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Abstract: Water quality retrieval for small urban waterbodies by remote sensing get used to be 

difficult due to coarse spatial resolution of the remote sensing imagery. The recently launched 

Sentinel-2 produces imagery with a spatial resolution of 10 m. It provides an opportunity to solve 

the problem of retrieving water quality for small waterbodies. Additionally, many water 

management issues also require fine resolution of imagery, e.g. illegal discharge to an urban 

waterbody. Since illegal discharges are an important issue for urban water management, chemical 

oxygen demand (COD), total phosphorous (TP), and total nitrogen (TN) were chosen as the target 

parameters for water quality retrieval in this study. COD, TP and TN, however, are non-optically 

active parameters. There were limited studies in the past to retrieve these parameters in comparison 

with optically active parameters, e.g. Chlorophyll-A etc. This study compared three machine 

learning models, namely Random Forest (RF), Support Vector Regression (SVR), and Neural 

Networks (NN), to investigate the opportunity to retrieve the above non-optically active parameters. 

Results showed that R2 of TP, TN, and COD by NN, RF and SVR were 0.94, 0.88, and 0.86, 

respectively. The performances of water quality retrieval for these non-optically active parameters 

were significantly improved by the optimized machine learning models. These models hence solved 

the problem to use remote sensing data to retrieve these non-optically active water quality 

parameters and provided a new monitoring strategy for small waterbodies. Water quality mapping 

obtained by Sentinel-2 imagery provided a full spatial coverage of the water quality characterization 

for the entire water surface. Compared with water samples collecting and testing, it greatly reduced 

labor cost, reagents cost, and waste treatment cost. It also may help identify illegal discharges to 

urban waterbodies. The method developed in this research provides a new practical and efficient 

water quality monitoring strategy in managing water with consideration of environmental 

sustainability. 

Keywords: water quality retrieval; illegal discharges identify; small waterbodies; Sentinel-2; 

machine learning 

 

1. Introduction 

In urban areas, waterbodies, such as lakes and reservoirs, may be polluted by illegal discharges 

of domestic sewage and industrial effluent [1]. Deterioration of water quality may increase human 

exposure to diseases and harmful chemicals; reduce ecosystem productivity and biodiversity; and 

damage aquaculture, agriculture and other water-related industries [2,3]. Traditional water quality 

monitoring methods are primarily based on water samples collecting and testing or automatic in-situ 

measurements. Both methods are either labor intensive or very costly. In addition, most water 
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samples testing would need reagents for testing and the treating of waste generated by testing is also 

costly. Although these methods may have high accuracy, individual samples only reflect the water 

quality at specific sampling points and are limited in characterizing the water quality for the entire 

waterbody [4–7]. In many cases, the decision makers would need a full picture of water characteristics 

over the entire waterbody surface for water quality management. Remote sensing has been used to 

monitor water quality since the 1970s [8,9]. Compared with traditional methods, remote sensing can 

provide the full coverage required for dynamic water quality monitoring [10]. 

Over the past several decades, scholars have carried out extensive research on water quality 

monitoring by remote sensing, and have achieved good results in estimating optically active 

parameters, such as Chlorophyll-a (Chl-a), suspended solids (SS), colored dissolved organic matter 

(CDOM), turbidity and transparency [11–16]. There are however few studies on non-optically active 

parameters, such as chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) 

[17,18,27–29,19–26]. Estimating non-optically active parameters directly from spectral characteristics 

is difficult. Generally, non-optically active parameters have been estimated indirectly by the 

correlation between optically active parameters and non-optically active parameters [30].  

When plenty of domestic and agricultural wastewater containing N and P enter waterbodies, 

excessive nutrient elements lead to aquatic plants and algae blooms [22,31]. Chl-a is one of the most 

important pigments in phytoplankton, and exists in all eukaryotic algae [32]. Relevant studies show 

that there is a significant correlation between Chl-a and blue, green, red and infrared bands [33,34]. 

