can be a good proxy for urban industrial aerosol when estimating the 

208 CCN concentration. The κ is assumed to be 0.3 for Type 1 [Liu et al., 2011], 0.1 for Type 2 [Petters 

209 et al., 2009], and 0.03 for Type 3 [Koehler et al., 2009] aerosols in the simulations. For actual 

210 measurements, the mixing state of aerosols and the precise values of κ can be determined with the 

211 aid of other instruments, such as the aerosol particle mass analyzer (APM), and the hygroscopic 

212 tandem differential mobility analyzer (HTDMA) [Malloy et al., 2009; Zhang et al., 2014; Wang et 

213 al., 2017]. For experiments without the HTDMA, a lidar can be used to roughly infer κ indirectly 



 

214  by identifying aerosol types [Baars et al., 2016]. However, the determination of κ is beyond the 

215  scope of the current method. 

216  We first determine the critical radius (rc) of CCN activation at five critical Scs for activation 

217  (0.07, 0.10, 0.20, 0.40, and 0.80%), which are often used for in CCN counters. The critical diameter 

218  Dc (rc = Dc / 2) and Sc for activation (where Sc = S - 1) can be computed from the maximum of κ- 

219  Köhler curve as suggested by Petters and Kreidenweis [2007]: 
 

D3 -D3  4 M 
220  S D=  d exp  s / a w  , (6) 

D3   D3 1    RT  D 
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221 where S is the water saturation ratio, D is the droplet diameter, Dd is the dry diameter, σs/a = 0.072 

222 J m-2, Mw is the molecular weight of water, R is the universal gas constant, T is temperature and 

223 equal to 298.15 K, and ρw is the density of water. Equation (6) describes the relationship between 

224 the dry diameter and critical supersaturation for a selected hygroscopicity κ. Note that the Köhler 

225 theory used for dust CCN activation is based on the assumptions that activation is solely controlled 

226 by the amount of soluble salts in the dust aerosol and that it is not affected by water adsorption on 

227 the dust surface. 

228 Figure 2 shows the relationship between critical dry diameter and critical supersaturation for 

229 each type of aerosol. Table 2 shows the critical radius (rc) at five critical Scs calculated using Eq. 

230 (6). The critical radius for each type of aerosol in Table 2 shows that CCN retrievals are mostly 

231 sensitive to particles with radii greater than 0.1 µm under normal atmospheric conditions, which 

232 indicates that neglecting nucleation-mode particles has a weaker impact on CCN determination 

233 than on the total aerosol number concentration retrievals. 

234 It is noted that, to simplify the simulation, the impact of aerosol hygroscopic growth on the size 

235 distributions is not considered. However, in real atmosphere, the aerosol size distribution is 

236 affected by aerosol hygroscopic properties, especially when it is under high relative humidity 

237 conditions or near cloud base. In this case, the wet size distribution should be corrected to the dry 

238 size distribution by using the hygroscopic enhancement factor that is defined as 

 
239   f RH , r  

    RH , r  
  RHref  , r 
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240 where RH is the relative humidity, r is the dry radius,  RH , r  refers to a RH-dependent aerosol 
 

241   property at a certain r, the RHref is chosen as the lowest value of RH that represents the relative 
 
242   dry environment in a case. f RH , r  can be obtained from HTDMA or Raman lidar [Veselovskii 

243 et al., 2009; Lv et al. 2017]. For the determination of f(RH) from Raman lidar, it is based on the 

244 assumption of well-mixed atmospheric conditions that may be identified as having the constant 

245 profiles of potential temperature and water vapor simultaneously [Granados-Muñoz et al., 2015]. 

246 Finally, the CCN concentration can be calculated as 

 
247   N

ccn   
 ln r 

 dn r  d ln r . (7) 
c   d ln r 



248 3. Numerical simulations 

249 Due to the lack of reliable collocated CCN and lidar measurements, evaluating the algorithm 

250 is a challenging task. As the first step, the performance of the algorithm is evaluated using 

251 simulated observations with different error characteristics. 
 

252 3.1 Inversion with error-free inputs 

253 The first evaluation is performed under the assumption of error-free lidar measurements to 

254 understand the inversion stability. For each type of aerosol, 1000 different sets of bimodal size 

255 distributions are used to simulate lidar observations. The retrieval is repeated for each simulated 

256 observation. The retrieved parameters (σf, Ntf, rf, Ntc, rc) and assumed σc permit us to calculate the 

257 errors in retrieved CCN number concentration (CCNretrieved) with respect to the initial inputs 

258 (CCNinitial), i.e., [(CCNretrieved - CCNinitial)/ CCNinitial] * 100%. Apart from the mean values, we 

259 employ the standard deviations (SDs) of the CCN retrieval errors from the different bimodal size 

260 distribution datasets to gauge the range of the retrieved CCN errors as well. As shown in Table 3, 

261 initial CCN concentrations are well reproduced from the error-free inputs for each type of aerosol 

262 size distribution. The mean errors in retrieved CCN number concentrations are close to zero, but 

263 are not equal to zero due to striking an appropriate balance between the accuracy and processing 

264 time of the LUTs as mentioned in section 2.2. The higher the accuracy of the LUTs, the more time 

265 expensive are the calculations and the closer CCN errors approach zero. Moreover, the small SDs 

266 (≤ ~0.3%) suggest that the variances of errors among the different aerosol size distributions are 



267 also small. Overall, the retrieval results shown in Table 3 attest to the good accuracy and stability 

268 of the inversion algorithm for the three types of aerosols. 
 

