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ABSTRACT 

Now-a-days most of the Very Large Databases like Medical Databases, Multimedia Database are consuming 
Petabytes of memory. For extracting required data from this enormous amount of memory so many retrieval techniques 
were already developed.  But all these techniques are time consuming. We can also use indexing supported by all the 
commercial databases.  When we create an index internally it uses B-Tree data structure which is used for efficient retrieval 
of data. But, Oracle10g is supporting R-Tree indexes also which are more efficient than B-Tree indexes. On Very Large 
Databases it is not sufficient to create a single index because these Databases consist of large number of fields. Moreover, 
it is not necessary to create index on each and every field and it is also not possible because it requires large memory area. 
In very large databases also most of the times the user concentrates on few fields only. So, in our proposed system, the 
solution is to create some suggested indexes. And as and when the user’s query pattern changes the suitable index from 
the suggested index set is dynamically loaded into the main memory from the local storage. Our proposed technique 
continuously monitors the query patterns and it creates the suggested indexes using Apriori algorithm and this suggested 
index set is updated periodically based on the query pattern changes. 
KEYWORDS: Very Large Databases, Potential index, Query Pattern, Histogram R-Tree Indexing. 
 

 
1. INTRODUCTION 

 
Now-a-days most databases applications like 

medical databases and multimedia databases deal with 
large volumes of data. It is containing so many attributes. 
As the number of attributes are increasing it is necessary to 
access the data very efficiently to use it properly. Most of 
the commercial databases now-a-days are supporting large 
amounts of data having large number of attributes. These 
databases are also giving us the facility of creation of 
indexes to prune out significant portion of the data set that 
is irrelevant to specific queries. Multidimensional 
indexing, dimensionality reduction and some index 
selection tools all could be applied to the problem. 
However each of these solutions has some problem. The 
performance of  the multidimensional index structures  is 
subject to  the  curse of dimensionality and rapidly 
decreases as the number of dimensions increases. The 
index selection tools [1] of commercial database systems 
are also having a problem. That is they provide only static 
indexes. They are targeted toward lower dimensional 
databases and do not produce results that are optimized for 
single high dimensional tables. 

 In most of the high-dimensional database 
applications, only a small subset of the overall data 
dimensions [2] is popular for a majority of queries and that 
recurring patterns of dimensions queried occur. So, we 
address the high-dimensional database indexing problem 
by selecting the lower dimensional indexes based on the 
the query patterns and data. In our approach we are going 
to consider both data and query patterns and we are 
developing a new set of low-dimensional indexes to 
address a large number of expected queries and pruning of 
data space to answer the queries effectively. But when the 

current query patterns are substantially different from the 
query patterns used to recommend the database indexes, 
the performance of the system will be drastically reduced. 
So, in our approach as and when the query pattern changes 
we are calculating the new index set a head of time. So 
there won’t be any delay in accessing the required data 
from the large hi-dimensional databases. 

 
2. MATHEMATICAL APPROACH 

 
In this section we define the problem of index 

selection [3] for a multidimensional space by using a 
query workload.  A query workload W consists of a set of 
queries that select objects within a specified subspace in 
the domain. Finding the answers to a query when no index 
is present reduces to scanning all the points in the data set 
and testing whether the query conditions re met. In this 
scenario, we can define the cost of answering the query as 
the time that it takes to scan the data set, that is, the time to 
retrieve the data pages from the disk. The assumption is 
that the time spent on performing the I/O dominates the 
time required to perform the simple bound comparisons. In 
the case that an index is present, the cost of answering the 
query can be lower. The index can identify a smaller set of 
potential matching objects, and only those data in this 
section, we define the problem of index selection for a 
multidimensional space by using a query workload. A 
query workload W consists of a set of queries that select 
objects within a specified subspace in the data domain. 
Finding the answers to a query when no index is present 
reduces to scanning all the points in the data set and 
testing whether the query conditions are met. In this 
scenario, we can define the cost of answering the query as 
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the time that it takes to scan the data set, that is, the time to 
retrieve the data pages from the disk. The assumption 
pages containing these objects need to be retrieved form 
the disk. The degree to which an index prunes the potential 
answer set for a query determines its effectiveness for the 
query. 

Our problem can be defined as finding a set of 
indexes I, given a multidimensional data set DS, a query 
workload W, an optional indexing constraint C and an 
optional analysis time constraint ta, that provides the best 
estimated cost over W. In the context of this problem, an 
index is considered to be the set of attributes that can be 
used to simultaneously prune the subspace with respect to 
each attribute. Therefore the attribute order has no impact 
on the amount of pruning possible. The goal of this work 
is to develop a flexible index selection framework that can 
be tuned to achieve effective static index selection and 
online index selection for high-dimensional data. 

For the online index selection, the goal is to 
develop a system that can recommend an evolving set of 
indexes for incoming queries over time such that the 
benefit of index set changes outweighs the cost of making 
those changes. Therefore, an online index selection system 
that differentiates between low cost index set changes and 
higher cost index set changes and can also make decisions 
about index set changes based on different cost-benefit 
thresholds is desirable. 