The increase of TP and TN will inevitably change of optical characteristics of waterbodies. When 

industrial wastewater containing plenty of organic matter is discharged into waterbodies, insoluble 

substances directly lead to the increase of turbidity. On the other hand, aerobic microorganisms 

consume oxygen in water to degrade organic matter. At certain depth the dissolved oxygen might 

gradually decrease to 0, and result in anaerobic condition. In anaerobic environment, the cyclic state 

of Fe3+ from Fe2O3 and Fe(OH)3 in water could be destroyed, and accumulate certain amount of Fe2+. 

Meanwhile, S from sulfate and organic sulfur is reduced to H2S, and the anaerobic environment 

prevents microorganisms from assimilating H2S to organic sulfur compounds. Unassimilated H2S 

might react with Fe2+ to form FeS. The FeS turns the water to black by absorbing on the suspended 

matter [35]. The increase of COD thus changes the optical characteristics of water. Based on these, it 

is possible to retrieve TP, TN and COD directly from spectral characteristics. 

The most widely used remote sensing data for the existing research are TM/ETM+ and OLI, 

SeaWiFS, MODIS and MERIS [36–39]. However, the temporal resolution of TM/ETM+ and OLI data 

is 16 days, and the spatial resolution of SeaWiFS data, MODIS data and MERIS data is greater than 

250 m, resulting in challenges in characterizing the water quality for small urban waterbodies. 

Hyperspectral imagery contain a large number of continuous spectral data and provide more spectral 

characteristics for water quality retrieval [34,40,41]. However, space borne hyperspectral data (such 

as Hyperion and CHRIS) are only experimental data rather than operational at present, and airborne 

hyperspectral data (such as AVIRIS, CASI and CIS) have very limited spatial coverage with high cost 

[36]. 

In summary, non-optically active parameters were not well studied in previous studies, and the 

most remote sensing data has too coarse spatial or temporal resolution. Therefore, the objective of 

this research is to retrieve non-optically active parameters for small urban waterbodies using 

Sentinel-2 data. TP, TN, and COD were selected as the target parameters, since they may help in 

identifying the sources of domestic sewage and industrial effluent or illegal discharges from 

industrial effluent or domestic wastewater. The imagery of recently launched Sentinel-2 was selected 

because it is free of charge with a high spatial resolution of 10 m and a temporal resolution of 5 days. 

Three machine learning algorithms were introduced in the empirical methods [41–43] to investigate 

the opportunity to retrieve the non-optically active parameters (Figure 1). This research may help 

urban water management by providing a more practical and efficient water quality monitoring 

strategy of non-optically active parameters. 
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Figure 1. Flowchart of the research. 

2. Materials and Methods  

2.1. Study area 

This study selected a small urban lake with an area of 0.6 km2 (600 m×1 000 m). The lake is located 

in an industrial park in the City of Tianjin, China, and provides flood control and ecological balance 

for its surrounding areas (Figure 2). The total developed area of the industrial park is 2 km2 with 

diversified land uses, including industrial, residential, and commercial areas. The ecosystem health 

of the lake is directly related to the management of the surrounding area. 

 

Figure 2. Location of study area and the sampling locations (green pin labels). 

2.2. Water quality parameters measurement 
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Twenty sampling points were evenly distributed on the water area by the grid method. The 

density of sampling points was 0.03 sites/km2. To provide simultaneous sampling with Sentinel-2, 

water samples were collected by Yunzhou SE40 unmanned surface vessel (USV) at 10:00 ~ 12:00 on 

May 20, 2019 and June 9, 2019. The two sampling dates were selected in the early summer when 

aquatic plants did not grow rapidly and massively, since the aquatic plants covering the lake would 

impact on the retrieval accuracy. A total of 40 water samples were collected, with sampling depths of 

30-50 cm. There was no cloud cover above the lake on the sampling dates. The time between sampling 

and satellite overpass was less than 4 hours. After being collected, water samples were quickly put 

into amber glass bottles to avoid sunshine, and sent to the laboratory for testing. The testing method 

for each parameter studied in this research is listed in Table 1. The measured water quality 

parameters of 40 sampling points constitute the ground truth data set. 

Table 1. Testing methods. 

