
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 911
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Retrieval of Data from Very Large Databases Using
Apriori Algorithm

 1 P MOHAN GANESH, 2 THUMMULURU KAVITHA 3 RVS RATNA KUMAR
 Assistant Professor Assistant Professor Assistant Professor

 1,2,3Dept of IT, Vignan’s Institute of Engineering for women’s, AP.

ABSTRACT

Now-a-days most of the Very Large Databases like Medical Databases, Multimedia Database are consuming
Petabytes of memory. For extracting required data from this enormous amount of memory so many retrieval techniques
were already developed. But all these techniques are time consuming. We can also use indexing supported by all the
commercial databases. When we create an index internally it uses B-Tree data structure which is used for efficient retrieval
of data. But, Oracle10g is supporting R-Tree indexes also which are more efficient than B-Tree indexes. On Very Large
Databases it is not sufficient to create a single index because these Databases consist of large number of fields. Moreover,
it is not necessary to create index on each and every field and it is also not possible because it requires large memory area.
In very large databases also most of the times the user concentrates on few fields only. So, in our proposed system, the
solution is to create some suggested indexes. And as and when the user’s query pattern changes the suitable index from
the suggested index set is dynamically loaded into the main memory from the local storage. Our proposed technique
continuously monitors the query patterns and it creates the suggested indexes using Apriori algorithm and this suggested
index set is updated periodically based on the query pattern changes.
KEYWORDS: Very Large Databases, Potential index, Query Pattern, Histogram R-Tree Indexing.

1. INTRODUCTION

Now-a-days most databases applications like

medical databases and multimedia databases deal with
large volumes of data. It is containing so many attributes.
As the number of attributes are increasing it is necessary to
access the data very efficiently to use it properly. Most of
the commercial databases now-a-days are supporting large
amounts of data having large number of attributes. These
databases are also giving us the facility of creation of
indexes to prune out significant portion of the data set that
is irrelevant to specific queries. Multidimensional
indexing, dimensionality reduction and some index
selection tools all could be applied to the problem.
However each of these solutions has some problem. The
performance of the multidimensional index structures is
subject to the curse of dimensionality and rapidly
decreases as the number of dimensions increases. The
index selection tools [1] of commercial database systems
are also having a problem. That is they provide only static
indexes. They are targeted toward lower dimensional
databases and do not produce results that are optimized for
single high dimensional tables.

 In most of the high-dimensional database
applications, only a small subset of the overall data
dimensions [2] is popular for a majority of queries and that
recurring patterns of dimensions queried occur. So, we
address the high-dimensional database indexing problem
by selecting the lower dimensional indexes based on the
the query patterns and data. In our approach we are going
to consider both data and query patterns and we are
developing a new set of low-dimensional indexes to
address a large number of expected queries and pruning of
data space to answer the queries effectively. But when the

current query patterns are substantially different from the
query patterns used to recommend the database indexes,
the performance of the system will be drastically reduced.
So, in our approach as and when the query pattern changes
we are calculating the new index set a head of time. So
there won’t be any delay in accessing the required data
from the large hi-dimensional databases.

2. MATHEMATICAL APPROACH

In this section we define the problem of index

selection [3] for a multidimensional space by using a
query workload. A query workload W consists of a set of
queries that select objects within a specified subspace in
the domain. Finding the answers to a query when no index
is present reduces to scanning all the points in the data set
and testing whether the query conditions re met. In this
scenario, we can define the cost of answering the query as
the time that it takes to scan the data set, that is, the time to
retrieve the data pages from the disk. The assumption is
that the time spent on performing the I/O dominates the
time required to perform the simple bound comparisons. In
the case that an index is present, the cost of answering the
query can be lower. The index can identify a smaller set of
potential matching objects, and only those data in this
section, we define the problem of index selection for a
multidimensional space by using a query workload. A
query workload W consists of a set of queries that select
objects within a specified subspace in the data domain.
Finding the answers to a query when no index is present
reduces to scanning all the points in the data set and
testing whether the query conditions are met. In this
scenario, we can define the cost of answering the query as

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 912
ISSN 2229-5518

the time that it takes to scan the data set, that is, the time to
retrieve the data pages from the disk. The assumption
pages containing these objects need to be retrieved form
the disk. The degree to which an index prunes the potential
answer set for a query determines its effectiveness for the
query.

Our problem can be defined as finding a set of
indexes I, given a multidimensional data set DS, a query
workload W, an optional indexing constraint C and an
optional analysis time constraint ta, that provides the best
estimated cost over W. In the context of this problem, an
index is considered to be the set of attributes that can be
used to simultaneously prune the subspace with respect to
each attribute. Therefore the attribute order has no impact
on the amount of pruning possible. The goal of this work
is to develop a flexible index selection framework that can
be tuned to achieve effective static index selection and
online index selection for high-dimensional data.

For the online index selection, the goal is to
develop a system that can recommend an evolving set of
indexes for incoming queries over time such that the
benefit of index set changes outweighs the cost of making
those changes. Therefore, an online index selection system
that differentiates between low cost index set changes and
higher cost index set changes and can also make decisions
about index set changes based on different cost-benefit
thresholds is desirable.

