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S U M M A R Y

Theoretical studies on ambient seismic noise (ASN) predict that complete Green’s function

between seismic stations can be retrieved from cross correlation. However, only fundamental

mode surface waves emerge in most studies involving real data. Here we show that Moho-

reflected body wave (SmS) and its multiples can be identified with ASN for station pairs

near their critical distances in the short period band (1–5 s). We also show that an uneven

distribution of noise sources, such as mining activity and wind–topography interaction, can

cause surface wave precursors, which mask weaker body wave phases.

Key words: Interferometry; Body waves; Crustal structure.

1 I N T RO D U C T I O N

The Green’s function between two stations can be retrieved by

cross-correlating extensive periods of ambient noise recordings

from seismic stations (Weaver & Lobkis 2001; Snieder 2004;

Wapenaar 2004). To date, geophysical studies focused on the surface

wave portions of the Green’s functions in the period band 5–100 s

(Shapiro et al. 2005; Yao et al. 2006; Yang et al. 2007; Bensen et al.

2008; Lin et al. 2008; Zheng et al. 2008; Stehly et al. 2009). These

surface waves are then used to study crustal structure (Shapiro et al.

2005; Yao et al. 2006; Yang et al. 2007; Bensen et al. 2008; Lin

et al. 2008; Zheng et al. 2008; Stehly et al. 2009), site amplification

factors (Ma et al. 2008; Prieto & Beroza 2008) and seismic noise

source characteristics (Stehly et al. 2006; Gerstoft et al. 2008; Yang

& Ritzwoller 2008). However, the body wave part of the Green’s

function seems to be more challenging and has rarely been reported

from ASN. In the field of exploration seismology, some effort has

been made to obtain reflections from ASN. Draganov et al. (2007,

2009) identified P-wave reflections from shallow reflectors (∼1 km)

with field data. Roux et al. (2005) reports P-wave energy in the noise

cross-correlation functions (NCFs) between stations separated by

2–10 km at Parkfield, California, and Zhang et al. (2009) show that

the noise is strongly correlated with ocean winds. By analysing

the short period seismic noise recorded at Yellowknife array, Koper

et al. (2009) show that strong energy propagates as body waves. The

difficulty in retrieving body wave phases could be caused by two

reasons. First, theoretical studies by Wapenaar (2004, 2006) indi-

cate that to retrieve body wave Green’s functions at the free surface

requires a distribution of noise sources in depth. However, almost

all the seismic noise sources are distributed on the free surface. Al-

though the discontinuities and scatterers below the surface may help

to create mirror sources or secondary sources, it is still not clear

whether the body wave Green’s function is retrievable under this

condition. Secondly, as stations are on the free surface, we expect

the Green’s functions between stations to be similar to the solution

to Lamb’s problem, in which the surface wave is an order of magni-

tude stronger than body waves. This effect will be further enhanced

by geometric spreading and attenuation. For example, Zhu & Helm-

berger (1996) show that Rayleigh waves (5–10 s) decay slower than

do body waves for a large population of events recorded by a broad-

band regional network. However, under certain conditions such as

post-critical reflections, the amplitude of body waves becomes com-

parable to that of surface waves at short periods (1–5 s). An example

of this is the shear wave reflection from the crust-mantle transition

(SmS) commonly observed from earthquakes. The strong amplifi-

cation of this phase near the critical distance in Southern California

has been suggested as the cause of particularly strong motions at

large distances (Mori & Helmberger 1996).

A strong SmS phase requires a laterally coherent crust (Mori &

Helmberger 1996) such as the Kaapvaal craton, near Kimberley,

South Africa (James et al. 2003) and the Great Slave Lake region in

north Canada (Viejo & Clowes 2003; Clowes et al. 2005). The pres-

ence of dense seismic arrays in these two regions makes them ideal

locations to verify that we can obtain SmS from the NCFs. In the

Great Slave Lake example, the presence of two dense arrays shows

that some of the precursory arrivals are due to uneven noise source

distribution, specifically noise voids caused by wind shadows.