Parameters Method 

TP Acid persulfate digestion method 

TN Persulfate oxidation method 

COD Reactor digestion method 

The measured water quality distribution for two sampling dates was generated by ArcGIS 10.4 

(Environmental Systems Research Institute, Inc., Redlands, California, USA) . On May 20, 2019, the 

mean values of TP, TN, and COD were 0.29 mg/L, 0.66 mg/L, and 50.45 mg/L, respectively. On June 

9, 2019, the averages of TP and TN increased to 0.85 mg/L and 1.63 mg/L, respectively. The averages 

of COD decreased to 17.45 mg/L (Figure 3). 

 

                (a)                        (b)                         (c) 

 
(d)                        (e)                        (f) 

Figure 3. Distribution of measured water quality parameters. (a), (b), (c) represent TP, TN and COD, 

respectively on May 20, 2019; (d), (e), (f) represent TP, TN and COD, respectively, on June 9, 2019. 

The bigger the size of the dots, the more serious the water pollution. 
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2.3. Satellite data processing 

Since December 3, 2015, ESA has officially provided free download services for Sentinel-2 data 

to global users. Real-time updated imagery can be downloaded freely from 

https://scihub.copernicus.eu. All images are acquired by multi-spectral imager (MSI). The images 

contain thirteen spectral bands ranging from the Visible (VNIR) and Near Infra-Red (NIR) to the 

Short Wave Infra-Red (SWIR). The spatial resolution of Band 2 (B2, 492.1 nm), Band 3 (B3, 559.0 nm), 

Band 4 (B4, 665 nm), Band 8 (B5, 833 nm) is 10 m. The spatial resolution of Band 5 (B6, 703.8 nm), 

Band 6 (B6, 739.1 nm), Band 7 (B7, 779.7 nm), Band 8A (B8A, 864.8 nm), Band 11 (B11, 1610.4 nm), 

Band 12 (B12, 2185.7 nm) is 20 m. The spatial resolution of Band 1 (B1, 442.3 nm), Band 9 (B9, 943.2 

nm), Band 10 (B10, 1376.9 nm) is 60 m. Band 1, Band 9, and Band 10 are three atmospheric bands, and 

hence were not analyzed in this research. 

The two remote sensing images obtained in this paper were L1C products, namely atmospheric 

apparent reflectance products after ortho-rectification and sub-pixel geometric correction. 

Radiometric calibration and atmospheric correction were completed by sen2cor. Then, the L2A 

products were obtained, namely the bottom of atmosphere (BOA) reflectance products. Four bands 

with a spatial resolution of 20 m were resampled to 10 m using the Sentinel Application Platform 

(SNAP) v6.0, creating eight bands with a spatial resolution of 10 m (Figure 4). 

 

(a)                                 (b) 

Figure 4. BOA reflectance of sampling points on: (a) May 20, 2019; (b) June 9, 2019. Different colors 

represent different sampling points. 

Pixel values corresponding to 40 ground truth points were extracted. The entire data set for 

machine learning models was composed of ‘ground truth data set’ and ‘pixel value data set’. The 

water area was extracted by Normalized Difference Water Index (NDWI) in ENVI 5.3 [44]. NDWI = 𝑋𝐺𝑟𝑒𝑒𝑛−𝑋𝑁𝐼𝑅𝑋𝐺𝑟𝑒𝑒𝑛+𝑋𝑁𝐼𝑅                                 (1) 

where XGreen and XNIR are the pixel values of the green band and NIR band, respectively. For 

Sentinel-2 images, the green band and NIR band are B3 and B8, respectively. 

2.4. Building of machine learning models 

Three machine learning algorithms, namely Random Forest (RF), Support Vector Regression 

(SVR), and Back-Propagation Neural Networks (NN), were selected to construct regression models 

between water quality parameters and pixel values, respectively. The entire data set was randomly 

split into 70% training set and 30% test set. The coefficient of determination R-squared (R2), mean 

absolute percentage error (MAPE) and root mean square percentage error (RMSPE) were used to 

evaluate the performance of the models [28]. 
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where 
i

y , 
i

y  and ˆ
i

y  stand for the measured, mean and estimated water quality parameters, 

respectively; and n stands for the number of sampling points. Learning curves were used to optimize 

model parameters. Cross validation was used to calculate the evaluation metrics of model 

performance [45]. For each cross validation, the whole data set was randomly split into 70% training 

set and 30% test set. A model was fitted on the training set and evaluated for the test set. The final R2
, 

MAPE, RMSPE were the average of 10 cross validations. The principles of the three machine learning 

algorithms are described in the following subsections. 