In order to measure the benefit of using a
potential index over a set of queries, it is necessary to
estimate the cost of executing queries with and without the
index. To estimate the query cost we conservatively
estimate the number of matches associated with using a
given index by using a multidimensional histogram
abstract representation of the data set. The histogram
captures data correlations between only those attributes
that could be represented in a selected index.

The cost associated with an index is calculated based
on the number of estimated matches derived from the
histogram and dimensionality of the index. Increasing the
size of the multidimensional histogram enhances the
accuracy of the estimated at the cost of an abstract
representation size. While maintaining the original query
information for later use to determine the estimated query
cost, we apply one abstraction to the query workload to
convert each query into the set of attributes referenced in
the query. We perform frequent item set mining over this
abstraction and only consider those sets of attributes that
meet a certain support to be potential indexes. By varying
the support, we affect the speed of index selection and the
ratio of queries that are covered by potential indexes. We
further prune the analysis space using association rule
mining by eliminating those subsets above a certain
confidence threshold. Lowering the confidence threshold
improves the analysis time by eliminating some lower
dimensional indexes from consideration but can result in
recommending indexes that cover a strict superset of the
queried attributes. Our technique differs from existing
tools in the method that we use to determine the potential
set of indexes to evaluate and in the quantization-based

technique that we use to estimate query costs. All of the
commercial index wizards work in design time. The DBA
has to decide when to run this wizard and over which
workload. The assumption is that the workload is going to
remain static over time, and in case it changes, the DBA
would collect the new workload and run the wizard again.
The flexibility afforded by the abstract representation that
we use allows it to be used for infrequent index selection
considering a broader analysis space or frequent online
index selection.

2.1 Proposed Solution

Proposed solution for dynamic index selection is
to minimize the cost of the queries in the workload, given
certain constraints.

2.1.1 Initialize the abstract Representations

Potential index set P. This is a collection of
attribute sets that could be beneficial as an index for the
queries in the input query workload. This set is computed
using traditional data mining techniques. Considering the
attributes involved in each query workload to be a single
transaction, P Consists of the sets of attributes that occur
together in a query at a ratio greater than the input support.
Formally, the support of a set of attributes A is defined as

n 1 if A ≤ Qi

 ∑ {
 i=1 0 otherwise
SA= --------------------------
 n

where Qi is the set of attributes in the ith query and n is the
number of queries.
 The confidence of and association rule {set of
attributes A}→{set of attributes B}, where A and B are
disjoint, is defined as

n 1 if (A U B) ≤ Qi

 ∑ {
 i=1 0 otherwise

CA→B= ---
 n 1 if A ≤ Qi

 ∑ {
 i=1 0 otherwise

where Qi is the set of attributes in the ith query, and n is
the number of queries. To mine the frequent patterns we
are using the Apriori algorithm.
Query Set Q. This is the abstract representation of the
query workload. It is initialized by associating the
potential tial indexes that could be beneficial for each
query with that query.
Multidimensional Histogram H. An Abstract
representation of the data set is created in order to estimate
the query cost associated with using each query’s possible
indexes to answer that query. This representation is in the
form of a multidimensional histogram H.

IJSER

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 913
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig1: Index Selection Flowchart.

The table below shows a simple multidimensional
histogram example. This histogram covers three attributes
an uses 1 bit to quantize attributes 2 and 3 and 2 bits to
quantize attribute 1, assuming that it is queried more
frequently than the other attributes. In this example, fro
attributes 2 and 3 values form 1 to 5 quantize to 0, and
values form 6 to 10 quantize to 1. For attribute 1, values 1
and 2 quantize to 00, 3 and 4 quantize to 01, 5,6, and 7
quantize to 10, and 8 and 9 quantize to 11. The .’s in the
column “Value” denote attribute boundaries.

Fig2: Histogram

2.1.2 Query Cost Calculation
 Once generated, the abstract representations of
the query set Q and the multidimensional histogram H are
used to estimate the cost of answering each query by using
all possible indexes for the query.For a given query index
pair, we aggregate the number of matches that we find in
the multidimensional histogram by looking only at the
attributes in the query that also occur in the index. To
estimate the query cost , we then apply a cost function
based on the number of matches that we obtain by using
the index and the dimensionality of the index. At the end
of this step, our abstract query set representation has
estimated costs for each index that could improve the
query cost. For each query in the query set representation,
we also keep a current cost field, which we initialize to the
cost of performing the query by using sequential scan. At
this point, we also initialize an empty set of suggested
indexes S.
Cost Function. We apply a cost estimate that is base d on
the actual matches that occur over the multidimensional
histogram over the attributes that form a potential index.

The cost model for R-trees that we use in this work is
given by (d(d/2) * m), where d is the dimensionality of the
index, and m is the number of matches returned for query
matching attributes in the multidimensional histogram.

