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ABSTRACT

A three-dimensional variational (3DVAR) scheme is developed for retrieving three-dimensional mois-
ture in the atmosphere from slant-path measurements of a hypothetical ground-based global positioning
system (GPS) observation network. It is assumed that the observed data are in the form of slant-path water
vapor (SWV), which is the integrated water vapor along the slant path between the ground receiver and the
GPS satellite. The inclusion of a background in the analysis overcomes the under-determinedness problem.
An explicit Gaussian-type spatial filter is used to model the background error covariances that can be
anisotropic. As a unique aspect of this study, an anisotropic spatial filter based on flow-dependent back-
ground error structures is implemented and tested and the filter coefficients are derived from either true
background error field or from the increment of an intermediate analysis that is obtained using an isotropic
filter. In the latter case, an iterative procedure is involved.

A set of experiments is conducted to test the new scheme with hypothetical GPS observations for a
dryline case that occurred during the 2002 International H2O Project (IHOP_2002) field experiment.
Results illustrate that this system is robust and can properly recover three-dimensional mesoscale moisture
structures from GPS SWV data and surface moisture observations. The analysis captures major features in
water vapor associated with the dryline even when an isotropic spatial filter is used. The analysis is further
improved significantly by the use of flow-dependent background error covariances modeled by an aniso-
tropic spatial filter.

Sensitivity tests show that surface moisture observations are important for the analysis near ground, and
more so when flow-dependent background error covariances are not used. Vertical filtering is necessary for
obtaining accurate analysis increments. The retrieved moisture field remains reasonably accurate when the
surface moisture observations and GPS SWV data contain errors of typical magnitudes. The positive impact
of flow-dependent background error covariances increases when the density of ground-based GPS receiver
stations decreases.

1. Introduction

Accurately characterizing the three-dimensional
(3D) distribution of water vapor in the atmosphere is
very important for the understanding and prediction of
mesoscale and storm-scale weather, especially with re-
gard to quantitative precipitation forecasting (QPF;
Emanuel et al. 1995). QPF skills have been improving
rather slowly owing to the high spatial and temporal
variability of water vapor. Thus, high-resolution obser-
vations of 3D water vapor have the potential to signifi-

cantly improve the prediction of precipitation and se-
vere weather. In recent years, space- and ground-based
global positioning system (GPS) receivers have seen
significant development and can potentially provide
water vapor measurements with high resolution under
virtually all weather conditions (Businger et al. 1996;
Ware et al. 2000; Wolfe and Gutman 2000; Bengtsson et
al. 2003).

For ground-based GPS receivers, the raw measure-
ment is the total amount of delay to the microwave
radio signals caused by the atmosphere as the signals
travel from the GPS satellite to the receiver. The total
delay along the slant path between the receiver and
satellite is composed of ionospheric delay, hydrostatic
delay, and wet delay. Upper-atmosphere ionospheric
delay, when observed by a dual-frequency GPS re-
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ceiver, can be calculated to millimeter accuracy. The
hydrostatic delay can be estimated with known knowl-
edge of pressure and temperature. The slant-path wet
delay (SWD), the residual part due to water vapor, can
therefore be obtained by subtracting the ionospheric
and hydrostatic delays from the total delay. Further,
SWD can be linearly related to slant water vapor
(SWV), defined as the integral of water vapor along the
entire slant path (Davis et al. 1985). The accuracy of
SWV thus derived is usually within a few millimeters
(Ware et al. 1997; Braun et al. 2001).

Most of the past data assimilation or data impact
studies related to ground-based GPS water vapor ob-
servations deal with the precipitable water (PW) or ze-
nith wet delay (ZWD) data (e.g., Kuo et al. 1993, 1996;
Guo et al. 2000; Falvey and Beavan 2002). ZWD is a
derived product that is obtained by projecting SWD
observations onto the zenith then averaging all of them
over a certain time period under the assumption of azi-
muthal isotropy and horizontal homogeneity (Rocken
et al. 1993). Furthermore, PW is derived from ZWD in
a similar way as SWV is from SWD (i.e., it is linearly
related to ZWD). A more recent study of Cucurull et
al. (2004), using a three-dimensional variational
(3DVAR) scheme, directly assimilates zenith total de-
lay (ZTD), which is also a derived product similar to
ZWD, except it is for total delay. Simulated and real
ZTD data were assimilated via a four-dimensional
variational (4DVAR) scheme into a mesoscale model
by De Pondeca and Zou (2001a,b), respectively. These
studies have all found a positive impact of assimilating
the GPS data on precipitation forecast, though in some
cases, the impact is small.

There exists a significant loss of information in ZWD
or ZTD data, however, compared to the original slant-
path data due to the spatial and temporal averaging
involved in their derivation. It should, therefore, be
beneficial to use the slant-path total or wet delay or
slant-path water vapor data directly. We do point out
here that since the slant-path measurement represents
an integrated quantity of water vapor along each ray
path, it, as in the case of PW and ZWD, does not pro-
vide information on the vertical distribution of water
vapor. It is hypothesized here that in the case of slant-
path data (in contrast to PW and ZWD data), the mul-
tiple overlapping ray paths, forming a “net” covering
the atmosphere, are helpful in recovering the 3D struc-
ture of moisture. In the case of variational analysis, the
inclusion of the analysis background, a good knowledge
of the background error structure, as well as the effec-
tive utilization of such knowledge, should all be helpful.
It is the goal of this study to show that these hypotheses
are true.

Currently, over the United States, there are approxi-
mately 125 surface GPS sites for which precipitable wa-
ter observations are available in near–real time. These
sites include those from the National Oceanic and At-
mospheric Administration (NOAA) Forecast Systems
Laboratory (FSL) network and the SuomiNet (Ware et
al. 2000). Slant-path GPS data are available with sev-
eral days’ latency from more than 20 sites but the real-
time availability from over 100 sites is planned. The
potential availability of much more slant-path data and
their decent accuracy have prompted interests in ana-
lyzing and assimilating such data directly into numerical
models. Limited number of existing studies include
MacDonald et al. (2002) and Ha et al. (2003), both of
which utilize simulated data from a hypothetical GPS
network. This is the case partly because real slant-path
data are very limited and their spatial coverage and
resolution are still poor.