269 3.2 Sensitivity test of the assumed bimodal size distribution with error-free inputs 
 

270 We test the sensitivity of the CCN retrieval to the assumption of the bimodal size distribution 

271 by exploring dust aerosol size distributions measured on 20 August 2006 during the NASA African 

272 Monsoon Multidisciplinary Analysis (NAMMA) campaign [Chen et al., 2011]. NAMMA particle 

273 size   distributions   were   measured   simultaneously   by   an   Ultra-High   Sensitivity  Aerosol 

274 Spectrometer (UHSAS) for the 0.07–1 µm (geometric) diameter range [Cai et al., 2008] and a TSI 

275 model 3321 Aerodynamic Particle Sizer (APS) for the 0.7–5 µm (aerodynamic) diameter range 

276 [Peters and Leith, 2003]. Fifty full particle size distributions were constructed using the size 

277 conversion factor, which is defined as the ratio of aerodynamic diameter to geometric diameter. 

278 These full aerosol size distributions can be well represented by the tri-modal lognormal 

279 distributions reported by Chen et al. [2011]. For the purpose of this study, we produce 

280 corresponding bimodal fits representative of the observed size distributions. Figure 3 shows an 

281 example of the observed aerosol size distribution and the corresponding bimodal fits. It  suggests 

282 that the observed dust aerosol size distributions can be qualitatively well represented by bimodal 

283 lognormal size distributions. To quantify the errors arising from the bimodal lognormal fits, we 

284 calculate CCN concentrations based on the bimodal-fits and compare them with those from the 50 

285 observed size distributions. The κ of NAMMA dust aerosols is assumed to be 0.03 when 

286 calculating CCN concentrations at the five values of Scs as described in Section 2.3. Table 4 shows 

287 the induced CCN errors from the bimodal fitting of 50 NAMMA aerosol size distributions. The 

288 absolute value of CCN retrieval errors is 4.2% with a SD of 3.3% when Sc = 0.20%. Although 

289 errors from the bimodal assumption are not negligible, the results suggest that bimodal lognormal 

290 aerosol size distributions are adequate for retrieving CCN concentrations. 
 

291 3.3 Sensitivity test of the assumed lnσc with error-free inputs 
 

292 As described in section 2.2, lnσc is assumed to be equal to 0.7, 0.7, and 0.65 in LUTs 

293 corresponding to the different aerosol types. However, the real lnσc may vary within a small range. 

294 A sensitivity test of the effects of this assumption on the retrieval results is performed. In this 

295 sensitivity test, the fixed values of lnσc are still used in the LUTs while the real values of lnσc in 

296 simulations is selected randomly from within the ranges 0.6–0.8, 0.7–0.8, and 0.6–0.7 for urban 



297 industrial, biomass-burning, and desert dust aerosols, respectively [Veselovskii et al., 2004]. One 

298 thousand different sets of simulations are produced randomly with the other known parameters as 

299 input. The same inversion procedure described in Section 3.1 is repeated to retrieve CCN 

300 concentrations and to calculate the retrieval errors. 

301 Table 5 shows CCN retrieval errors due to assuming a constant lnσc. As expected, the 

302 assumption of a constant lnσc introduces an additional CCN retrieval error. In general, CCN 

303 retrieval errors at higher Scs are larger than those at lower Scs for all types of aerosols due to the 

304 smaller critical radius, which makes CCN calculations more sensitive to fine-mode size 

305 distribution shapes. The maximum absolute value of CCN errors is 3.4% when Scs are 0.07% and 

306 0.10%, and reaches 6.6% when the Sc is 0.80%. This suggests that assuming a constant lnσc is 

307 reasonable although the errors resulting from the assumption are not negligible. 
 