2 B O DY WAV E S F RO M A M B I E N T

S E I S M I C N O I S E ; S O U T H A F R I C A

We used more than 30 broad-band stations in the Kaapvaal array and

the Kimberley array (in Southern Africa Seismic Experiment) under

the Kaapvaal Project (James et al. 2003) and BOSA station in global

telemetered seismograph network (Fig. 1) to look for SmS arrivals.
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SmS reflections from seismic noise 409

Figure 1. Stations used in the Kimberley region and the 1999 Matjhabeng earthquake (Welkom, red star). The red triangles indicate the Kimberley array

stations. The blue dots indicate the Kaapvaal array stations and the blue square is an IRIS/GSN station. NCFs are computed along station pairs shown as grey

lines, with SA14, SA26 and SA30 as ‘pseudo-source stations’. The red lines indicate the paths from the earthquake to the various array stations displaying

some overlap with paths from SA26.

The red star (Welkom) indicates the location of a mine earthquake

(1999 Matjhabeng event) that was well recorded by the Kimberley

Array. The broad-band array has been used to derive a detailed 1-

D crustal model using the receiver function method (James et al.

2003). The model has a sharp Moho with P and S velocities jumping

from 6.73 and 3.89 km s−1 to 8.20 and 4.79 km s−1 in less than 1 km.

They used this model to compare synthetic waveforms against those

produced by the earthquake with remarkable success. Not only were

they able to identify PmP and SmS but also their multiples which

implies a simple Moho structure and consistent crustal thickness

over long distances. A vertical velocity profile of the earthquake

data is displayed in the upper half of Fig. 2 (red). At long-periods,

the Rayleigh waves are dominant, although the Pnl phases (in the

30–40 s window) can still be observed. These two wavetrains are

commonly observed for earthquakes and modelled to determine

source parameters (Zhu & Helmberger 1996). Generally, the SmS

phase is unstable in tectonic regions, which makes the strong SmS

arrival in craton shown in Fig. 2 an ideal target to compare the NCFs

with earthquake seismograms.

The station pairs are chosen to make SA14, SA26 and SA30

as ‘pseudo-source stations’ (shown as grey lines in Fig. 1). Our

procedure to compute daily NCFs is similar to that described by

Bensen et al. (2007). Continuous vertical velocity records from

1999 January to 1999 June are downloaded from IRIS and cut

into daily segments. After removal of mean, trend and instrumen-

tal response, the seismograms are bandpass filtered between 1 and

10 s. To remove the effect of earthquakes, we first filter the original

seismograms between 15 and 50 s to emphasize the surface waves

of earthquakes, and then calculate their envelope functions. The

inverse of these smoothed envelope functions are used to weight

the corresponding seismograms between 1 and 10 s. This proce-

dure has been proven to be effective to suppress earthquake sig-

nals (Bensen et al. 2007). To make the cross-correlation result

in 1–5 s more visible, we apply a spectral whitening between 1

and 10 s because the energy in the 5–10 s period band is much

stronger than in the 1–5 s band. Cross-correlation is then computed

over daily intervals and stacked. All the daily NCFs are normal-

ized to their maximum amplitude before stacking, to avoid erratic

data and residual effects of earthquakes. The positive and negative

sides of the stacked NCFs are folded and summed to give the final

NCFs.

The lower portion of Fig. 2 shows the NCFs with SA14 as pseudo-

source station, filtered in the period bands 5–10 s and 1–2 s. As

expected, in the 5–10 s period band, we can see coherent Rayleigh

waves in the NCFs and the earthquake records. In the NCFs of

1–2 s, we see clear signals that are coincident with the SmS phase

in the earthquake seismograms. This identification is confirmed by

the similarity of spectrograms of the NCF and earthquake records.

Fig. 3(a) displays one typical NCF and its spectrogram computed

with the multiple filter technique (Dziewonski et al. 1969; Levshin &

Ritzwoller 2001). There are two separate wave packets in the NCF.

The latter wave packet is of longer period and with an apparent
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410 Z. Zhan et al.

Figure 2. Record sections of earthquake broadband vertical velocity records (red lines) and NCFs using SA14 as the source station (black lines). The left and

right panels are for 5–10 s and 1–2 s period bands, respectively. In the 5–10 s period band, Rayleigh waves for both earthquake data and NCFs are very clear.