In MacDonald et al. (2002), a 3D variational method
is used to analyze SWV data collected by a hypothetical
high-resolution network of ground-based GPS receiv-
ers. It is shown that the 3D moisture field can be re-
covered from the SWV data in combination with the
surface moisture observations taken at the same sites as
the receivers. Water vapor soundings from a low-
density network are also used to help their analysis. Ha
et al. (2003) showed, using a 4DVAR system, that the
direct assimilation of simulated SWD is superior to as-
similating the derived PW data in terms of both recov-
ering water vapor information and short-range precipi-
tation forecasting.

In this study, we focus on the analysis of SWV data
(instead of PW data) and choose to develop and use for
the analysis a more complete 3DVAR system that em-
ploys an anisotropic spatial filter for modeling the flow-
or field-dependent background error covariances. As
an initial study, we perform our analysis of water vapor
in a univariate 3DVAR system where we focus most of
our attention on the impact of flow-dependent back-
ground error covariances on the quality of analysis. The
flow-dependent background error is modeled using an
anisotropic spatial filter. The use of anisotropic spatial
filter is a unique aspect of this study. To our knowledge,
it has never been applied specifically to the analysis of
GPS data. Since the GPS data are not point measure-
ments of the analysis variables themselves, but rather
integrated quantities, the variational approach is a
natural choice.

As in MacDonald et al. (2002) and Ha et al. (2003),
we also use simulated data to test our analysis system.
The use of simulated data from a hypothetical receiver
network gives us flexibility and complete control over
the network design, data resolution, and quality. Fur-
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thermore, the knowledge of the truth allows us to un-
ambiguously assess the quality of analysis. The roles of
observation system simulation experiments (OSSEs) in
the design, development, and evaluation of future ob-
serving systems are discussed in detail by Lord et al.
(1997) and also by Atlas (1997). Another reason for
using simulated data is that a high-density GPS receiver
network with large spatial coverage is not yet available,
over the United States at least. Ultimately, however,
the goal of improving moisture analysis is to improve
numerical weather prediction (NWP), especially the
prediction of precipitation. The impact of simulated
and real GPS slant-path data analyzed through our
3DVAR procedure on short-range precipitation fore-
cast will be the subject of future studies.

This paper is organized as follows: section 2 intro-
duces our 3DVAR analysis system and section 3 de-
scribes the generation of simulated GPS SWV data
from a mesoscale model forecast. Results from analysis
experiments are presented in section 4. Further discus-
sions on the effectiveness of our scheme are given in
section 5 through sensitivity experiments. Summary
and conclusions are given in section 6, together with a
plan for future work.

2. 3DVAR analysis system

In this work, we follow the standard practice of
3DVAR data assimilation for NWP (Lorenc 1981; Da-
ley 1991) by including the analysis background. Thus,
the cost function includes both background and obser-
vation terms. For moisture analysis, a weak nonnega-
tive moisture constraint is also included in this cost
function. The use of a background makes the problem
overdetermined and the analysis feasible for realistic
numbers of GPS satellites and ground-based receivers,
because the number of control variables, which is the
number of grid point values of moisture in our case, is
much greater than the number of (SWV plus surface)
observations at any instance. Because the GPS network
does not directly observe point values of water vapor,
the analysis involves “retrieving” or “recovering” the
3D distribution from the integral observations. We
therefore often refer to the analysis process as “re-
trieval.”

The previous 3DVAR work of MacDonald et al.
(2002) differs from this study by lumping together all
GPS data in the analysis domain during a 1-h interval
and treating them as observations at the analysis time
so that the number of observations is significantly in-
creased. Because their 3DVAR system does not in-
clude a background constraint, noise problems were
encountered during their initial analyses. They ob-

tained reasonable analyses by employing a multigrid
procedure, in which the analyses were performed on
two grids of different resolutions repeatedly, while the
solutions were transferred back and forth between the
grids many times. While such a procedure appears to
work, the amount of effective smoothing imposed upon
the analysis by such a procedure is difficult to assess,
especially in terms of the physically meaningful back-
ground error correlations.

In this work, the spread of observation increments in
space is controlled by the background error covari-
ances, which in some experiments are spatially inhomo-
geneous and flow dependent. In addition, this 3DVAR
system is formulated in a general terrain-following co-
ordinate system; therefore, its analysis can be directly
used to initialize a model formulated in the same coor-
dinate system.

The initial cost function of our 3DVAR system is
defined as

J�x� � Jb�x� � Jswv�x� � Jsfc�x� � Jc�x�, �1�

where

Jb�x� �
1
2

�x � xb�TB�1�x � xb�, �2a�

Jswv�x� �
1
2

�Hswv�x� � SWV�TRswv
�1 �Hswv�x� � SWV�,

�2b�

Jsfc�x� �
1
2

�Hsfc�x� � q�sfc
�TRsfc

�1�Hsfc�x� � q�sfc
�,

�2c�

Jc�x� �
1
2 � |x| � x

2 �2

. �2d�

In Eq. (1), cost function J is composed of four terms:
background constraint term, Jb, GPS SWV observation
term, Jswv, the term for conventional surface moisture
observations, Jsfc, and the weak nonnegative water va-
por constraint, Jc. The vector x is the control variable
that in our case contains the specific humidity q� at
every grid point. The corresponding background state
vector is xb. The background term, Jb, measures the
departure of the control variable from the background.
Here B is the background error covariance matrix,
which determines how the observational information is
spread in space as well as weighted (in combination
with the observation errors) in the analysis.

The GPS observation term, Jswv, represents the de-
parture of the analysis, calculated from the control vari-
able x through the observation operator Hswv, from the
observations of SWV measured by the ground-based
GPS receivers. The matrix Rswv is the observation error
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covariance matrix for SWV, which is usually assumed
to be diagonal under the assumption that observation
errors are not correlated [some of the correlated errors
can usually be effectively removed through bias correc-
tion procedures; see, e.g., Harris and Kelly (2001)]. The
magnitude of error variances or the diagonal elements
of matrix Rswv, compared to the background error vari-
ances, determines the relative weight of observation
and background for the analysis. In our paper, obser-
vation error variances for SWV and surface observa-
tions are specified.