2.4.1. Random Forest 

Random Forest (RF) is an ensemble learning method [46,47]. It uses data to construct multiple 

models, and integrates the modeling results of all models by voting (classification problem) or taking 

mean (regression problem), so that the results of the entire model have high accuracy and 

generalization performance. In the implementation of RF, an equal number of training samples are 

randomly extracted from all samples, then m sub-feature sets are selected from all input features, and 

finally, an optimal attribute is selected from the sub-feature set for node splitting.  

When solving regression problems, each decision tree is a regression tree, which is divided by 

the minimum mean square deviation. In other words, for splitting feature A, the corresponding 

arbitrary splitting point s splits the data set into two data sets (D1 and D2), so that the mean square 

deviation of the two data sets after splitting is minimum. The formula is as follows: 

1 2

2
1

2 2

, 1 2

min min ( ) min ( )

( , ) ( , )

i i

A s i i

y c y c
cx D A s x D A sc

 
 − + −
   

                  (5) 

where c1 and c2 are the sample output mean values of D1 and D2, respectively. iy  is the 

measured value. 

Then, at the two nodes after splitting, the splitting continues according to this principle. The 

final prediction result is the mean of all decision trees. In this research, RF was implemented by scikit-

learn 0.21.3 of Python 3.7, and the main parameters were set as follows by learning curves: 

Table 2. Main parameter settings of RF. 

Parameters TP TN COD 

n_estimators 80 36 40 

max_depth 6 5 3 

max_features 5 2 6 

2.4.2. Support Vector Regression 

SVR maps x in low-dimensional space to a high-dimensional feature space φ(x) with a non-linear 

function φ, and seeks a linear regression hyperplane in high-dimensional space to solve the non-

linear problems in low-dimensional space [48,49]. Linear functions in high-dimensional feature 

spaces can be constructed as follows: 
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y = ⟨𝑤𝜑(𝑥)⟩ + b                                   (6) 

where x and y are the input and output. ⟨𝑤𝜑(𝑥)⟩ is the inner product of the feature space, and 

the weight vector 𝑤 and bias constant b can be obtained by minimizing the risk function (7): min (‖𝑤‖22 + C∑ 𝐿𝜀𝑁𝑖=1 (𝑥𝑖 , 𝑦𝑖 , 𝑓))                              (7) 

In function (7)： 𝐿𝜀(𝑥𝑖 , 𝑦𝑖 , 𝑓) = {|𝑦𝑖 − 𝑓(𝑥𝑖)| − 𝜀, |𝑦𝑖 − 𝑓(𝑥𝑖)| ≥ 𝜀0,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       (8) 

where 𝐿𝜀 is the loss function. C is a pre-set penalty coefficient, which is used to punish errors 

greater than 𝜀. 𝜀 is the deviation between the estimated and the measured values. N is the number 

of sampling points. By introducing slack variables 𝜉𝑖 and 𝜉𝑖∗, the solution of (7) can be transformed 

to (9): min (‖𝑤‖22 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖∗)𝑁𝑖=1 )                              (9) 

The constraint condition is as follows: 𝑦𝑖 − [(𝑤 × 𝑥𝑖) + 𝑏] ≤ 𝜀 + 𝜉𝑖 [(𝑤 × 𝑥𝑖) + 𝑏] − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖∗                              (10) 𝜉𝑖∗, 𝜉𝑖 ≥ 0 

Lagrange multiplier 𝛼𝑖 and 𝛼𝑖∗ are introduced to establish Lagrange function and then solve 

the dual problems of the original problems. Finally, the regression function of the optimal hyperplane 

is obtained: 𝑓(x) = ∑ (𝛼𝑖 − 𝛼𝑖∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑁𝑖=1                             (11) 

where 𝐾(𝑥𝑖 , 𝑥) is the kernel function: 𝐾(𝑥𝑖 , 𝑥) = 𝜑⟨𝑥𝑖 , 𝑥⟩ = φ(𝑥𝑖)𝑇𝜑(𝑥)                            (12) 