The earthquake data has been shifted 4s forward to account for the depth difference between deeper earthquake and pseudo-source station. The same time shift

is then applied to the 1–2 s period band. In the 1–2 s period band, the SmS of NCFs are well aligned with SmS of the earthquake records (James et al. 2003), as

well as Rayleigh waves. SmS is also present in NCFs with SA26 and SA30 as source stations as addressed later.

(a) (b)

Figure 3. (a) One example of NCF and its spectrogram, displaying a dispersive Rayleigh wave, and a non-dispersive short period (1–2 s) signal (SmS) with

constant group velocity (3.5 km s−1). For comparison, (b) shows a seismogram due to the Matjhabeng earthquake, and its spectrogram, which has a very

similar pattern of Rayleigh and body waves, thus validating the SmS identification.
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SmS reflections from seismic noise 411

Figure 4. Record section generated from a composite set of paths displaying the azimuth independence of SmS observations. Clear SmS and Rayleigh waves

can be seen in NCFs (bandpassed 1–2 s) with SA14, SA26 and SA30 as source stations, which sample a wide range of azimuths. It indicates that the observation

of SmS in NCFs is independent of station pair azimuths and cannot be due to directivity of noise, which could be a problem in other regions. Not all the NCFs

are shown to avoid overlapping of seismic traces.

dispersion typical of surface waves. The earlier wave packet in the

short-period band (about from 1 to 2 s) displays no dispersion and

has a group velocity of about 3.5 km s−1. These features are very

similar to those in the spectrogram of the seismogram recorded at

one station in the Kimberley array generated by the Matjhabeng

earthquake (Fig. 3b). The SmS phase can also be observed at station

pairs in different azimuth directions with SA14, SA26 and SA30 as

source stations (Fig. 4) and they are all travelling with approximately

the same apparent velocity (3.5 km s−1). As the group velocity of

surface wave is about 3.0 km s−1, the angle between the noise

directivity and station pair needs to be very close to 31◦ to make

a 3.5 km s−1 apparent velocity. For example, if the angle is 15

or 45◦, the apparent velocity will be 3.11 or 4.24 km s−1, which

can be easily distinguished from 3.5 km s−1. The azimuth range

from any station of SA14, SA26 and SA30 to the Kimberley array

covers more than 15◦. This means that the SmS is not caused by

uneven distribution of the surface wave seismic noise. The NCFs

can also detect the first multiple of SmS (SmS2) when this phase

reaches the critical distance as displayed in Fig. 5. In this case,

we extended the distance to capture the strongest expected SmS2,

which is about two times the distance for SmS. Here, we see some

small differences in the relative waveform packets which are to be

expected at these short-periods due to the small-scale variations

of Moho topography and crustal structure (Mori & Helmberger

1996).

3 B O DY WAV E S F RO M A M B I E N T

S E I S M I C N O I S E ; N O RT H E R N C A NA DA

The Great Slave Lake region of northern Canada (Fig. 6) is

another location with simple crustal structure, that has been

well determined by the LITHOPROBE seismic reflection and

refraction studies (Viejo & Clowes 2003; Clowes et al. 2005).
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412 Z. Zhan et al.

Figure 5. Observation of SmS2 in NCFs of station pairs at larger distances with two additional pseudo source stations SA12, SA27 denoted in grey lines. The

lower panel displays the NCFs at 1–2 s. At these distances, SmS becomes weak and SmS2 becomes the strongest body wave phase as predicted by heavy grey

lines.

The LITHOPROBE transect covers 2000 km from the Archean

Slave craton to the Pacific. A total of 37 shots were detonated and

recorded by 600 instruments with average spacing of 1 km. The

line starts at Yellowknife at the edge of the Great Slave Lake and

crosses the CANOE array as displayed in Fig. 6. The wide-angle

reflection profile for this line shows a remarkably strong PmP be-

tween 100 and 200 km offset along with synthetic seismograms. As

discussed in their paper, the Moho is remarkably flat with variations

between 33 and 36 km, and is relatively sharp as in the above ex-

ample beneath Southern Africa. The crustal model is displayed in

Fig. 7 where the P and S velocity jump from 6.6 and 3.8 km s−1 to

8.0 and 4.6 km s−1 at the Moho. Detailed receiver function analysis

at Yellowknife array also shows a similar result (Bostock 1998). In

short, this location is ideal for searching for SmS body waves from

noise cross correlation.