Since the ground-based GPS receiver sites are com-
monly equipped with regular meteorological sensors,
regular surface water vapor observations can be made
together with SWV observations. Therefore, Jsfc is in-
cluded in the cost function to better analyze the mois-
ture structure near the surface. Finally, in order to
avoid creating a significant amount (in a relative sense)
of negative water vapor, especially at high levels, a
weak nonnegative moisture constraint term, Jc, is also
included in the cost function.

As pointed out previously, the inclusion of a back-
ground term is significant for our 3DVAR analysis. It
not only eliminates the under-determinedness problem,
but also allows for more accurate analysis through the
background error covariance matrix B. But because the
dimensionality of B is very large for typical meteoro-
logical problems, the direct inversion of B as required
in Eq. (2a) is never attempted. Huang (2000) presents a
method named variational analysis using a filter (VAF)
that avoids the need for the inversion. In this method,
the control variable is redefined as

v � B�1�x � xb�, �3�

which is the increment field relative to the background
multiplied by the inverse of B. Using this new control
variable, the cost function is redefined as

J�v� �
1
2

v���v �
1
2

�Hswv��v � xb�

� SWV��Rswv
�1 �Hswv��v � xb� � SWV�

�
1
2

�Hsfc��v � xb� � q�sfc
�TRsfc

�1�Hsfc��v � xb�

� q�sfc
� �

1
2 �|�v � xb| � ��v � xb�

2 �2

. �4�

This new form of cost function contains no inversion of
B. Moreover, the VAF method uses a spatial filter to
model the effect of the B matrix instead of calculating
and storing the matrix directly. The new variational

analysis scheme is simpler and more flexible in practical
implementations.

The choice of spatial filter coefficients should be
based on a priori knowledge of the covariance matrix
B. For instance, the following Gaussian filter function
can be used to represent B for a homogeneous and
isotropic background error field for a three-dimensional
univariate problem (Daley 1991),

bij � �b
2 exp��� rij

Lr
�2�, �5�

where bij are the elements of B, 	2
b is the variance of

background error, rij is the spatial distance between
grid points i and j, and Lr is the length scale or the
background error decorrelation length and is, in prac-
tical use, sometimes tied to the observation station den-
sity. In all our experiments, we use a constant weight
for the background term so effectively the background
error is assumed to be homogeneous. This model rep-
resents isotropic background error covariances. In
practice, a truncated filter is used, as in this paper, to
save memory and computation, as suggested by Huang
(2000). The truncation, however, destroys the positive
definiteness of the modified B. The problem is allevi-
ated to some extent by applying the Lanczos window
(see, e.g., Duchon 1979) instead of a sharp cutoff win-
dow, as is also done in this paper. Previous work (Hay-
den and Purser 1995) has demonstrated that an implicit
recursive filter that guarantees positive definiteness can
asymptotically approach a Gaussian filter. The explicit
Gaussian filter is simpler and much easier to imple-
ment, however, especially for modeling anisotropic co-
variances, although it is more expensive. As a first
implementation, this 3DVAR analysis will use an ex-
plicit filter, following Huang (2000).

The use of isotropic background error covariances is
based on the assumption that background errors at
nearby points are similar (Riishøjgaard 1998). But real
background errors are usually flow dependent and spa-
tially anisotropic and the use of flow-dependent cova-
riances in the analysis should improve the results, es-
pecially when data are sparse. Therefore, an anisotropic
filter is considered for modeling the flow-dependent B
matrix. The following expression can be used to model
the anisotropic B matrix (Riishøjgaard 1998):

bij � �b
2 exp��� rij

Lr
�2� exp���fi � fj

Lf
�2�, �6�

where f is a field whose pattern represents that of the
background error, which we will call the error field. In
this study, f is either the true error of the background or
an estimate of it. Here Lf is the length scale in error
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field space, in contrast to the length scale Lr in physical
space, and is determined by the decorrelation scale of
the background error in terms of the spatial gradient of
f. The new background error covariance between any
two points defined by Eq. (6) will follow the shape of
the error field and fall off rapidly in the direction of
strongest gradient, while the isotropic component of
covariance will dominate in directions where the error
changes slowly. Equation (6) shows that, as Lf goes to
infinity, the anisotropic covariance reduces to the iso-
tropic form in Eq. (5).

The isotropic and anisotropic filters will be used
separately to model the behavior of the background
error covariances, and their results will be compared.
These will be done in sections 4 and 5.

3. Hypothetical GPS network and the generation
of SWV data

For the reasons stated in the introduction, simulated
data are used to conduct retrieval experiments with our
analysis system. The model used to produce the “truth”
field is the Advanced Regional Prediction System
(ARPS; Xue et al. 2000, 2001, 2003) which is a nonhy-
drostatic atmospheric model formulated in a general-
ized terrain-following coordinate. High-resolution ob-
servations from hypothetical GPS networks are created
from a forecast field for a dryline case that occurred on
19 June 2002 over the southern Great Plains of the
United States during the Center for Analysis and Pre-

diction of Storms (CAPS) real-time forecast period
(Xue et al. 2002) for the 2002 International H2O Project
(IHOP_2002) field experiment (Weckwerth et al.
2004). The ARPS model is initialized using analysis of
the ARPS Data Analysis System (ADAS; Brewster
1996) at 1200 UTC 19 June 2002, and is integrated for
8 h. The computational domain has a horizontal grid
spacing of 9 km and 40 layers in the vertical. The ver-
tical grid is stretched from a minimum grid spacing of
100 m near the surface.