308 3.4 Effect of systematic and random errors on the retrieval results 

309 3.4.1 The impact of systematic errors 

310 Extinction and backscatter coefficients retrieved from multi-wavelength lidar measurements 

311 contain systematic and random errors [Ansmann et al., 1992]. Systematic errors can be induced by 

312 experiment conditions, techniques, and our understanding of physical interactions. Systematic 

313 errors ranging from -20% to 20% in intervals of 5% are considered for the extinction and 

314 backscatter  coefficients.  In  actual  measurements,  the  Raman  lidar  or  HSRL  allows  for  the 

315 independent calculation of extinction and backscatter coefficients by combining elastic and Raman 

316 backscatter signals [Ansmann et al., 1992] and by taking advantage of the spectral distribution of 

317 the lidar return signal to discriminate aerosol and molecular signals [Shipley et al., 1983]. The 

318 systematic errors are thus assumed independent for individual lidar measurements in the 

319 simulations. This error range is reasonable for most current lidar systems [Pérez-Ramírez et al., 

320 2013]. To better understand the impacts of individual input parameters, a systematic error is 

321 applied to one input parameter at a time. We repeat the inversion to obtain a new set of aerosol 

322 size distribution and CCNretrieved data. For each input parameter and error value, the procedure is 

323 repeated with 200 sets of randomly-generated size distributions for each aerosol type. The CCN 

324 percentage errors associated with systematic errors can be estimated by comparing retrieved and 

325 initial CCN number concentrations as defined above. 

326 Figure 4 shows how individual systematic errors impact retrievals. The slope of the curve 

327 indicates the sensitivity of CCN errors to systematic errors in individual input parameters. A larger 



328 slope implies a higher sensitivity of the CCN retrieval to the systematic error for a given input 

329 parameter. In general, retrievals are most sensitive to the errors in α355 and α532, and are least 

330 sensitive to errors in β1064, with β355 and β532 falling somewhere in the middle. It is also interesting 

331 to note that the results are less sensitive to β355, β532, and β1064 at Scs ≤ 0.10%, but are more sensitive 

332 to them at Scs > 0.10%. These results suggest that reducing uncertainties in the extinction 

333 coefficients at 355 and 532 nm can effectively improve the CCN retrieval accuracy, while reducing 

334 uncertainties in the backscatter coefficients benefits CCN retrievals at higher Scs. Figure 4 also 

335 suggests that the retrieval results are sensitive to the position of the activation radius (denoted by 

336 Sc). This effect is the most obvious for Type 2 aerosols. Retrieval uncertainties due to systematic 

337 errors in α532 are much lower at 0.10% than at other Scs. 

338 In addition, it is also clear that the impact of systematic errors in a given input parameter on 

339 CCN retrievals varies with Sc as illustrated by the different signs of the slopes (positive or negative). 

340 For example, for Type 3 aerosols, the slopes of α355 and β355 are negative and positive, respectively, 

341 with magnitudes of 0.07% and 0.10%. When Sc exceeds 0.20%, the slopes reverse. These 

342 differences most likely result from the reduced sensitivity of the retrieval to the coarse mode of 

343 the aerosol size distribution. 

344 Furthermore, there are significant differences among the three types of aerosols. Type 3 

345 aerosols have the largest absolute CCN errors and Type 1 aerosols have the smallest. These results 

346 are consistent with the weights of fine-mode aerosol particles for the three types of aerosols shown 

347 in Table 1. These results suggest that there are better constraints for fine-mode aerosols than for 

348 coarse-mode aerosols. Therefore, retrieval uncertainties for the coarse mode are higher which 

349 introduces larger CCN retrieval errors for aerosols with more weight in the coarse mode, such as 

350 Type 3 aerosols. Including additional lidar measurements at wavelengths longer than 1064 nm will 

351 reduce the retrieval errors for dust aerosols. 
 

352 3.4.2 The impact of random errors 

353 Thus far, only the influence of systematic errors on the inversion results has been considered 

354 which introduces mean biases in CCN retrievals. Random errors in observations produce random 

355 CCN retrieval errors. Random errors are generated by considering a Gaussian distribution centered 

356 at zero with a SD equal to 15% of a given input parameter. Random errors are applied to all input 

357 optical data simultaneously. For each type of aerosol, we repeat this simulation 5000 times. The 

358 statistical results are presented in Fig. 5 and Table 6. 



359 At 0.07% and 0.10%, errors in retrieved CCN number concentrations also follow a Gaussian 

360 distribution for Type 1 and Type 2 aerosols. When Sc exceeds 0.20%, the Gaussian shape 

361 distributions disappear and the high frequencies shift to the edge of the distributions for all types 

362 of aerosols. Mean errors are relatively small and non-zero, which is mainly due to the different 

363 sensitivities of CCN retrievals to different optical data. These results also reveal that random errors 

364 in the input parameters may produce systematic errors in the CCN retrievals. At 0.07%, Type 3 

365 aerosols show the largest shift (-20.0%) while Type 2 aerosols have the smallest shift (-1.0% at 

366 0.10%). Among the three types of aerosols, the largest errors are found in Type 3 aerosols which 

367 contain larger particles. These results are consistent with the sensitivities to the systematic errors, 

368 which also have the largest errors for Type 3 aerosols. As discussed earlier, measurements 

369 considered in the current multi-wavelength lidar technique contain less information for larger 

370 particles. Including additional lidar measurements at longer wavelengths could improve Type 3 

371 aerosol retrievals. The maximum values of relative errors decrease with increasing Scs for all 

372 aerosol types (Table 6). 
 