Two dense arrays were deployed in the region as shown in Fig. 6.

One is the permanent Yellowknife array (YKA), and the other is the

temporary CANOE array (Mercier et al. 2008). We will use these

two arrays to interrogate the directional properties of the noise field

and NCFs. Continuous data from May 2004 to July 2005 are down-

loaded from IRIS. The procedures to compute the NCFs are the same

as those used in South Africa. The NCFs (bandpassed at 2–10 s)

along the paths shown as grey lines in Fig. 6 are given in Fig. 8.

Because the crustal model is known from the above study, we at-

tempted to compare these NCFs directly with synthetic 1-D Green’s

functions. After some minor adjustments in the shallow velocities
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SmS reflections from seismic noise 413

Figure 6. Geometry of a second ASN test involving stations (red triangles) in two arrays, a closely spaced array (Yellowknife), and a broadband array

(CANOE). The grey and purple lines are the paths where NCFs have been studied. The purple dash line, which is the perpendicular bisector of the purple line

(A14 to YKA), separates the noise sources contributing to the positive or the negative side of the NCF with A14 as the pseudo-source. The purple and yellow

dots indicate the locations of identified noise source anomalies (NSAs). The left group of dots to the south of large topographical feature Horn Plateau lie in

the approximate area with much lower annual average wind speed than surrounding area (blue curve, data from Canada Environment 2009). The right group

of dots coincides with known mining blasts in 2004 and 2005 reported by Earthquakes Canada (red stars in the inset).

Figure 7. 1-D V p and V s model used to calculate the synthetic seismograms. This model is averaged from SNORE’ 97 (Viejo & Clowes 2003; Clowes et al.

2005) and then modified for the top 5 km (where the wide-angle reflection experiment has little resolution) to fit short period surface waves.
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414 Z. Zhan et al.

Figure 8. Comparison of synthetic Green’s functions from a known structure with noise cross-correlation functions (NCFs) near Great Slave Lake. The black

lines are NCFs of station pairs shown as gray lines in Fig. 6 with distance range from 280 to 350 km. More complete NCFs (with NCFs between all station

pairs) are addressed later. The red lines are synthetic seismograms with a single vertical force at one station, recorded at the other station. The seismic 1-D

model is taken from Viejo & Clowes (2003) and Clowes et al. (2005), shown in Fig. 7. At this distance range, the two most visible phases are SmS2 and

Rayleigh waves. The great agreements between NCFs and synthetics indicate definitive identification of SmS2.

as given in Fig. 7, we obtained the match displayed in Fig. 8. These

synthetics were generated with a frequency–wavenumber (w−k)

synthetic seismogram package (Zhu & Rivera 2002) assuming the

source station is replaced by a vertical point force. The distances

between stations here are from 280 to 350 km, which is beyond the

critical distance range of SmS, but falls in the critical distance range

of SmS2. The synthetic Green’s functions match both surface waves

and SmS2 body waves very well. Fig. 9 shows the comparison of

NCFs and synthetic Green’s functions over the paths with shorter

distances (150–180 km) where SmS is in the critical reflection range.

Station A16 is the only station at this distance range to YKA. The

synthetics (red) are computed with the same 1-D crustal model and

w–k code as in Fig. 8. The fit to the SmS is again excellent confirm-

ing our identification of body waves retrieval from noise analysis.

The fit to the surface waves in this case is disturbed by the slightly

shorter period (2–5 s, rather than 2–10 s to avoid the interference

between Rayleigh waves and SmS) and possible lateral heterogene-

ity of shallow structure. Note that the SmS is not sensitive to the

shallow structure as the nearly vertical path through it is only a very

small fraction of the entire path.

These two examples in South Africa and northern Canada demon-

strate definitive observations of SmS and SmS2 from ASN when they
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SmS reflections from seismic noise 415

Figure 9. Observation of SmS in NCFs (bandpassed 2–5 s) of station pairs with A16 as pseudo source station. A16 is the closest CANOE station to YKA

used in this study (150–180 km). At this distance range, the SmS2 has not reached the critical reflection distance, and SmS is the strongest body wave phase.