The most commonly used kernel functions include: linear kernel, polynomial kernel, sigmoid 

kernel, radial basis function (RBF) kernel, etc. [50]. Using learning curve, RBF was selected as the 

kernel function in this research: 𝐾(𝑥𝑖 , 𝑥) = 𝑒−‖𝑥−𝑥𝑖‖2 𝜎2⁄                               (13) 

In this research, SVR is implemented by scikit-learn 0.21.3 of Python 3.7, and the main 

parameters were set as follows by learning curves: 

Table 3. Main parameter settings of SVR 

Parameters TP TN COD 

C 1.2341 1.2341 7.3521 

gamma 0.0569 0.0954 0.0594 

2.4.3. Neural Networks 

Back-Propagation NN is a multi-layer perceptron model, which is trained by error back 

propagation algorithm. The model is built according to the internal relations of the data itself, and 

has good non-linear approximation ability and comprehensive processing ability for cluttered 

information. The model structure consists of one input layer, one or more hidden layers and one 

output layer. The upper and lower layers are fully connected, and there is no connection between 

neurons in each layer. 
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The number of nodes in the input layer (n), hidden layer (l) and output layer (m) are determined 

by the sequence of input and output（X,Y）. The training process of the model employs the following 

steps: 

1. Initialization 

Initialize 𝑤𝑖𝑗  and 𝑤𝑗𝑘 . 𝑤𝑖𝑗  is the connection weight between the jth neuron in the input layer 

and the ith neuron in the hidden layer. 𝑤𝑗𝑘  is the connection weight between the kth neuron in 

hidden layer and the jth neuron in the output layer. The thresholds a and b of hidden layer and output 

layer are preset, giving the activation function of neurons and learning efficiency 𝜂. 

2. Hidden layer output calculation 

The output H of the hidden layer is calculated according to the input variable X, the connection 

weight 𝑤𝑖𝑗 between the input layer and the hidden layer and the threshold a of the hidden layer: 𝐻𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 − 𝑎𝑗)𝑗 = 1,2, … , 𝑙𝑛𝑖=1                          (14) 

3. Output layer calculation 

The predicted output O is calculated according to the output H of the hidden layer, the 

connection weight 𝑤𝑗𝑘  and the threshold b: 𝑂𝑘 = ∑ 𝐻𝑗𝑤𝑗𝑘 − 𝑏𝑘𝑘 = 1,2, … ,𝑚𝑙𝑗=1                          (15) 

4. Error calculation 

The prediction error e is calculated according to the predicted output O and the expected output 

Y. If the error meets the requirement, the training will be completed, otherwise step 5 will be repeated. 

5. Updating weights and thresholds 

Turn back to step 2 after updating the connection weight 𝑤𝑖𝑗 , 𝑤𝑗𝑘  and thresholds a, b according 

to error e. 

The common activation functions in Back-Propagation NN are ReLU function, sigmoid function 

and tanh function. Among them, ReLU function is the most commonly used [51]. It is a piecewise 

linear function, and makes up for the gradient disappearance problem of sigmoid function and tanh 

function. The function is as follows: g(z) = {𝑧, 𝑧 > 00, 𝑧 < 0                                  （16） 

In this research, NN is implemented in Keras 2.2.4 of Python 3.7. The number of neurons in the 

input layer was set to six, for there are six input bands of the remote sensing imagery. By comparing 

the error of training results and analyzing the calculation efficiency, the number of hidden layer was 

set to four. For TP and TN, the number of neurons in each hidden layer was 300. For COD, the number 

of neurons in each hidden layer was 200. 