373 3.4.3 The impact of combined systematic and random errors 
 

374 In reality, systematic and random errors co-exist in optical input parameters, so their concurrent 

375 effects need to be tested. However, for real cases, the input optical data (β355, β532, β1064, α355, α532) 

376 might be obtained simultaneously from different lidar systems like the Raman lidar or the HSRL 

377 with over- or under-estimation of systematic errors appearing in different combinations. For well 

378 -designed lidar systems with reliable data processing procedure, it is a good to assume independent 

379 systematic errors. However, there do have cases, which can result in dependent systematic errors. 

380 For example, near range overlap corrections could introduce dependent systematic errors between 

381 355nm extinction and backscattering and 532 nm extinction and backscattering. To simplify the 

382 simulation, we only evaluate the overall performance of the new method when systematic and 

383 random errors co-exist. The simulations are done by conducting additional simulations with both 

384 systematic and random errors occurring simultaneously. Systematic errors are randomly assigned 

385 a sign (over/underestimation) as was done by Pérez-Ramírez et al. [2013]. Systematic errors are 

386 difficult to reveal, whereas random errors can be revealed and reduced by repeating the 

387 measurements. Systematic errors of 0–20% with a step width of 5% are added to all optical input 

388 parameters (β355, β532, β1064, α355, α532) concurrently. As for random errors, they are generated by 



389 considering a Gaussian distribution centered at zero with a SD equal to 5% of a given input 

390 parameter. For each type of aerosol, simulations were performed 500 times. The CCN retrieval 

391 results are presented in Fig. 6 and Table 7. 

392 For Type 3 aerosols, the largest mean CCN error is 25.8% at Sc = 0.07%. For Type 1 and Type 

393 2 aerosols, mean CCN errors in all cases are less than 10.3%. These retrieved CCN errors are much 

394 smaller than those obtained in Section 3.4.1 when only the systematic error was considered at each 

395 wavelength independently. Adding errors for multiple optical input parameters simultaneously 

396 might compensate each other and improve the CCN retrievals. However, the SDs are larger with 

397 maximum values reaching 20.5%, 26.7%, and 53.1% for Type 1, Type 2, and Type 3 aerosols, 

398 respectively, due to the very large measurement errors created by the random combination of 

399 systematic and random errors. 
 

400 4. A real case study 

401 The evaluation of CCN retrievals depends critically on how well lidar and in situ measurements 

402 are matched, as matching errors can become overwhelming. Due to a lack of collocated 

403 measurements of the required quantities, we have not yet seen any evaluation done using real-case 

404 data. It is done here by comparing CCN derived from lidar measurements and measured by a Cloud 

405 Condensation Nuclei counter (CCNc) on the ground on 16 August 2015 at the U.S. Department of 

406 Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great 

407 Plains (SGP) site. 

408 Multi-wavelength lidar data were collected during the Combined HSRL and Raman lidar 

409 Measurement Study (CHARMS) intensive observation period (IOP) that occurred in August 2015 

410 at the SGP site [Ferrare et al., 2017]. During the CHARMS IOP, aerosol backscatter profiles at 

411 532 and 1064 nm, and aerosol extinct-ion profiles at 532 nm were acquired from the University of 

412 Wisconsin  HSRL located at  the SGP  site.  HSRL aerosol profiles, when combined with aerosol 

413 backscatter and extinction profiles at 355 nm collected by the SGP Raman lidar, provide a full set 

414 of three aerosol backscatter (355, 532, and 1064 nm) and two aerosol extinction (355 and 532 nm) 

415 profiles for CCN retrievals. CHARMS data were processed at temporal and vertical resolutions of 

416 10 minutes and 0.06 kilometers, respectively. To avoid the impact of the overlap function on 

417 extinction and backscattering retrievals, the lower limit of the height range where CCN properties 

418 are retrieved from optical data is 0.6 km above ground level. We also set the upper limit of the 

419 retrieval height range as 3 km due to the low aerosol loading in higher layers. For comparison 



420 purposes, in situ CCN concentrations under different supersaturation conditions (Scs ranging from 

421 0.1–0.75%) were measured on the ground by the CCNc at the same site. 