The black and red lines are the NCFs and synthetic seismograms computed with the 1-D model in Fig. 7, respectively. The disagreement of Rayleigh waves is

probably due to the lateral change of shallow structure.

have large amplitudes near their critical distances. This means that

although almost all the noise sources are distributed on the free sur-

face, there seems to be no difficulties in retrieving body waves from

ASN when they are supposed to have large amplitudes in the Green’s

functions. In the next section, we will discuss problems in obtaining

other weaker body wave phases, which may be masked by the waves

in NCFs which are neither surface wave nor body wave phases.

4 S U R FA C E WAV E P R E C U R S O R S

C AU S E D B Y L O C A L N O I S E A N O M A LY

The density of stations in the Great Slave region allows a detailed

record section to be constructed with over 400 NCFs (as displayed

in Fig. 10 at period bands 2–10 and 1–2 s). The positive side and

negative side have been folded and summed. For 1–2 s period band,

the body wave arrivals have the same travel times as in 2–10 s period

band while the Rayleigh waves are delayed due to dispersion. This

increases the SmS and SmS2 separation from the Rayleigh waves

in the 1–2 s period band, hence easier to identify. On the other

hand, the stronger attenuation due to the increase of frequency

content decreases the coherence between stations, which makes

the NCFs much noisier. Consequently, in the following, we will

concentrate on the 2–10 s period band. As expected for typical

triplication behaviour, the record section shows that SmS is strong

in the distance range 150–180 km, while SmS2 emerges beyond

280 km. Hence, the window near 250 km should be relatively free
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416 Z. Zhan et al.

Figure 10. (Left panel) Complete record section of over 400 NCFs between CANOE array and Yellowknife array. NCFs have been bandpass filtered between 2

and 10 s. The positive side and the negative side are summed. SmS dominates SmS2 at shorter distance range but SmS2 dominates at larger distances as expected

for a typical triplication behaviour. Between these two ranges, there is a window between 200 and 270 km relatively free of body waves. But clear signals still

persist before surface waves (surface wave precursors), which are discussed in the text. (Right panel) Complete record section of NCFs for 1–2 s period band.

Although much noisier, SmS2 and Rayleigh waves can still be recognized. Although SmS2 keeps its travel time the same as in 2–10 s period band, the Rayleigh

waves are delayed because of dispersion as discussed earlier. SmS is actually cleaner because the amplitude of surface wave becomes much smaller.

of strong body waves (Fig. 10). The station pairs between A14

and YKA (solid purple line in Fig. 6) are in this window. Fig. 11

shows their stacked NCFs for November and December of 2004

with both positive and negative sides present. The NCFs of the

summer seasons are not used here because the strong teleseismic P-

wave energy from storms in the southern hemisphere causes strong

artefacts near zero lag time (Gerstoft et al. 2008). As they appear

outside the time window in which local body wave phases may be

present, they are not discussed here. In Fig. 11, besides the surface

waves shown by the red arrows, clear arrivals persist before the

surface waves. The most visible ones are denoted by blue arrows on

each side. Note that the precursors on two sides are not symmetric

in waveform or travel time. The precursors denoted by blue arrows

on the positive side have much longer durations than those on the

negative side. Similar precursors can be observed in many previous

ASN studies (Shapiro et al. 2005; Yao et al. 2006; Lin et al. 2008)

but their source has not been identified.

The dense Yellowknife array enables us to have a closer look at

these precursors. They appear to be coherent over the entire array,

which means they are probably caused by some physical feature.

The YKA consists of two perpendicular legs as shown in Fig. 6.