Considering that in the near future, the mean spacing
of ground receivers of GPS networks will probably not
be much less than a hundred kilometers, the scale of
water vapor distribution we can obtain will probably be
no smaller than the mesoscale. The 9-km 8-h forecast
field is therefore thinned by sampling or picking spe-
cific humidity values every four grid points, yielding a
resolution of 36 km and a horizontal grid size of 46 

41. This gridded field is defined as the “nature” or truth
and is sampled, using Eq. (7) given in the following, to
generate the hypothetical GPS SWV observations. The
specific humidity field from the nature, on the grid of
36-km resolution, is presented in Fig. 1. A zone of
strong horizontal moisture gradient stretches from
western Kansas through eastern New Mexico, Oklaho-
ma, and Texas, corresponding to a dryline located in
this region (Fig. 1a). The east–west vertical slice
through y � 234 km (Fig. 1b) shows that a vertically
oriented boundary between dry and moist air is found
in the lowest 1.5 km at about x � 360 km and becomes

FIG. 1. Specific humidity field (g kg�1) from the “nature” derived from an ARPS simulation for the IHOP case
of 2000 UTC 19 Jun 2002: (a) at the surface and (b) in the east–west vertical cross section at y � 234 km (along
thick line A–B). A roughly north–south zone of strong horizontal moisture gradient is located to the west of KS,
OK, and TX representing the dryline. In vertical cross section, a boundary between the dry and moist air is oriented
nearly vertically in the lowest 1.5 km then turns horizontal to the east.
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nearly horizontal to the east. The upward bulging mois-
ture tongue near x � 576 km reflects upward motion.
To the west of the dryline, the atmosphere is well mixed
up to 500 hPa. Such a strong gradient as well as the
variations in the strong gradient of water vapor may not
be properly captured by ordinary moisture observation
networks, especially at levels away from the ground
surface.

From the dataset, the slant-path water vapor is simu-
lated by the hypothetical GPS network using the for-
mula

SWVij � �
ith receiver

jth satellite

q� ds, �7�

where SWVij is the integrated water vapor along the
slant path between the ith ground-based receiver and
the jth GPS satellite, and q� is the specific humidity
along the path elements. The value of q� is given by a
trilinear interpolation from the eight grid points sur-
rounding the center of the path element. No error is
added to the collected SWV observations except for
one sensitivity experiment. The hypothetical GPS net-
work is composed of nine irregularly distributed satel-
lites simultaneously in view, and of 132 ground-based
receivers evenly distributed in the analysis domain. The
horizontal spacing of GPS receivers is 144 km. Both the
simulation of observational data and the data analysis
are performed on the 36-km grid in the ARPS terrain-
following coordinate. A schematic is given in Fig. 2 to
illustrate the GPS observation network. Surface mois-
ture observations are available at the GPS receiver
sites.

4. Retrieval experiments and results

a. Single surface observation tests

To validate our newly developed system and more
importantly to understand the behavior of the isotropic
and anisotropic spatial filters, we first perform two ide-
alized experiments in which only one single surface
moisture observation is analyzed in the whole analysis
domain. The isotropic and anisotropic filters, based on
Eqs. (5) and (6), respectively, are used to model the
background error covariances.

The single specific humidity observation with a value
of 8.29 g kg�1 is located at the grid point marked by a
black dot in Fig. 1, which also shows the true field at the
surface used in this set of experiments. No SWV obser-
vation is involved so that the second term in the cost
function in Eq. (4) vanishes. For simplicity, only a two-
dimensional horizontal filter is used so that the analyses

at different levels are decoupled and the overall analy-
sis is essentially two dimensional. In the case of an iso-
tropic filter, a horizontal length scale (Lr) of four grid
intervals is used. In the anisotropic filter case, Lr has a
length of six grid intervals and the length scale in error
field space, Lf, is 2.0 g kg�1. The larger value of Lr is
used in the anisotropic filter case so that the combined
effective decorrelation length scale is of sufficient
length in the direction of error field contours.

For the single observation tests, the background
value is assumed constant on each model level and is
equal to 12.71 g kg�1 at the surface. In this case, the
true error field, equaling to the true field minus the
background, has the same pattern as the true field itself
at each level. The true error field specifies f in Eq. (6)
for this experiment. Here we assume that the observa-
tion is much more accurate than the background, and
the relative weights, proportional to the inverse of error
variances, of 1, 500, and 50 are given to the background,
observation, and the nonnegative constraint terms of
the cost function, respectively. The resultant analysis
should therefore be much closer to the observation
than to the background. The analysis increment fields
are shown in Fig. 3.

The observation increment at the point of observa-
tion is spread in space through the background error
covariances. Consequently, the analysis with isotropic
covariances gives an analysis increment of circular
shape while that with anisotropic covariances shows an
increment that is related to the error field (Fig. 3). Since
the error field in this case has the same pattern as the
true specific humidity field shown in Fig. 1a, the analy-

FIG. 2. A schematic of a ground-based GPS observation net-
work whose data are analyzed using 3DVAR. Shaded surface
represents terrain. Dark solid lines are slant paths between
ground-based GPS receivers and GPS satellites. Dotted lines give
a sense of the vertically stretched grid although the actual grid
levels are in terrain-following coordinate.
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sis increment in the anisotropic case (Fig. 3a) is ori-
ented in the north-northeast to south-southwest direc-
tion and is narrower in the east–west and broader in the
north–south directions compared to the circular incre-
ment of isotropic analysis. The spatial scales of the in-
crement fields roughly match the effective decorrela-
tion scales used in the filters. The analysis increments at
the observation location are about �4.4 g kg�1 in both
cases, giving a total analysis of 8.30 g kg�1 that is, as
expected, very close to the observed value.

These experiments confirm that our 3DVAR analysis
system, using isotropic and anisotropic filters, performs
as expected. In the following and in section 5, we apply
this system to the analysis of 3D moisture filed using

GPS slant-path water vapor data as well as surface ob-
servations.

b. SWV retrieval experiments

A list of retrieval experiments analyzing the simu-
lated GPS SWV and surface moisture observations is
given in Table 1. The overall correlation coefficients
between analysis increment for these experiments and
the truth increment (truth minus background) are also
given in the table.