422 Although the SGP site is located in a rural area surrounded by cattle pastures and agricultural 

423 fields, air masses transported from the south and southeast often arrive at this site in the summer 

424 [Mahish and Collins, 2017]. Based on an overview of aerosol-type-dependent properties from 

425 more than 10 years of lidar observations [Baars et al., 2016] and Fig. 7, we can infer that aerosols 

426 in this case are not dust but urban or biomass burning aerosols by virtue of the lidar ratio (Fig. 7a), 

427 the depolarization ratio (Fig. 7b) and the Ångstrӧm exponent (Fig. 7c). The aerosol depolarization 

428 ratio was less than 0.1 on this day, which indicates that using the Mie theory for CCN retrievals is 

429 reasonable although potential systematic errors introduced by irregular-shaped aerosols are not 

430 negligible. To further distinguish between these two aerosol types, 48-h back trajectories 

431 calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory model [Draxler and 

432 Rolph, 2003] and active fire spots from Moderate Resolution Imaging Spectroradiometer (MODIS) 

433 data [Giglio et al., 2016] on 15 August 2015 are also used. Fig. 8a and Fig. 8b show that aerosols 

434 on 16 August 2015 originated from fire activities in the southeast and northeast of the SGP site. 

435 Therefore, the aerosol loading in this case was greatly influenced by biomass-burning aerosols 

436 transported to the SGP site. Based on the analysis of a multi-year record of hygroscopic 

437 measurements made at the SGP site [Mahish and Collins, 2017], a simplified hygroscopicity 

438 parameter κ equal to 0.2 is chosen for CCN retrievals here. This value falls within the reasonable 

439 range of κ for biomass-burning aerosols [Petters et al., 2009]. 

440 Total particle number concentrations (condensation nuclei, CN) retrievals from the lidar are 

441 shown in Fig. 9. Fig. 9a shows the temporal evolution of the vertical profile of aerosol extinction 

442 at 355 nm in the 0.6–3 km height ranging from 0000 universal coordinated time (UTC) to 2400 

443 UTC on 16 August 2015. During that day, a distinct aerosol layer was observed near the ground 

444 with an extinction coefficient of up to 0.25 km-1. From 1200–2400 UTC, the aerosol layer 

445 increased in altitude up to 2.2 km due to the enhancement of turbulent mixing in the atmosphere. 

446 Above that layer, several weak aerosol layers appeared and aerosols were distributed more 

447 uniformly with height. The CN number concentrations which is computed from the retrieved size 

448 distribution parameters are shown in Fig. 9b. 

449 Based on an investigation of the spatio-temporal distributions of RH at SGP during that day, 

450 the maximum RH is lower than 70% at each height and lower than 60% at 0.6 km, which didn’t 



451 reach the deliquescence RH of biomass burning aerosols [Lei et al., 2014; Kuang et al., 2016]. 

452 Thus the aerosol size distributions used for estimating CCN number concentrations are little 

453 influenced by aerosol hygroscopic growth on that day. For a comparison with surface in-situ 

454 measurements, retrieved CCN number concentrations are calculated using Eq. (7) with time- 

455 dependent supersaturations set for the in situ CCNc. Figure 10 shows the spatio-temporal 

456 distributions of CCN number concentrations (Fig. 10a), the time series of lidar-retrieved and 

457 surface-measured CCN concentrations (Fig. 10b) and a scatterplot of surface-measured CCN 

458 concentrations as a function of lidar-retrieved CCN concentration  (Fig. 10c) respectively.  Lidar 

459 retrievals shown in Fig. 10b and Fig. 10c are within a height range of 0.6 km. Figure 10a shows 

460 that the retrieved CCN number concentrations are roughly constant with height in the boundary 

461 layer except for the CCN number concentrations around 15:00 (UTC) that is likely due to the 

462 atmospheric transportation. The time series shows that both instruments generally captured the 

463 temporal evolution of CCN concentration on that day at the SGP site (Fig. 10b). However, periods 

464 with substantially different CCN concentrations were also observed. For example, higher CCN 

465 concentrations at ground level than at 0.6 km in the evening and overnight (0000–1000 UTC) are 

466 seen, most likely due to the vertically inhomogeneous distribution of aerosols. Figure 10c shows 

467 that CCN concentrations derived from measurements made by both instruments were well 

468 correlated. The  correlation coefficient  is 0.57 and the  regression slope  is 1.06 with most points 

469 lying close to the 1:1 line. Other than the vertical inhomogeneity of the atmosphere, most of the 

470 remaining differences could be due to the different observation methods and the extinction and 

471 backscattering retrieval uncertainties from the two lidar systems. Although a detailed uncertainty 

472 analysis is still needed and will be done in a future study, this comparison demonstrates the 

473 potential of using multi-wavelength Raman lidar measurements to profile aerosol and CCN 

474 properties. 
 

475 5. Conclusions 

476 We have investigated the feasibility of retrieving CCN number concentrations using multi- 

477 wavelength HSRL and Raman lidar measurements. Three representative types of aerosols with 

478 bimodal size distributions retrieved from AERONET observations were considered, namely, urban 

479 industrial (Type 1), biomass burning (Type 2), and dust (Type 3). The aerosol types are  assumed 

480 known and provide the mean complex refractive index. This leaves six size parameters to retrieve. 