In Fig. 11, the NCFs between A14 and Yellowknife stations on

the east–west leg are coloured in blue, with the north–south leg

in red. The precursors on the negative side have a different move-

outs on the east–west leg than on the north–south leg, as denoted

by the dash lines. More quantitatively, Fig. 12 shows a detailed

frequency–wavenumber (FK) analysis (Rost & Thomas 2002) for

precursors on both the positive and negative sides. Blue arrows are

their velocity vectors while red arrows are velocity vectors of corre-

sponding direct surface waves. A comparison between these two FK

plots shows that these precursors have surface wave velocity (blue

and red arrows have similar length). They are not travelling along

the great-circle path as the blue arrows have a different azimuth than

the red arrows. Because these arrivals are precursors, they must have

originated from anomalous noise sources because scattered surface

waves would arrive after the direct Rayleigh wave. In particular,

their azimuths as obtained by the FK analysis and absolute travel

times which is the difference of travel times from the noise source

anomaly (NSA) to the two stations allow these NSAs to be located

(see the schematic in Fig. 13). The two NSAs determined above are

shown as purple dots in Fig. 6.

We can determine additional locations of NSAs by examining

more time windows of the NCFs. They are shown as yellow dots in

Fig. 6 and clearly cluster into two groups. One group concentrated

C© 2010 The Authors, GJI, 182, 408–420

Journal compilation C© 2010 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
8
2
/1

/4
0
8
/5

6
3
3
7
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



SmS reflections from seismic noise 417

Figure 11. Observation of clear and coherent surface wave precursors in NCFs (2–10 s) between A14 and YKA stations for 2004 November and December

at a distance of 250 km. At this distance range (about 250 km apart), SmS and SmS2 are weak compared with Rayleigh waves (shown by the red arrows).

However, we can still observe clear signals arriving before Rayleigh waves (surface wave precursor), for example the signals marked by the blue arrows. These

precusors are coherently present in NCFs between A14 and YKA stations. Note that the positive sides and negative sides of NCFs are not symmetric, which is

probably because of the difference of noise from Pacific Ocean and Atlantic Ocean.

near the Yellowknife array, while the other is more dispersed in a

region to the south of the large topographic feature called the Horn

Plateau. The first group of dots coincide with locations of several

mining explosions (inset of Fig. 6), hence probably indicates a noise

anomaly generated by mining processes. Although these explosions

have been diminished before cross correlation by temporal normal-

ization (Bensen et al. 2007), the continuous noise generated by the

mine cannot be removed. The second group of NSAs lies in the wind

shadow (with much lower wind speed than surrounding area) of the

Horn Plateau (Canada Environment 2009), as the dominant wind

direction in this area is from north to south. We suggest that this

group of NSAs is generated by an absence of wind-land-interaction

(i.e. a void) in the assumed uniformly distributed noise sources. A

synthetic to support this is shown in Fig. 14, where a void of noise

sources from azimuth 40◦ to 50◦ causes a surface wave precursor in

the NCF.

5 D I S C U S S I O N A N D C O N C LU S I O N

As shown by Weaver & Lobkis (2001), the equipartitioning of the

Earth’s normal modes in noise will allow us to obtain the complete

Green’s function between two stations. However, as pointed out

by Snieder (2004), the fact that almost all of the noise sources

are distributed on the Earth surface means fundamental surface

wave modes contain most of the energy. Theoretical studies by

Wapenaar (2004, 2006), Snieder (2004) and Fan & Snieder (2009)

show that to obtain the fundamental mode surface wave part of

the Green’s function the distribution of noise source on the free

surface is enough. But for body wave phases, such as reflections,

noise sources at depth are necessary. This seems to mean that body

wave phases are not retrievable from seismic noise as almost all the

noise sources are on the free surface. However, they also pointed

out that inhomogeneous structure of the Earth may be helpful to

fix this difficulty. For example, Snieder (2004) treat the subsurface

discontinuity as a mirror to create mirror-source at depth. Until now,

it is still not clear whether we can get the body wave part of the

Green’s function or even the complete Green’s function from this

surface-generated seismic noise. The weak amplitude of body wave

phases in the Green’s function make the problem even harder. As

stations are on the free surface, we expect the Green’s function to

be similar to the solution to Lamb’s problem in which the surface

wave is an order of magnitude larger than the body waves.

In this paper, by array analysis of NCFs in cratons with simple

crustal structures, we show that the noise cross correlation technique

now can detect certain body wave phases when they have compara-

ble strengths in certain conditions (SmSn near their critical distances

in our examples). The reason for strong SmS and its multiples to be

observed from ASN could be that noise sources are distributed in

the whole crust instead of just being near the free surface. Being the

most heterogeneous part of the Earth, crust consists of scatterers at

many scales and strongly scatters waves with resonant wavelength.