2.1.3 Index Selection Loop

After initializing the index selection data
structures and updating estimated query costs for each
potentially useful index for a query , we use a greedy
algorithm that takes into account the indexes that would be
appropriated for the given query work load and data set.
For each index in the potential index set P, we traverse the
queries in the query set Q that could be improved by that
index and accumulate the improvement associated with
using that index for that query. After each i is selected a
check is made to determine if the index selection loop
should continue. The input indexing constraints provides
one of the loop stop criteria. The indexing constraint could
be any constraint such as the number of indexes, total
index size, or the total number of dimensions indexed. If
no potential index yields further improvement or the
indexing constraints have been met, then the loop exits.
The set of suggested indexes S contains the results of the
index selection algorithm.

2.2 Proposed Solution for Online Index Selection
 The online index selection is motivated by the
fact that query patterns can change over time. By
monitoring the query workload and detecting when there is
a change on the query pattern that generated the existing
set of indexes, we are able to maintain good performance
as query patterns evolve.

Fig3: Dynamic Index Analysis Framework.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 914
ISSN 2229-5518

We use control feed back to monitor the performance of
the current set of indexes for incoming queries and
determine when adjustments should be made to the index
set. In a typical control feedback system, the output of a
system is monitored, and based on some functions
involving the input and output, the input to the system is
readjusted through a control feedback loop.

Our system input is set of indexes and a set of
incoming queries. Our system simulates and estimates
costs for the execution of incoming queries. System output
is the ratio of the potential system performance to the
actual system performance in terms of database page
accesses to answer the most recent queries. We implement
two control feedback loops. One is for fine-grained control
and is used to recommend minor inexpensive changes to
the index set. The other loop is for coarse control and is
used to avoid very poor system performance by
recommending major index set changes. Each control
feedback loop has decision logic associated with it.

3. RESULTS AND DISCUSSION
3.1 Experimental Setup
Data Sets. Several data sets were used during the
performance of experiments. The variation in the data sets
is intended to show the applicability of our algorithm to a
wide range of data sets and to measure the effect that data
correlation has on results. The data sets used include the
following.

1. Random. This is a set of 1,00,000 records
consisting of 100 dimensions of uniformly
distributed integers between 0 and 999. The data
is not correlated.

2. Stocks. This is a set of 6,500 records consisting
of 360 dimensions of daily stock market prices.
This data is extremely correlated.

3. Mlb. This is a set of 33,619 records of major
league pitching statistics between the years 1900
and 2004 and consists of 29 dimensions of data.
Some dimensions are correlated with each other,
whereas others are not all correlated.

Analysis Parameters. The effect of varying several
analysis input parameters, including support,
multidimensional histogram size, and online indexing
control feedback decision thresholds, war analyzed. Unless
otherwise specified, the confidence parameter for the
experiments is 1.0.

Query Workloads. The following query workloads are
used in our experiments.

1. Synthetic. This includes 500 randomly generated
queries. The distribution of the queries over the
first 200 queries is 20 percent involving attributes
{1,2,3,4} together, 20 percent {5,5,7}, 20
percent, {8,9}, and the remaining queries involve
between one and five attributes that could be any
attribute. Over the last 300 queries, the
distribution shifts to 20 percent covering
attributes{11,12,13,14}, 20 percent {15,16,`7},
20 percent {18,19}, and the remaining 40 percent

are between one and five attributes that could be
any attribute.

2. Clinical. This include 659 queries executed from
a cli8nical application. The query distribution file
has 64 distinct attributes.

3. Hr. This includes 35,860 queries executed from a
human resources application. The query
distribution file has 54 attributes. Due to the size
of this query set, some initial portion of the
queries are used for some experiments.

Results are as shown below.

Fig: Comparison of the Proposed Index Selection
Algorithm with AutoAdmin in Terms of Analysis Time and
Percentage of Queries improved.

Fig: Comparision of Analysis Complexity and Query
Performance as Support and Confidence Vary for the
Stock Data Set Using the Clinical Workload.

Fig: Comparative cost of online indexing as the
multidimensional histogram size changes for the random
data set using the synthetic query workload.

IJSER

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 915
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig: Costs in data object accesses for ideal, sequential scan, AutoAdmin, naïve and the proposed index selection
techniques using relaxed constraints.

4. CONCLUSIONS

 A flexible technique for index selection is
introduced, which can be tuned to achieve different levels
of constraints and analysis complexity.

REFERENCES

[1] A. Dogac, A.Y.Erisik, and A.Ikinici, “An Automated
 Index Selection Tool for Oracle&: Maestro 7,”
 Technical Report LBNL/PUB-3161, Software
 Research and Development Center, Scientific and
 Technical Research Council of Turkey(TUBITAK),
 1994.
[2] S.Ponce, P.M. Vila, and R.Hersch, “ Indexing and
 Selection of Data Items in Huge Data Sets by
 Constructing and Accessing Tag Collections,” Poc.19th
 IEEE Symp. Mass Storage Systems and 10th Goddard
 Conf. Mass Storage Systems and Technologies, 2002.
[3] S.Choenni, H. Blanken, and T. Chang, “On the
 Selection of Secondary Indexes in Relational
 Databases,” Data and Knowledge Eng., 1993.

IJSER

http://www.ijser.org/