First, a control experiment (CNTL) is performed. In
this experiment, both SWV and regular surface obser-
vations at receiver sites are used. The analysis back-
ground is created by smoothing the nature field 50

FIG. 3. Specific humidity increment field in g kg�1 at the surface from single moisture observation tests, for
3DVAR analysis (a) with anisotropic flow-dependent background error covariance and (b) with isotropic covari-
ance. The location of the single specific humidity observation at the surface is marked by the black dot. Contour
interval is 0.5 g kg�1.

TABLE 1. List of moisture retrieval experiments. In the table, SWV denotes the GPS slant-path water vapor observation data and
“sfc” is for the surface moisture observation data.

Expt Background
Flow-dependent

background error? Obs used
Obs
error Obs resolution Filter

Correlation
coef

CNTL or
STF

Smoothed truth Yes, based on true background
error

SWV � sfc No 1 Obs/4 grid intervals 3D 0.926

SNF Smoothed truth No SWV � sfc No Same as above 3D 0.830
SUF Smoothed truth Yes, on updated analysis SWV � sfc No Same as above 3D 0.832
LTF Logarithmic Yes, on true background error SWV � sfc No Same as above 3D 0.827
LNF Logarithmic No SWV � sfc No Same as above 3D 0.821
STFNSFC Smoothed truth Yes, on true background error SWV No Same as above 3D 0.894
SNFNSFC Smoothed truth No SWV No Same as above 3D 0.668
STFNVF Smoothed truth Yes, on true background error SWV � sfc No Same as above 2D 0.801
STF_ER Smoothed truth Yes, on true background error SWV � sfc Yes Same as above 3D 0.790
SNF_LR Smoothed truth No SWV � sfc No 1 Obs/8 grid intervals 3D 0.679
STF_LR Smoothed truth Yes, on true background error SWV � sfc No 1 Obs/8 grid intervals 3D 0.870
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times, using a 2D 9-point filter (with 1–2–1 weightings
in each direction) in the horizontal. It can be seen from
Fig. 4 that this background shows a general pattern of
higher moisture to the east and lower values to the
west, but the detailed dryline structure is lost. Since
both the truth and background are known, the back-
ground error can be calculated. It is therefore possible
to model the background error covariances by taking
the known background error field as f in Eq. (6) and
this is done for CNTL.

The length scale Lr used is equal to four grid intervals
in both horizontal and vertical directions. Here Lf is
given as 2 g kg�1. Owing to the insignificant effect of
filter on the far distance, cutoff radii are used and cho-
sen to be 10 grid intervals in the horizontal and six
layers in the vertical, respectively. The selection of filter
scale depends, for one thing, on the density of ground-
based GPS receivers. The relatively small filter scales
and cutoff radii are chosen here so that gaps between
receiver stations are filled without excessive smoothing
to the analysis.

In all except for one sensitivity experiment, no error
is added to the simulated observations, so the observa-
tions are in a sense infinitely accurate compared to the
background. Because it is the relative errors that mat-
ter, we choose to specify the inverse of error variances
in terms of weights for each term of the cost function,
and the relative weights of the background, GPS SWV
observation and regular surface observation terms, and
of the nonnegative constraint are specified as 1, 100,
500, and 50, respectively. The much higher weights
given to the observation terms reflect the high accuracy
of observations as compared to the background, and we

are interested in finding out how well the 3DVAR
scheme can do in recovering the 3D moisture structure
under an ideal condition. The cost function defined by
Eq. (4) is minimized with respect to the increment of
specific humidity, using a conjugate gradient algorithm.

With the above parameter settings, the control ex-
periment is conducted. Figure 5 presents a vertical cross
section of retrieved moisture at y � 234 km from
CNTL, as compared to the truth. Only the domain be-

FIG. 4. Background specific humidity field in g kg�1, obtained by smoothing the nature 50 times using a nine-point
filter in the horizontal: (a) at the surface and (b) in the east–west vertical cross section at y � 234 km.

FIG. 5. East–west vertical cross section of specific humidity field
(g kg�1) at y � 234 km. The solid lines are for nature and the
dotted lines are for CNTL.
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low 6-km altitude is shown here since water vapor has
very low values above 6 km. It is obvious that the re-
trieved moisture field matches the nature field very
well. The dryline near x � 360 km is accurately cap-
tured. There is a strong east–west moisture gradient at
the low levels and the moisture isohumes are almost
perpendicular to the ground near the dryline. Mean-
while, due to presumably upward motion near the
dryline at near x � 576 km, there exists a moisture
tongue at this location that is surrounded by two
troughs to its east and west due to return flows. Figure
6 shows the q� increments at the surface. The retrieved
increment matches almost exactly the increment of
truth (the difference between truth and background);
their shapes match very well and the extrema locations
coincide. The correlation coefficient between the two
increment fields is 0.926 on the entire grid (Table 1).

To see the performance when an isotropic filter is
used instead, another experiment, is conducted, in
which the background is based on the smoothed truth
with no flow-dependent background error (SNF; Table
1). The length scale for an isotropic filter should be
smaller, so Lr is given a length of three grid intervals.
SNF is otherwise the same as CNTL. Figure 7 shows the
vertical cross section at y � 234 km and the analysis
increment at the surface from SNF. The retrieved mois-
ture field also exhibits a dryline around x � 360 km, a
moisture tongue due to updraft together with troughs
on its sides due to downdrafts (Fig. 7a). The strengths of
the updraft and downdrafts as reflected by the isohume
shapes are weaker than those in CNTL and nature.
Their locations near the ground are shifted eastward
relative to the truth. The isohumes have shapes differ-

ent from the truth and are smoother than truth (Fig.
7b). Overall, this analysis does not match the truth as
well as the analysis of CNTL. The overall correlation
coefficient of the increment fields is reduced to 0.83
from the 0.926 of CNTL (Table 1).