481 To avoid the ill-posed inversion problem, the mode width of the coarse mode is assumed. 



482 Sensitivity tests suggest that this assumption only introduces a small error in the retrieval results. 

483 The retrieval is implemented based on LUTs generated from Mie scattering calculations. A 

484 successive approximation method in two steps is utilized as a tradeoff between the accuracy and 

485 computation time of the inversion. Once the parameters of the aerosol size distribution are obtained 

486 through the LUT, CCN number concentrations can be estimated. 

487 Numerical simulations were performed to evaluate the algorithm performance with and 

488 without errors in the extinction and backscatter coefficients. For error-free input, CCN 

489 concentrations for the three types of aerosols were well reproduced with good accuracy and 

490 stability. Simulations with systematic errors show that the uncertainties of extinction coefficients 

491 at 355 and 532 nm have a higher impact on the retrieval results, and that retrievals are more 

492 dependent on the uncertainties in backscatter coefficients at higher Scs than at lower Scs. There are 

493 significant differences in retrieval uncertainties among the three types of aerosols due to the 

494 different weights of fine- and coarse-mode aerosol particles among them. The differences can be 

495 explained by the weaker constraint of the algorithm for the coarse mode of aerosol particles than 

496 for the fine mode of particles. Tests where 15% random errors were considered were done next. 

497 CCN number concentrations had Gaussian distributions at lower Scs (0.07%, 0.10%) for all types 

498 of aerosols except for Type 3. This distribution shape disappeared at higher Scs. Simulations with 

499 both random and systematic errors, which represent more realistic cases, show that both errors 

500 together improved mean CCN retrievals because random and systematic errors often offset each 

501 other. Simulations showed that if the input optical data had a 15% systematic error and a 5% 

502 random error simultaneously, CCN number concentrations were retrieved with an accuracy of - 

503 3.3 ± 18.7% for urban industrial aerosols, -7.6 ± 15.3% for biomass burning aerosols, and -24.9 ± 

504 48.3% for dust aerosols at Sc = 0.07%. 

505 The focus of the numerical simulations is to explore the sensitivity of CCN retrievals to errors 

506 in the measurements of extinction and backscatter coefficients. The influences of aerosol hydration 

507 and dynamic mixing on the refractive index are not considered in the simulations. When processing 

508 observational data, the impact of relative humidity needs to be accounted for since the lidars 

509 retrieve the wet size distributions while the CCN calculations require the dry size distribution. 

510 From Raman lidar measurements, temperature and water vapor below clouds can be determined 

511 to provide the vertical profile of relative humidity [Ferrare, 2000; Behrendt et al., 2002; Reichardt 

512 et al., 2012]. Aerosol-type-dependent hygroscopic growth may thus be needed to estimate the dry 



513 size distribution from the wet size distribution and RH for CCN calculations. Furthermore, relative 

514 humidity information can be used to adjust the mean reflective index for the LUT. The impacts of 

515 humidity and the non-spherical dust shape will be studied and implemented, if warranted, in future 

516 algorithm development. 

517 The algorithm was applied to observational data from the ARM Climate Research Facility SGP 

518 site to illustrate the potential of the algorithm. For the first time, lidar-retrieved CCN 

519 concentrations   were   compared   with   simultaneous   measurements   from   an  in  situ CCNc. 

520 Considering the  vertical  aerosol  inhomogeneity between the surface and 0.6 km  above  ground 

521 level, CCN concentrations from in situ measurements and lidar retrievals agree well. 

522 The study demonstrates the potential of using multi-wavelength Raman lidar measurements to 

523 profile aerosol and CCN properties. The height-dependent information of aerosols and CCN are 

524 important for investigating the aerosol indirect effect in climate models. To ensure retrieval 

525 accuracy, 355 and 532 nm extinction coefficients need to be reliably derived. It is also important 

526 to consider including measurements made at longer wavelengths to improve CCN retrievals for 

527 dust aerosols. 
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784 Figures 

 

785   

786 Figure 1. Normalized size distributions representing the three types of aerosols considered in this 

787 study. Types 1–3 represent urban industrial, biomass burning, and dust aerosols, respectively. 
 
788 

 

789   

790  Figure 2. The relationship between particle critical dry diameter and critical supersaturation ratio 

791        for Type 1 (κ = 0.3), Type 2 (κ = 0.1), and Type 3 (κ = 0.01) aerosols. The parameter κ is the     

792  hygroscopicity parameter. Gray dashed lines denote the five critical Scs for activation (0.07, 0.10, 

793 0.20, 0.40, and 0.80%). 

794 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

795 

796  Figure  3.  Observed particle  number size distribution measured on 20 August  2006 during the  

797  NAMMA field campaign. Particle size is represented by the geometric diameter. Solid dots denote 

798  integrated UHSAS  and  APS  measurements.  Curves  are  bimodal  lognormal  fits  for  the size 

799    distributions of the fine mode (red dash-dotted line), the coarse mode (blue dashed line) and the  

800 full mode (black solid line). 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

801 

802          Figure 4. Errors in retrieved CCN number concentrations at different supersaturation ratios      

803  (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) as a function of systematic errors in the input optical  

804 data. Error bars denote the standard deviations for (a) Type 1, (b) Type 2, and (c) Type 3 aerosols. 