In order to measure the benefit of using a 
potential index over a set of queries, it is necessary to 
estimate the cost of executing queries with and without the 
index. To estimate the query cost we conservatively 
estimate the number of matches associated with using  a 
given index by using a multidimensional histogram 
abstract representation of the data set. The histogram 
captures data correlations between only those attributes 
that could be represented in a selected index.  

The cost associated with an index is calculated based 
on the number of estimated matches derived from the 
histogram and dimensionality of the index. Increasing the 
size of the multidimensional histogram enhances the 
accuracy of the estimated at the cost of an abstract 
representation size. While maintaining the original query 
information for later use to determine the estimated query 
cost, we apply one abstraction to the query workload to 
convert each query into the set of attributes referenced in 
the query.  We perform frequent item set mining over this 
abstraction and only consider those sets of attributes that 
meet a certain support to be potential indexes. By varying 
the support, we affect the speed of index selection and the 
ratio of queries that are covered by potential indexes. We 
further prune the analysis space using association rule 
mining by eliminating those subsets  above a certain 
confidence threshold.  Lowering the confidence threshold 
improves the analysis time by eliminating some lower 
dimensional indexes from consideration but can result in 
recommending indexes that cover a strict superset of the 
queried attributes. Our technique differs from existing 
tools in the method that we use to determine the potential 
set of indexes to evaluate and in the quantization-based 

technique that we use to estimate query costs. All of the 
commercial index wizards work in design time. The DBA 
has to decide when to run this wizard and over which 
workload. The assumption is that the workload is going to 
remain static over time, and in case it changes, the DBA 
would collect the new workload and run the wizard again. 
The flexibility afforded by the abstract representation that 
we use allows it to be used for infrequent index selection 
considering a broader analysis space or frequent online 
index selection. 
 
2.1 Proposed Solution 

Proposed solution for dynamic index selection   is 
to minimize the cost of the queries in the workload, given 
certain constraints.  
 
2.1.1 Initialize the abstract Representations 

Potential index set P. This is a collection of 
attribute sets that could be beneficial as an index for the 
queries in the input query workload. This set is computed 
using traditional data mining techniques. Considering the 
attributes involved in each query workload to be a single 
transaction, P Consists of the sets of attributes that occur 
together in a query at a ratio greater than the input support. 
Formally, the support of a set of attributes A is defined as 

  
n       1  if A ≤ Qi 

 ∑  { 
 i=1    0 otherwise 
SA=     -------------------------- 
             n 

 
where Qi is the set of attributes in the ith query and n is the 
number of queries. 
 The confidence of and association rule {set of 
attributes A}→{set of attributes B}, where A and B are 
disjoint, is defined as 

 
n       1 if (A U B) ≤ Qi 

  ∑  {  
  i=1    0 otherwise 

CA→B= ----------------------------------------------------- 
   n      1  if A ≤ Qi 

  ∑  {  
  i=1    0 otherwise 

  
where Qi is the set of attributes in the ith query, and n is 
the number of queries. To mine the frequent patterns we 
are using the Apriori algorithm.  
Query Set Q.  This is the abstract representation of the 
query workload. It is initialized by associating the 
potential  tial indexes that could be beneficial for each 
query with that query.  
Multidimensional Histogram H. An Abstract 
representation of the data set is created in order to estimate 
the query cost associated with using each query’s possible 
indexes to answer that query. This representation is in the 
form of a multidimensional histogram H.  
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Fig1: Index Selection Flowchart. 
 
The table below shows a simple multidimensional 
histogram example. This histogram covers three attributes 
an uses 1 bit to quantize attributes 2 and 3 and 2 bits to 
quantize attribute 1, assuming  that it is queried more 
frequently than the other attributes. In this example, fro 
attributes 2 and 3  values form 1 to 5 quantize to 0, and 
values form 6 to 10 quantize to 1. For attribute 1, values 1 
and 2 quantize to 00, 3 and 4 quantize to 01, 5,6, and 7 
quantize to 10, and 8 and 9 quantize to 11. The .’s in the 
column “Value” denote attribute boundaries. 

 

 
 
Fig2: Histogram 
 
2.1.2 Query Cost Calculation 
 Once generated, the abstract representations of 
the query set Q and the multidimensional histogram H are 
used to estimate the cost of answering each query by using 
all possible indexes for the query.For a given query index 
pair, we aggregate the  number of matches that we find in 
the multidimensional histogram by looking only at the 
attributes in the query that also occur in the index. To 
estimate the query cost , we then apply a cost function 
based on the number of matches that we obtain by using 
the index and the dimensionality of the index.  At the end 
of this step, our abstract query set representation has 
estimated costs for each index that could improve the 
query cost. For each query in the query set representation, 
we also keep a current cost field, which we initialize to the 
cost of performing the query by using sequential scan. At 
this point, we also initialize an empty set of suggested 
indexes S. 
Cost Function. We apply a cost estimate that is base d on 
the actual matches that occur over the multidimensional 
histogram over the attributes that form a potential index.  