Experiment CNTL has a flow-dependent back-
ground error covariances based on known background
error while experiment SNF assumes isotropic covari-
ances. Their comparison illustrates the importance of
background error covariances. The problem is, how-
ever, that the background error covariances are never
known exactly. To improve actual analysis in NWP, it is
necessary to seek feasible methods for representing the
background error covariances as accurately as possible.
Using an isotropic filter, we can obtain an analysis (the
result of SNF) that is much closer to the truth than the
initial background field. As a result, the background
error may be estimated by subtracting the background
from the isotropic analysis, which we call the updated
(from that based on initial background) background
error. Based on this consideration, the experiment with
the smoothed truth as the background and the updated
flow-dependent background error covariances (SUF) is
performed (see Table 1), which does a second analysis
starting from the same background but using an aniso-
tropic filter based on the error field calculated as the
difference between the output of SNF and the back-
ground. This analysis matches the truth much better
than that of SNF as shown in Fig. 8, and the improve-
ment is also, though to a lesser extent, reflected in the
overall correlation coefficient (0.832 versus 0.830,
Table 1). In the vertical cross section (Fig. 8a), the iso-
humes for specific humidity values of 4, 6, and 8 g kg�1

FIG. 6. Specific humidity increment field in g kg�1 at the surface from (a) the nature and (b) CNTL. Dashed
lines represent negative values and solid lines positive values.
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follow the truth much better than those in Fig. 7a. The
finescale moisture bulge near x � 360 km is also well
recovered. Meanwhile, the maximum value of 18.65 g
kg�1 from SUF is closer to the true value of 18.64 g
kg�1 than the 18.79 g kg�1 of SNF. The surface incre-
ment field (Fig. 8b) contains a lot more finer scale struc-
tures that are consistent with the pattern of truth incre-
ment field.

These three experiments clearly demonstrate that the
3DVAR system with flow-dependent background error
covariances realized through an anisotropic spatial filer

provides better analysis than that with isotropic co-
variances. This is true even when the background error
is estimated using a first-pass analysis that utilizes iso-
tropic error covariances.

c. Retrievals with a vertically logarithmic
background

The background in the above three experiments was
constructed by smoothing the truth. This background,
shown in Fig. 4, still contains structures of moisture at
the larger scales and some information on the vertical

FIG. 7. (a) East–west vertical cross section of specific humidity field (g kg�1) at y � 234 km where solid lines are
for nature and dotted lines are for experiment SNF. (b) Analysis increment of specific humidity (g kg�1) at the
surface from experiment SNF, where dashed lines are for negative values and solid lines are for positive values.

FIG. 8. Same as in Fig. 7 but for experiment SUF.
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moisture distribution. To understand how much the
analysis depends on the structure information present
in the background, we conduct another two experi-
ments in which the background is specified using a loga-
rithmic vertical profile. This profile decreases from a
value of 12 g kg�1 at the surface to zero at 17 km, the
top of the analysis domain. This profile is used to
specify the background q� values on each terrain-
following grid level, so that the background is uniform
along the model levels. Such a background is artificial
and supplies no realistic information on the structure of
moisture, therefore a successful analysis has to extract
all structure information from the observations with the
help of background error covariances. For these tests,
the weight of background term is reduced from 1.0 to
0.2 because of the reduced accuracy of the background.

One experiment using the isotropic filter [i.e., the
logarithmic background with no flow-dependent B
(LNF)] and another using the anisotropic filter [i.e., the
logarithmic background and truth-based flow-
dependent B (LTF)], which is based on the true error
field, are performed (Table 1). The vertical cross sec-
tions of retrieved moisture field for these two experi-
ments are presented in Figs. 9 and 10, respectively. For
the isotropic filter case (Fig. 9), the dryline is weaker
and the boundary separating the moist and dry air
shows a significant slope at the low levels. The structure
is, incorrectly, more symmetric in the east–west direc-
tion in accord with the isotropy, and the moist bulge
near x � 288 km is completely missed in the analysis

(Fig. 9). However, the vertical structure of the analysis
using flow-dependent background error is much better
than that using isotropic error as expected. For the
anisotropic case, the isohumes generally follow the
“true” isohumes except near the boundaries. The
dryline is reflected by the almost vertically oriented
boundary between the dry and moist air in the lowest
1.5 km. But there are more errors near the east–west
boundaries in Fig. 10 (for LTF) than in Fig. 5 (for
CNTL). This can be explained by the fact that, with the
logarithmic background, the recovery of 3D moisture
structure depends more on the GPS slant-path water
vapor observations but there are fewer slant paths near
the boundaries because there is no path coming in from
outside the boundary (this problem will not exist for
global analyses).

As we have previously explained, the inclusion of the
background term in the 3DVAR analysis eliminates the
under-determinedness problem. We have found that
even with a background that is worse than the logarith-
mic one tested above, such as the case of a constant
value applied to 3D, a convergent 3DVAR analysis is
still feasible although the analysis is poorer (results not
shown). On the contrary, the minimization fails (an un-
physical analysis was produced before any convergence
could be reached) when the background term is ex-
cluded and when no additional smoothing constraint is
applied.

The above experiments show that our 3DVAR sys-
tem is capable of recovering the 3D moisture structure

FIG. 9. Same as in Fig. 5 but dotted lines are from experiment
LNF.

FIG. 10. Same as in Fig. 5 but dotted lines are from experiment
LTF.
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from ground-based GPS slant-path water vapor and
surface moisture observations even when an artificial
analysis background is used. When flow-dependent
background error information is known and properly
used, better analysis is obtained.

5. Sensitivity experiments

In this section, sensitivity experiments are performed
to test several factors that can affect the quality of mois-
ture analysis.

a. Impact of surface moisture observations

A sensitivity experiment with smoothed background
and truth-based flow-dependent error covariance
(STF), as in CNTL, plus no surface observations
(STFNSFC), is conducted and is the same as CNTL
except that surface observations are excluded. This is to
test the effect of surface moisture observations on the
retrieval. The overall correlation coefficient between
the increment fields of this retrieval and that of truth is
now 0.894, a quite significant decrease from the 0.926 of
CNTL (Table 1).

The surface increment field from this experiment is
presented in the Fig. 11a. The pattern of the increment
field is good, but the extrema are only half as large as
those from CNTL (Fig. 6). Due to the integral nature of
the SWV observations, the deterioration in accuracy of
surface analysis will also worsen the analysis at the up-
per levels. This is shown by Fig. 12, which shows the
correlation coefficients between the retrieval and truth
increment fields plotted against the vertical model lay-

ers.1 It is seen that, below the fifth model level (about
500 m AGL), the correlation coefficients from experi-
ment STFNSFC are always less than those from CNTL.
At the upper levels, the correlation coefficients of
STFNSFC are mostly smaller than those of CNTL.
Clearly, the surface moisture observations improve the
overall analysis by directly adjusting near-surface q�

field and by more accurately distributing water vapor in
the vertical.