805 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806 

807  Figure 5. Frequency distributions of CCN errors for (a) Type 1, (b) Type 2, and (c) Type 3 aerosols 

808          at different supersaturation ratios (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) and with 15%      

809 random errors for all input optical data. 

810 



 
 
 
 
 
 
 
 
 
 
 
 
 

811 

812            Figure 6. Errors in retrieved CCN number concentrations at different supersaturation ratios      

813    (0.07%, 0.10%, 0.20%, 0.40%,  and 0.80%) that arise from accounting  for both systematic and   

814  random errors for (a) Type 1, (b) Type 2, and (3) Type 3 aerosols.  Error bars denote the standard 

815 deviations. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

816 
 
817  Figure  7. Spatio-temporal  distributions of  (a)  the  lidar  ratio at  532  nm, and  (b)  the  aerosol 

818  depolarization ratio at 532 nm calculated from the Raman nitrogen signal,  and (c) the Ångstrӧm  

819    exponent retrieved from lidar measurements on 16 August 2015 at the SGP site. The heights are  

820 kilometers above ground level. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821 

 
822    Figure 8. (a) 48-h back trajectories ending at 2400 UTC 16 August 2015 at the SGP site within   

823  the 600–2800 m layer, (b) MODIS true RGB image along with fire spots (red dots) from Aqua and 

824 Terra on 15 August 2015. The heights are meters above ground level. 
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826 

827 

828 

 
Figure 9. Spatio-temporal distributions of (a) aerosol extinction at 355 nm and (b) CN 

concentration retrieved from lidar measurements made on 16 August 2015 at the SGP site. The 

heights are kilometers above ground level. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

829 

830  Figure 10. (a) Spatio-temporal distributions of retrieved CCN number concentrations.  (b) Time  

831  series of CCN concentration measured by the lidar (at 0.6 km, magenta line) and the surface CCNc 

832  (green line). (c) Surface CCN concentration as a function of lidar CCN concentration (black dots) 

833  on 16 August 2015 at the SGP site. The correlation coefficient (R) and the slope of the linear best- 

834  fit line (red line) are given in the lower right corner of (c). The 1:1 line is also shown (grey dashed 

835 line). 
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837  Tables 

838  Table 1. Typical parameter ranges for the three aerosol bimodal distributions. Vtf / Vtc is the ratio 

839    of the volume concentration of the fine mode to the coarse mode. mR and mI represent the mean  

840  values  of  real  and  imaginary  parts  of  the  complex  refractive  index  [Dubovik  et  al.,  2002; 

841 Veselovskii et al., 2004]. 

 

Aerosol 
Parameter 

Urban 
Industrial 

Biomass 
Burning 

Dust 

rf n (µm) 0.075–0.095 0.072–0.082 0.062–0.082 
rc

n (µm) 0.60–0.71 0.75–0.80 0.59–0.64 
ln σf 0.38–0.46 0.4–0.47 0.4–0.53 
ln σc 0.70 0.70 0.65 

Vtf / Vtc 0.8–2.0 1.3–2.5 0.1–0.5 
 mR, mI 1.45, 0.01 1.5, 0.015 1.55, 0.002  

842 
 

843  Table 2. Critical radius at five critical supersaturation ratios for each type of aerosol. 
 

Critical Radius (rc, µm) 
 0.07% 0.10% 0.20% 0.40% 0.80% 

Type 1 (κ = 0.3) 0.105 0.083 0.052 0.033 0.021 
Type 2 (κ = 0.1) 0.151 0.119 0.075 0.047 0.029 
Type 3 (κ = 0.03) 0.224 0.177 0.111 0.069 0.043 

844 
 

845  Table 3. CCN errors at different Scs (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) retrieved from 

846  error-free inputs for the three aerosol types. 
 

    CCN Error (% )  

  0.07% 0.10% 0.20% 0.40% 0.80% 

Mean 

± SD 

(%) 

Type 1 -0.01 ± 0.24 -0.01 ± 0.24 -0.01 ± 0.24 -0.01 ± 0.24 -0.01 ± 0.24 

Type 2 -0.01 ± 0.18 -0.01 ± 0.18 -0.01 ± 0.18 -0.01 ± 0.18 -0.01 ± 0.18 

Type 3 -0.00 ± 0.21 -0.00 ± 0.25 -0.00 ± 0.27 -0.00 ± 0.28 0.00 ± 0.28 

847 
 
848 



849  Table 4. Sensitivity of CCN retrievals to the bimodal fits at different supersaturation ratios (0.07%, 

850  0.10%, 0.20%, 0.40%, and 0.80%) from the 50 NAMMA aerosol size distributions. The CCN error 

851 is calculated as an absolute value. 