3. Results 

3.1. Bands selection 

The average spectral shape across the concentrations of the three water quality parameters is 

shown in Figure 5. The average BOA reflectance of the two sampling dates showed significant 

differences, because of the difference between the average concentrations on the two dates. The 

average BOA reflectance increased with the increase of the concentration. On each sampling date, 

average BOA reflectance fluctuated significantly with the concentration. Results indicate that it is 

feasible to retrieve TP, TN and COD from spectral characteristics. 
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(a) 

 

(b) 

 

(c) 

Figure 5. The average spectral shape across the concentrations of TP (a), TN (b) and COD (c). BOA 

reflectance was the average of eight bands. When plotting, different average BOA reflectance 

corresponding to the same concentration were averaged. 

Then, the standard deviation of each band across the concentrations of each water quality 

parameter was calculated (Figure 6). For TP and TN, B3, B4, B5, B6, B7 and B8 are the most different 

across the range of concentrations. For COD, B2, B3, B5, B6, B7 and B8 are the most different across 
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the range of concentrations. It was suggested that the above band composition could be used to 

retrieve water quality parameters. 

 

Figure 6. The standard deviation of each band across the concentrations of each water quality 

parameter. The black square, red dot and blue diamond stands for TP, TN and COD, respectively. 

In order to evaluate whether the above-mentioned band composition was most appropriate, this 

study used all possible band compositions (a total of 255 band compositions) to retrieve each water 

quality parameter by multiple linear regression. R2 was selected to evaluate the model performance 

(Figure 7). 
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Figure 7. The R2 of each water quality parameter retrieval by different band composition. 

According to Figure 7, with the increase of band number, the average R2 increased, and reached 

the maximum when band number was 6. The average R2 of 7 band composition was greater than that 

of 8 band composition. The most important bands were B3, B4, and B5, namely, the green and red 

band (B5 is the vegetation red edge with a wavelength of 705 nm). The results were consistent with 

the work of Tan et al. [30]. Spectra from phytoplankton dominated water experienced low reflectance 

in red (650~750 nm) wavelengths due to the absorption by Chl-a and other pigments. For the sediment 

dominated spectra, the reflectance values are relatively high in the green (543~578 nm) and red 

(650~750 nm) wavelengths. Based on the average R2, the most appropriate band compositions of TP, 

TN and COD retrieval were 'B3+B4+B5+B6+B7+B8', 'B3+B4+B5+B6+B7+B8' and 'B2+B3+B5+B6+B7+B8'. 

3.2. Performance of machine learning models 

The entire data set consists of ground truth data set and pixel value data set were split randomly 

into 70% training set and 30% test set to develop RF, SVR and NN models. The pixel value data set 

of each water quality parameter used the most appropriate band compositions mentioned in 
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Subsection 3.1. By comparing the estimated water quality parameters from models with the ground 

truth, the scatter plots in Figure 8 were obtained. The average R2, MAPE, and RMSPE of 10 cross 

validations was used to evaluate the performance of the models. 

 

(a)                        (b)                         (c) 

 

(d)                        (e)                         (f) 

 

 (g)                        (h)                         (i) 

Figure 8. The model performance of TP, TN and COD retrieval. (a), (b), (c) represent the accuracy of 

RF; (d), (e), (f) represent the accuracy of SVR; and (g), (h), (i) represent the accuracy of NN. The red 

dots and blue triangles represent data sets acquired from water samples collected on May 20, 2019 

and June 9,2019, respectively. 

The optimal models of TP, TN and COD were quite different. For TP, the performances of NN 

was good. R2 reached 0.94, and the MAPE and RMSPE were 12.43% and 16.80%, respectively. For TN, 

the performances of RF was good. R2 reached 0.88, and the MAPE and RMSPE were 18.39% and 

29.64%, respectively. For COD, the performances of SVR was good. R2 reached 0.86, and the MAPE 

and RMSPE were 12.55% and 18.75%, respectively. 

Taking the results of multiple linear regression as a comparison, machine learning significantly 

improved the retrieval accuracy of different water quality parameters (Table 4). 
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Table 4. Comparison of accuracy between machine learning and multiple linear 

regression. 

Parameters 
Machine learning Multiple linear regression 

R2 MAPE RMSPE R2 MAPE RMSPE 

TP 0.94 12.43% 16.80% 0.65 30.65% 39.83% 

TN 0.88 18.39% 29.64% 0.76 22.14% 36.24% 

COD 0.86 12.55% 18.75% 0.81 39.18% 71.65% 

According to Figure 8, the scatter points of each water quality parameter are obviously 

concentrated in two regions. Especially for TP and TN, there is almost no overlap between the two 

regions. This is because the water quality parameters on the two sampling dates are quite different. 