Another experiment called SNF plus no surface ob-
servation (SNFNSFC), is the same as SNF (Table 1)
except that surface observations are excluded. The re-
sults show that the analyzed dryline is much weaker,
compared to the corresponding retrieval with surface
observations (i.e., that of SNF). The increment field at
the surface (Fig. 11b) does not match well the true
increment field (Fig. 6a) and the extrema are even
weaker than in STFNSFC (Fig. 11a).

The overall correlation coefficient is 0.67 for
SNFNSFC, about 0.26 and 0.22 less than those of
CNTL and STFNSFC, respectively. The large drop in
accuracy is mostly due to the differences at the lowest
levels where the surface observations have the greatest
impact. This is partly so because, near the surface, the
model meshes are intersected by very few or no slant
paths. Limited by the relatively small analysis domain,
the lowest elevation angle of usable slant paths in our

1 The mean heights of the center of the model levels are 0.80,
0.89, 0.98, 1.12, 1.29, 1.50, 1.73, 2.00, 2.28, 2.58, 2.90, 3.24, 3.58,
3.94, 4.30, 4.66, 5.04, 5.41, 5.79, 6.16, 6.54, 6.92, 7.30, 7.67, 8.05,
8.43, 8.81, 9.20, 9.59, 9.98, 10.38, 10.79, 11.21, 11.65, 12.10, 12.57,
13.07, 13.59, 14.14, 14.72, 15.34, 16.00, and 16.66 km.

FIG. 11. Same as in Fig. 6 but for experiments (a) STFNSFC and (b) SNFNSFC.

944 M O N T H L Y W E A T H E R R E V I E W VOLUME 134



experiments is about 15°. The inaccuracy in the surface
moisture analysis influences the analysis at upper levels
because of the integral nature of GPS observations.

The above comparisons of analyses tell us that the
surface observations play an important role, especially
when realistic flow-dependent background error cova-
riances are not available. Flow-dependent background
error covariances, consequently, have more impact on
the analysis in the absence of surface observations. The
best retrieval is obtained when both accurate back-
ground error covariance information and surface obser-
vations are included while the worst is obtained when
neither is included.

b. Impact of vertical filtering

To isolate the effect of vertical filtering, only the
horizontal filter is used in experiment STF or CNTL
plus no vertical filtering (STFNVF; Table 1). All other
parameter settings are the same as in CNTL. Figure 13
shows the vertical profiles of correlation coefficients of
analysis increment from CNTL and STFNVF with the
truth increment. It is clear that CNTL gives a better
analysis than STFNVF. There is almost no difference
right at the surface owing to the dominant contributions
of surface observations there but the correlation coef-
ficient of STFNVF is significantly lower between the
second and fifth levels, with the difference being larger
than 0.3 at the second level. Still, the correlation coef-
ficients from the third through the thirteenth level, are
larger than or equal to 0.8, so the pattern of analysis
increment remains reasonably good at those levels. The

gradient of the low-level analysis increment is, how-
ever, clearly weaker than that of the truth increment
(not shown). Figure 13 also shows a general improve-
ment in the analysis at the upper levels when vertical
filtering is included. Therefore, the vertical filtering is
very important for accurate analysis in the boundary
layer and beneficial at the upper levels too. It is so
because, in the absence of vertical filtering, surface ob-
servation information cannot be spread upward into the
boundary layer where information from GPS data is
also lacking.

c. Sensitivity to observation error

One of the advantages of using simulated data is that
observation data can be error free, but the sensitivity to
observation errors should be examined for practical
use. This is done in experiment known as STF_ER (ER
is for error), in which normally distributed errors with
5% and 7% standard deviations are added to the simu-
lated surface and SWV observations, respectively. The
experiment is otherwise the same as CNTL. The errors
are consistent with the estimate of Braun et al. (2001)
for real data. Compared to CNTL, the relative weights
for SWV and regular surface observation terms are de-
creased to 80 and 400, respectively, because of the
added observational errors.

The analysis of STF_ER also matches the truth rea-
sonably well, as shown in Fig. 14. In the vertical cross
section, only the 2 g kg�1 isohume is prominently dif-
ferent from the CNTL result. The analyzed maximum is
19.49 g kg�1, 0.75 g kg�1 larger than the truth maximum
of 18.64 g kg�1. The horizontal structure (not shown)
also matches truth well below 7 km where 95% of water
vapor concentrates. Therefore, even in the presence of

FIG. 12. Profiles of correlation coefficient of specific humidity
increment (difference from background, in g kg�1) between those
of nature and 3DVAR analysis from experiments CNTL,
STFNSFC, SNFNSFC, and SNF, plotted for different model lev-
els. Mean height of each level is given in footnote 1.

FIG. 13. Same as in Fig. 12 but for experiments CNTL (solid
line) and STFNVF (dotted line).
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realistic errors in the SWV and surface observations,
our 3DVAR system is still able to produce good analy-
sis, although the overall correlation coefficient of the
increments decreases from 0.926 to 0.79 (Table 1). Still,
all major structures of the dryline are recovered well.

d. Observation density test

Finally, the sensitivity of 3D moisture analysis to the
density of ground-based GPS receivers is examined.

The receiver density is halved in experiments SNF_LR
and STF_LR (LR is for low resolution), with one re-
ceiver station every eight grid intervals and a station
spacing of 288 km. The horizontal decorrelation length
scale in physical space, Lr, and the corresponding cutoff
radius are enlarged since their choices should be partly
related to receiver network density. The length scale
should be large enough to fill the gaps between receiver
stations. Experiment SNF_LR uses an isotropic filter
with Lr given a length of five grid intervals, while ex-
periment STF_LR uses an anisotropic filter and a six-
grid-interval physical length scale. Length scale Lf re-
mains 2.0 g kg�1. SNF_LR and STF_LR should be com-
pared with the high-resolution counterparts SNF and
CNTL, respectively.