Moreover, because of the lower velocity, crust behaves as a wave

guide channel trapping most of the body wave energy inside, which

explains dominant Lg waves for regional crustal earthquakes and

should also be expected for ambient seismic noises (Kennett 1984;

Kennett & Mykkeltveit 1984). Indeed array analysis by Koper et al.

(2009) supports that strong energy of short period seismic noise

propagates as Lg waves. Cormier & Anderson (2004) argues that

Lg wave is dominated by multiple SmS arrivals. This means that
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(a)

(b) (c)

Figure 12. Locating NSAs with sliding-window frequency–wavenumber (FK) analysis (Rost & Thomas 2002) of surface wave precursors. (a) shows one

example of NCF between A14 and YKR7. Because of the precursors coherence shown in Fig. 11, we can measure their apparent velocity vector defined by

propagation azimuth and apparent velocity with Sliding-Window FK analysis. Results for the two windows defined by blue boxes are shown in (b) and (c),

respectively. The background colour is normalized power of stacked signals (Rost & Thomas 2002). The blue arrows are the optimal apparent velocity vectors

and blue dots show the corresponding velocities and azimuths. For comparison, the apparent velocity vectors for Rayleigh waves (red boxes) are also plotted as

red arrows and red dots. We can see that the blue arrows have very close velocities (lengths) to red arrows (from Rayleigh waves), but quite different azimuths.

This means that the precursors are not body waves but surface waves travelling off the great circle.

there is sufficient energy in the noise field trapped between the sur-

face and the Moho to allow the retrieval of body waves in the short

period band.

Scattering due to topography or microbasins (very thin basins)

could be another mechanism of converting wave field of dominant

surface wave into wave field of both surface wave and body wave,

as observed and modelled by Clouser & Langston (1995). In their

study, Rayleigh waves are proposed to be generated by teleseismic

P waves. According to reciprocity, P waves can also be expected

by Rayleigh waves scattered by topography. Although topographic

variation in cratons are fairly weak, microbasins may serve as strong

scatterers (Stead & Helmberger 1988).

Other body wave phases are probably present but masked by

the persistent surface wave precursors due to uneven distribution

of noise sources. These noise source anomalies could be human

activities, wind–topography and other solid–fluid interactions of the

Earth, such as storms (Bromirski 2009). By numerical simulation

Lin et al. (2008) shows that as long as the strength of the noise

source varies smoothly versus azimuth, the bias to the surface wave

Green’s function is negligible. The broad microseism source area

and scattering may contribute to this smooth variation. However, as

shown by this paper, nearby noise source anomaly may not have such

a smooth variation because of high heterogeneity of distribution and

lack of scattering over short distances. Better understanding of the

noise sources, especially these local noise source anomalies will

help suppress the contaminating surface wave precursors to get the

complete Green’s functions from the NCFs. Also, as SmS can be

much stronger than surface waves around 1s, detailed analysis of

NCF in this frequency band can provide a valuable tool for site

amplification mapping.
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Figure 13. Noise source anomaly (NSA) and method to localize an NSA.

Suppose we have a scenario shown in this figure, where red triangles are

stations. B is an array with stations Bi . An NSA at point S (uniform part al-

ready subtracted) emits surface wave noise continuously. It will be recorded

at station A with a delay tA , array station Bi with a delay tBi
. The NCFs

between station A and array stations Bi will have a signal at tBi
− tA . As

tBi
− tA is always smaller than t0, the signal arrives earlier than the surface

wave Green’s function (surface wave precursor). It should be noticed that

the relative travel times of this signal across the B array do not change after

cross correlating with station A. This enables us to use FK to determine the

azimuth of the NSA (dash blue line in the figure). Assuming the similarity

of waveforms recorded at station A and the array, the absolute time of max-

imum cross correlation is tBi
− tA , which requires the NSA on a hyperbola

(green dash lines in the figure). These two steps lead to two possible loca-

tions of the NSA, shown as S (red star) and s (red squares). They can be

distinguished by whether the precursor appears on the positive or negative

side of NCFs.
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