The magnitudes of TP and TN on June 9, 2019 were significantly higher than those on May 20, 2019, 

while COD on June 9, 2019 was significantly lower than that on May 20, 2019. The decrease of COD 

may be due to the active metabolism of microorganisms in water and the accelerated degradation of 

organic matter with the gradual increase of temperature. 

Comparing the measured and estimated values of each water quality parameter, Figure 9 was 

obtained. The dynamic distribution of measured and estimated values was almost consistent. There 

was no significant difference between the evaluation errors of training set and of test set. Results 

indicated that the model performed well on both training set and test set. 
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(a) 

 

(b) 

 

 (c) 

Figure 9. Comparison of measured and estimated water quality parameters. (a), (b), (c) represent 

TP, TN and COD, respectively. The black and red dots represent the estimated values by training set 

and test set, respectively. The gray square represents the measured values. 

3.3. Water quality mapping 

The pixel values of the entire lake were imported into the optimal model for each water quality 

parameter, and the water quality parameters of each pixel were estimated. The water quality 

mapping of the entire lake was obtained by the spatial interpolation tool in ArcGIS 10.4 (Figure 10). 
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(a)                        (b)                        (c) 

 

 (d)                        (e)                        (f) 

Figure 10. Water quality mapping on two sampling dates. (a), (b), (c) represent TP, TN and COD, 

respectively, on May 20, 2019; (d), (e), (f) represent TP, TN and COD, respectively, on June 9, 2019. 

The spatial distributions of TP and TN tended to be consistent, which might be due to the fact 

that TP and TN were from the same pollution sources. For example, domestic sewage from residential 

areas was discharged into the lake. TP and TN in the south and west of the lake were higher than 

those in the north and east of the lake. On May 20, 2019, the high values of TP and TN were distributed 

in the southwest of the lake, while on June 9, 2019, the areas expanded from the southwest of the lake 

to the north of the lake. Accordingly, the averages of TP and TN increased from 0.29 mg/L and 0.66 

mg/L on May 20, 2019 to 0.85 mg/L and 1.63 mg/L on June 9, 2019, respectively. COD in the east was 

higher than that in the west of the lake. On May 20, 2019, the high values of COD were distributed in 

most areas except the southwest of the lake. By June 9, 2019, the area of high values contracted 

eastward to the middle and east of the lake. Meanwhile, the averages of COD decreased from 50.45 

mg/L on May 20, 2019 to 17.45 mg/L on June 9, 2019. 

According to the mapping of TP and TN, domestic sewage containing N and P might be 

continuously discharged into the lake. It was observed from the remote sensing images that there 

was a piece of farm land with an area about 1.25 km2 as well as a subdivision of a residential area 

adjacent to the lake on the southwest. Therefore, the increases of TP and TN in the south and west of 

the lake were likely related to the application of chemical fertilizer and the discharges of domestic 

wastewater. The high values of COD were widely distributed in the center of the lake. From May 20, 

2019 to June 9, 2019, there was an obvious process of contraction to the east of the lake. According to 

this change, industrial wastewater or domestic wastewater might be discharged into the east of the 

lake, which may originate from the nearby residential areas and a pharmaceutical factory in the east 

of the lake. 
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It could be observed that water quality parameters were not evenly distributed, although the 

waterbody was fairly small (surface area was 0.6 km2 and less than 1 km2). The study of water quality 

retrieval based on high resolution satellite image is therefore crucial for many water management 

issues, e.g. identifying illegal discharges to urban waterbody, spills on the shore etc. 

4. Discussion 

4.1 Assessment of water quality conditions 

Comparing the estimated water quality parameters to the environmental quality standards for 

surface water (National Standard of the People’s Republic of China, GB3838-2002), the Figure 11 was 

obtained. The environmental quality standards for surface water classified each water quality 

parameter into five levels, i.e., Class I~V from good water quality to poor. 