Figure 15 presents the retrieval result from STF_LR.
Comparing the east–west cross section at y � 234 km
(Fig. 15a) with that of CNTL (Fig. 5), we can see that
the difference in the quality of analysis is relatively
small, indicating that the 3D moisture retrieval is not
very sensitive to the observation density, in this case
when reliable statistics of the background error are
available and used. This conclusion is also supported by
the surface analysis increment field in Fig. 15b. The
overall correlation coefficient is about 0.87 for
STF_LR, 0.06 less than that of CNTL (Table 1). When
the background error covariances are given an isotropic
form in SNF_LR, the overall correlation coefficient de-
creases to 0.68 from 0.83, that of the corresponding high
density case (i.e., SNF). Clearly, this decrease is much
larger than the flow-dependent error cases (i.e., CNTL
and STF_LR). This implies that the retrieval quality is
more sensitive to receiver station density when no good

FIG. 14. Same as in Fig. 5 but dotted lines are for experiment
STF_ER.

FIG. 15. Same as in Fig. 7 but for experiment STF_LR.

946 M O N T H L Y W E A T H E R R E V I E W VOLUME 134



information on the background error structure is avail-
able or used.

6. Summary and conclusions

A new 3DVAR analysis system is developed for re-
trieving the 3D water vapor structure of the atmo-
sphere from a GPS observation network. This network
provides integrated water vapor along slant paths be-
tween GPS satellites and ground-based receivers, as
well as direct moisture measurements at the ground
receiver sites. The ARPS mesoscale model is used to
create a “true” atmospheric moisture field for a dryline
case that occurred during the IHOP_2002 field experi-
ment, and this true atmosphere is sampled by the GPS
observation network to produce simulated slant-path
water vapor data and surface moisture observations.

Our analysis system is formulated in the same gen-
eralized terrain-following coordinate system used by
ARPS. It includes a background term in the 3DVAR
cost function, which for one thing overcomes the under-
determinedness problem with GPS data retrieval.
Three-dimensional Gaussian-type explicit spatial filters
are used to model background error covariances, which
can be isotropic or flow dependent and spatially aniso-
tropic. In the latter case, a flow-dependent anisotropic
filter is constructed based on the true or estimated error
field of the analysis background, following the ap-
proach of Riishøjgaard (1998). Three-dimensional
variational retrieval experiments are conducted using
the simulated data and the quality of the analyses is
evaluated through comparisons with the truth. The re-
sults are summarized as follows.

1) The 3DVAR system, even with isotropic back-
ground error covariances, can retrieve from surface
moisture and GPS SWV observations the 3D meso-
scale moisture structure reasonably well, and the
analysis is able to capture major features of the
model simulated dryline.

2) The use of flow-dependent background error cova-
riances realized through an anisotropic spatial filter
always improves the analysis. The best analysis is
obtained in the ideal situation where the back-
ground error structure is known. Otherwise, the
background error structure can be estimated from a
first-pass analysis obtained using isotropic back-
ground error covariances, and in this case, a signifi-
cant improvement in the analysis can also be ob-
tained. The role of flow-dependent covariances is
enhanced at regions near the lateral boundaries and
at the low levels, where the model grid cells are
intersected by few if any slant paths. In these data-

sparse regions, the retrieval benefits more from the
properly spread observation increments via back-
ground error covariances.

3) The retrieval is still feasible even with an artificial
vertically logarithmic background that is homoge-
neous along the model levels when flow-dependent
background error covariance is applied. The quality
of analysis is not as good as the smoothed back-
ground case but still reasonable except for regions
near the boundaries where few slant paths go
through. This suggests that our 3DVAR method is
rather robust, and the analysis derives most of the
water vapor structure information from the obser-
vations and the background error statistics.

4) Sensitivity experiments indicate that surface mois-
ture observations are important for accurate analy-
sis of water vapor at low levels, and more so when
no good information on the background error cova-
riances is available or used. When there is no surface
observation, the flow-dependent background error
has an even larger positive impact on the analysis.
The vertical component of the spatial filter is shown
to be very beneficial, especially in the low-level
data-sparse region, where its main effect is in the
upward spread of the surface moisture information.
Improved low-level moisture analysis also leads to
better upper-level analysis through an improved
vertical distribution of moisture.

5) Sensitivity tests on the observation errors show that
our analysis system is also robust in the presence of
realistic errors in the surface moisture and SWV ob-
servations. Main structures of the dryline can still be
recovered with reasonable accuracy. With the den-
sity of ground-based receiver stations halved, the
dryline structure can be reasonably recovered when
flow-dependent background error covariances are
used but the problems near the boundaries are
worse. Such deterioration is more dramatic when an
isotropic spatial filter is used. In other words, the
positive impact of flow-dependent background error
covariances increases when the density of ground-
based GPS receiver stations decreases.

In our current analysis system, an explicit spatial fil-
ter is used to model the background error covariances
as well as to reduce computer memory requirements as
compared to storing the full B matrix. This treatment
cannot guarantee the positive definiteness of the modi-
fied covariance matrix, however. Meanwhile, the larger
cutoff radii are, the more expensive the algorithm be-
comes. A computationally more efficient alternative is
the recursive filter, which can be used to model both
isotropic and anisotropic background error (Wu et al.
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2002; Purser et al. 2003a,b), although the realization of
the latter with recursive filter is much more compli-
cated. We plan to implement and test recursive filters in
our system in the near future. Furthermore, we will use
the retrieved moisture field to initialize a mesoscale
model, such as ARPS, and examine the impact of as-
similating GPS SWV data on short-range precipitation
forecasts. The assimilation and examination of the im-
pact of real GPS SWV data collected during the
IHOP_2002 field experiment are also planned. Further
extensions of this work include analyzing tropospheric
total delay data along slant paths in a multivariate
3DVAR system, where the contributions of tempera-
ture and pressure to the signal delay are also included
and the moisture field is analyzed together with all
other state variables.
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