 

CCN Error (%) 

 0.07% 0.10% 0.20% 0.40% 0.80% 

Mean ± SD (%) 3.9 ± 2.8 3.1± 2.9 4.2 ± 3.3 2.2 ± 1.8 1.9 ± 1.6 

852 
 

853  Table 5. Effects of the assumed lnσc on the retrieved CCN errors at different supersaturation ratios 

854  (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) for the three aerosol types. Error-free inputs were used. 
 

    CCN Error (%)   

  0.07% 0.10% 0.20% 0.40% 0.80% 

Mean 
± SD 
(%) 

Type 1 0.01 ± 0.7 -0.03 ± 1.2 -0.03 ± 3.8 0.02 ± 5.2 0.04 ± 5.5 
Type 2 0.8 ± 1.6 0.6 ± 1.0 -0.2 ± 1.2 -1.0 ± 3.0 -1.3 ± 3.9 
Type 3 -0.05 ± 2.7 0. 07 ± 3.3 0.3 ± 1.2 -0.2 ± 2.4 -0.8 ± 5.8 

855 
 

856  Table 6. Range, mean, and standard deviations of retrieved CCN number concentration errors  at 

857  different  supersaturation ratios (0.07%,  0.10%, 0.20%, 0.40%, and  0.80%).  Input  optical  data 

858  included 15% random errors. 
 

  0.07% 0.10% 0.20% 0.40% 0.80% 

Type 
1 

Range (%) [-53.4, 47.2] [-49.4, 44.1] [-37.9, 26.8] [-30.0, 19.1] [-27.5, 18.2] 

Mean ± 
SD (%) 

-2.5 ± 18.7 -3.6 ±20.3 -7.0 ± 19.0 -7.6 ± 18.2 -7.3 ± 18.2 

Type 
2 

Range (%) [-61.7, 50.4] [-53.0, 51.6] [-55.1, 44.7] [-43.8, 21.9] [-31.2, 16.9] 

Mean ± 
SD (%) 

-5.4 ± 14.6 -1.0 ± 21.4 -3.3 ± 24.9 -7.7± 18.9 -6.5 ± 17.5 

Type 
3 

Range (%) [-82.7, 122.6] [-92.0, 103.4] [-79.4, 98.1] [-75.4, 103.5] [-64, 57.7] 

Mean ± 
SD (%) 

-20.0 ± 46.1 -19.4 ± 34.1 4.4 ± 27.5 10.2 ± 41.4 -0.8 ± 36.2 

859 
 
860 

 
861 



862  Table 7. Mean and standard deviations of CCN retrieval errors at different supersaturation ratios 

863  (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) with both systematic and random errors included. 
 

Systematic 
error (%) 0.07% 0.10% 0.20% 0.40% 0.80% 

  5 1.3 ± 14.7 -0.1 ± 16.3 -3.7 ± 15.9 -4.5 ± 16.3 -4.2 ± 16.6 
Type 

1 
Mean ± 
SD (%) 

10 -0.1 ± 18.3 -0.9 ± 20.2 -4.5 ± 18.9 -5.3 ± 18.1 -5.1 ± 18.0 
15 -3.3 ± 18.7 -4.1 ± 19.7 -7.5 ± 18.8 -8.2 ± 18.3 -8.0 ± 18.4 

  20 -6.9 ± 19.9 -6.9 ± 20.5 -8.9 ± 19.6 -9.3 ± 18.8 -9.0 ± 18.7 
  5 -0.8 ± 8.5 1.7 ± 15.2 -1.6 ± 17.2 -5.1 ± 14.8 -4.4 ± 15.7 
Type 

2 
Mean ± 
SD (%) 

10 -3.2 ± 11.8 -0.3 ± 19.1 -3.5 ± 21.6 -6.7 ± 16.6 -5.1 ± 16.6 
15 -7.6 ± 15.3 -2.7 ± 21.6 -3.8 ± 25.5 -7.6 ± 19.0 -6.3 ± 17.3 

  20 -10.3 ± 19.6 -5.5 ± 24.0 -6.3 ± 26.7 -10.0 ± 20.1 -8.5 ± 17.9 
  5 -12.7 ± 32.0 -10.0 ± 23.2 3.0 ± 15.3 4.4 ± 29.5 -1.1 ± 31.7 
Type 

3 
Mean ± 
SD (%) 

10 -16.2 ± 41.9 -15.2 ± 30.4 3.5 ± 21.8 6.8 ± 36.5 -1.9 ± 33.3 
15 -24.9 ± 48.3 -23.5 ± 36.0 6.1 ± 29.2 14.0 ± 43.9 -0.8 ± 36.8 

  20 -25.8 ± 53.1 -24.9 ± 38.8 6.0 ± 36.6 12.7 ± 45.4 -1.8 ± 37.0 

864 