 
 (a)                           (b)                          (c) 

Figure 11. Comparison of estimated water quality parameters and the environmental quality 

standards for surface water (National Standard of the People’s Republic of China, GB3838-2002). (a), 

(b), (c) represent TP, TN and COD, respectively. The red dashed lines represent different 

classifications of water quality (noted with Roman numerals). 

According to Figure 11, TP on both May 20, 2019 and June 9, 2019 was worse than Class V. 

Serious phosphorus pollution existed in the entire lake surface. TN of the lake surface on both May 

20, 2019 and June 9, 2019 covered from Class II to V. The average TN on both May 20, 2019 and June 

9, 2019 was subject to Class IV. On May 20, 2019, 1.05%, 40.37%, 21.33% and 37.25% of the lake 

surface was subject to Class II, Class III, Class IV and Class V. On June 9, 2019, the water quality 

deteriorated. Class III, Class IV and Class V area expanded to 28.63%, 25.65% and 74.35%. Class II 

area almost disappeared. COD of the lake surface on both May 20, 2019 and June 9, 2019 covered 

from Class II to V. In part of the lake surface, COD was worse than Class V. The average COD on 

both May 20, 2019 and June 9, 2019 was subject to Class V. On May 20, 2019, 41.21% of the lake 

surface was worse than Class V. 4.29%, 9.10%, 19.09% and 26.30% of the lake surface was subject to 

Class I~II, Class III, Class IV and Class V, respectively. On June 9, 2019, area with COD worse than 

Class V decreased to 34.49%. Area of Class V and Class II decreased to 22.43% and 3.8%, 

respectively. Area of Class III and Class IV increased to 11.44% and 27.84%, respectively. 

4.2 Comparison of retrieval accuracy 

Taking R2 as the comparison standard of retrieval accuracy, this research surveyed most existing 

publications regarding the retrieval of TP, TN and COD from 2000 to present and compared the 

performance of the proposed method in this research with previous research works, Figure 12 shows 

the results of comparison. 
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Figure 12. R2 comparison of existing publications and this research. The min, lower quartile, 

median, upper quartile, max and mean of the R2 of existing retrieval for TP, TN and COD were 

displayed by Box-plot. The asterisk represents the retrieval R2 in this research. 

Since the average R2 of TP in the existing publications [21,22,24–27,29] was 0.653, the 

performance of TP retrieval was improved by about 44% over the average of the past research works. 

For TN, the average R2 in the existing publications [21,23–27] was 0.613, and the performance of TN 

retrieval in this research was improved by 43% over the average of the past research works. For COD, 

the average R2 in the past research works [17–20] was 0.722, and the performance of retrieval COD in 

this research was slightly higher than the upper quartile of the past research works. Based on the 

above analysis, the performance of water quality retrieval in this research has improved by using a 

combination of machine learning strategies. As the key nutrient for eutrophication, TP has the highest 

performance. The machine learning strategy proposed in this study may help in water quality 

management for urban waterbodies. 

5. Conclusions 

This research developed a machine learning based monitoring method for non-optically active 

water quality parameters of small urban waterbodies based on Sentinel-2 imagery. The main 

conclusions are as follows: 

1. This is the first attempt to retrieve water quality parameters for small waterbodies with 

surface area less than 1 km2
. 

2. Compared with TM/ETM+, MODIS and other data, Sentinel-2 with high spatiotemporal 

resolution makes it possible to retrieve the water quality characteristics for small urban waterbodies. 

3. The most important Sentinel-2 bands of TP, TN and COD retrieval were B3, B4, and B5. The 

optimal retrieval accuracy of TP, TN and COD was acquired from the band compositions of 

'B3+B4+B5+B6+B7+B8', 'B3+B4+B5+B6+B7+B8' and 'B2+B3+B5+B6+B7+B8', respectively. 

4. The performances of water quality retrieval for these non-optically active parameters were 

significantly improved by the optimized machine learning models, especially TP and TN. 

5. According to the water quality mapping by remote sensing and the interview of the 

residents in the neighborhood, the pollutants, especially the illegal discharges of industrial effluent, 

were traced back to the source. 
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