 
 
 
The cost model for R-trees that we use in this work is 
given by (d(d/2) * m), where  d is the dimensionality of  the 
index, and  m is the number of matches returned for query 
matching attributes in the multidimensional histogram. 
 
2.1.3 Index Selection Loop 

After initializing the index selection data 
structures and updating estimated query costs for each 
potentially useful index for a query , we use a greedy 
algorithm that takes into account the indexes that would be 
appropriated for the given query work load and data set. 
For each  index in the potential index set P, we traverse the 
queries in the query set Q that could be improved by that 
index and accumulate the improvement associated with 
using that index for that query.  After each i is selected a 
check is made to determine if the index selection loop 
should continue. The input indexing constraints provides 
one of the loop stop criteria. The indexing constraint could 
be any constraint such as the number of indexes, total 
index size, or the total number of dimensions indexed. If 
no potential index yields further improvement or the 
indexing constraints have been met, then the loop exits. 
The set of suggested indexes S contains the results of the 
index selection algorithm. 
 
2.2 Proposed Solution for Online Index Selection 
  The online index selection is motivated by the 
fact that query patterns can change over time. By 
monitoring the query workload and detecting when there is 
a change on the query pattern that generated the existing 
set of indexes, we are able to maintain good performance 
as query patterns evolve. 
 

 
 
Fig3: Dynamic Index Analysis Framework. 
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We use control feed back to monitor the performance of 
the current set of indexes for incoming queries and 
determine when adjustments should be made to the index 
set. In a typical control feedback system, the output of a 
system is monitored, and based on some functions 
involving the input and output, the input to the system is 
readjusted through a control feedback loop.  

Our system input is set of indexes and a set of 
incoming queries. Our system simulates and estimates 
costs for the execution of incoming queries. System output 
is the ratio of the potential system performance to the 
actual system performance in terms of database page 
accesses to answer the most recent queries. We implement 
two control feedback loops. One is for fine-grained control 
and is used to recommend minor inexpensive changes to 
the index set. The other loop is for coarse control and is 
used to avoid very poor system performance by 
recommending major index set changes. Each control 
feedback loop has decision logic associated with it. 
 

3. RESULTS AND DISCUSSION 
3.1 Experimental Setup 
Data Sets. Several data sets were used during the 
performance of experiments. The variation in the data sets 
is intended to show the applicability of our algorithm to a 
wide range of data sets and to measure the effect that data 
correlation  has on results. The data sets used include the 
following. 

1. Random. This is a set of 1,00,000 records 
consisting of 100 dimensions of uniformly 
distributed integers between 0 and 999. The  data 
is not correlated. 

2. Stocks. This is a set of 6,500 records consisting 
of 360 dimensions of daily stock market prices. 
This data is extremely correlated. 

3. Mlb. This is a set of  33,619 records of major 
league pitching statistics between the years 1900 
and 2004 and consists of 29 dimensions of data. 
Some dimensions are correlated with each other, 
whereas others are not all correlated. 

Analysis Parameters. The effect of varying several 
analysis input parameters, including support, 
multidimensional histogram size, and online indexing 
control feedback decision thresholds, war analyzed. Unless 
otherwise specified, the confidence parameter for the 
experiments is 1.0. 
 
Query Workloads. The following query workloads are 
used in our experiments. 

1. Synthetic. This includes 500 randomly generated 
queries. The distribution of the queries over the 
first 200 queries is 20 percent involving attributes 
{1,2,3,4} together, 20 percent {5,5,7}, 20 
percent, {8,9}, and the remaining queries involve 
between one and five attributes that could be any 
attribute. Over the last 300 queries, the 
distribution shifts to 20 percent covering 
attributes{11,12,13,14}, 20 percent {15,16,`7}, 
20 percent {18,19}, and the remaining 40 percent 

are between one and five attributes that could be 
any attribute. 

2. Clinical. This include 659 queries executed from 
a cli8nical application. The query distribution file 
has 64 distinct attributes. 

3. Hr. This includes 35,860 queries executed from a 
human resources application. The query 
distribution file has 54 attributes. Due to the size 
of this query set, some initial portion of the 
queries are used for some experiments. 

 
Results are as shown below. 
 

 
 
Fig: Comparison of the Proposed Index Selection 
Algorithm with AutoAdmin in Terms of Analysis Time and 
Percentage of Queries improved. 
 
 

 
 
Fig: Comparision of Analysis Complexity and Query 
Performance as Support and Confidence Vary for the 
Stock Data Set Using the Clinical Workload. 
 
 

 
 
 
Fig: Comparative cost of online indexing as the 
multidimensional histogram size changes for the random 
data set using the synthetic query workload. 
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Fig: Costs in data object accesses for ideal, sequential scan, AutoAdmin, naïve and the proposed index selection 
techniques using relaxed constraints. 
 

4. CONCLUSIONS 
 
 A flexible technique for index selection is 
introduced, which can be tuned to achieve different levels 
of constraints and analysis complexity.  
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